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MODEL SELECTION METHODS FOR GENOME WIDE

ASSOCIATION STUDIES∗

SUDEEP SRIVASTAVA† AND LIANG CHEN‡

Abstract. Due to the multiple loci control nature of complex phenotypes, there is great inter-

est to test markers simultaneously instead of one by one. In this paper, we compare three model

selection methods for genome wide association studies using simulations: the Stochastic Search

Variable Selection (SSVS), the Least Absolute Shrinkage and Selection Operator (LASSO) and the

Elastic Net. We also apply the three methods to identify genetic variants that are associated with

daunorubicin-induced cytotoxicity. The simulation studies were performed by using the genotype

data of 60 unrelated individuals from the CEU population in the Hapmap project. For the cytotox-

icity data, we used 3,967,790 markers across the whole genome for 56 unrelated individuals from the

CEU population. Using Sure Independence Screening as the pre-screening procedure, the SSVS gives

a small model while the LASSO gives an intermediate sized model and the Elastic Net provides a

large model. The three models share many common markers although the model sizes are different.

The model sizes are subject to various cutoffs and parameters. The SSVS outperforms the LASSO

and the Elastic Net in simulation studies. We also demonstrate the ability of the SSVS, the LASSO,

and the Elastic Net to handle the situation when the number of markers is larger than the number

of samples.

1. Introduction. With the advances in genotyping technology, it has become
feasible to perform large-scale, high-density genome wide association (GWA) studies
to search for common genetic variants underlying complex phenotypes ( [1, 2] ). How-
ever, due to lack of computing power, single-marker tests remain the primary tools in
the analysis of GWA data. Most quantitative phenotypes are complex in nature and
are caused by multiple genetic variants, each of them having varying degree of effects.
The possible interactions among genetic variants and the interactions between genes
and the environment present additional challenges for Quantitative Trait Loci (QTL)
mapping. Due to the multiple loci control nature, testing markers simultaneously in-
stead of one by one may increase statistical power. In order to identify the correct set
of genetic variants from millions of markers, efficient and reasonable model selection
algorithms are in urgent need. Three popular model selection methods have been
proposed : the Stochastic Search Variable Selection (SSVS) [3], the Least Absolute
Shrinkage and Selection Operator (LASSO) [4], and the Elastic Net [5].

In the SSVS, a latent variable γ is introduced to perform the variable selection for
the regression mode. γi = 1 implies that the ith variable is included in the model and
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γi = 0 implies that the ith variable is excluded from the model. A homogenous ergodic
Markov Chain can be generated by the Gibbs Sampler. The empirical distribution of
γ based on the Markov chain will converge to the actual posterior distribution of γ

[6].

The LASSO proposed by Tibshirani is a shrinkage based selection method for
linear regression. The LASSO minimizes the residual sum of squares subject to the
constraint on the sum of absolute value of coefficients. This L1-Norm constraint
produces shrunk coefficients with some of them exactly equal to zero, which leads
to interpretable models. In 2004, Efron et al. proposed the Least Angle Regres-
sion(LARS) [7] which is a computationally efficient model selection algorithm. There
is a close connection between the LARS and the LASSO. A simple modification of
the LARS algorithm can yield all the LASSO solutions. Due to their popularity and
usefulness, the LASSO and the LARS have drawn intensive research interest in the
statistical field.

The Elastic Net proposed by Zou and Hastie [5] uses a novel regularization penalty.
The naive Elastic Net uses a combination of the LASSO and the Ridge regression
penalty. However, the Elastic Net uses a scaled version of the naive Elastic Net
estimate to reduce the overshrinking of parameters. It has been shown that the
Elastic Net outperforms the LASSO [5]. In addition, it has a grouping effect in which
correlated predictors group together. Thus, they are included together or excluded
together from the model. This is advantageous in association studies as many markers
are highly correlated via high linkage disequilibrium (LD). Another modification to
the LARS algorithm gives all the solutions to the Elastic Net for a given value of the
parameter. This enables a fast implementation of the Elastic Net algorithm. Due to
efficient implementation and the grouping effect, the Elastic Net is very commonly
used and gives more insight into the LASSO.

The LASSO and the Elastic Net are two of the most popular model selection
methods which involve the minimization of the mean square error with respect to some
constraints. SSVS on the other hand is based on the Gibbs Sampler which belongs
to the broader class of Markov Chain Monte Carlo methods. Hence, a comparison of
the three methods would be of great interest.

Daunorubicin is an anthracycline chemotherapeutic agent, which is used in the
treatment of various cancers including leukemia, lymphoma, and advanced HIV-
associated Kaposi’s sarcoma [8, 9]. Daunorubicin has also been shown to be toxic
and is associated with myelosuppression and cardiac toxicity [10, 11, 12]. It has been
reported that ∼ 29 % of variation in susceptibility to daunorubicin-induced toxicity
is due to genetics [13]. Therefore, it is important to conduct GWA studies to identify
genetic variants which are responsible for increased susceptibility to daunorubicin-
induced toxicity. We used the phenotype data provided in [14]. The authors used
a cell growth inhibition assay to measure variations in the cytotoxicity of daunoru-
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bicin. We applied the SSVS, the LASSO and the Elastic Net to the 3,967,790 SNPs
to identify genetic variants associated with daunorubicin-induced cytotoxicity.

2. Methods.

2.1. Sure Independence Screening. The genotype was coded as 0,1 or 2 for
homozygous rare alleles, heterozygous alleles, and homozygous common alleles respec-
tively (i.e., assuming additive effect). The missing alleles were imputed according to
the genotype frequency calculated from the available data. As a prescreening step,
markers with a minor allele frequency less than 0.01 were discarded. For the simula-
tion studies, the phenotype data was simulated with 5 causal markers and each of the
causal markers had an equal effect on the phenotype. The marker effect and the link-
age disequilibrium among markers were varied. For the real data set, the phenotype
data was transformed using an inverse normalization of percentile ranks.

We assume that the high dimensional data is sparse. That means most of the
markers are not associated with the output phenotype. This is a reasonable assump-
tion because of the huge number of markers. The biggest challenge with a large
number of predictors is that there might be spurious correlations among different
predictors which might lead to confounding correlations with the output. This is
accentuated in association studies when markers are highly correlated among them-
selves due to linkage disequilibrium. The Dantzig Selector which is the solution to
a L1 regularization problem [15] has been shown to have the ideal risk up to a log-
arithmic factor log(p) where p is the number of predictors. However log(p) can also
grow very fast and this bound is no longer adequate. Hence, we need to apply an
effective dimensionality reduction method in the first stage before we apply a model
selection method in the second stage as the efficiency of most model selection algo-
rithms decreases dramatically with the increase in the number of predictors. This
dimensionality reduction also helps in reducing computational time required for the
model selection methods.

To decrease the dimensionality of the marker data for the real data set, a method
called Sure Independence Screening (SIS) was performed [16]. The SIS has been
shown to have the Sure Screening property which is that all the important variables
survive in the model with a probability close to 1 under some conditions. The SIS
method assumes a linear model.

Y = Xβ + ε,

where X denotes the genotype data which are columnwise standardized, Y denotes
the phenotype data, β is the regression coefficient, and ε are i.i.d N(0, 1) random
variables independent of the rest of the parameters in the model. The method uses
correlation learning to detect predictors in the true model. w is defined as the vector
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obtained by

w = XTY.

The SIS selects the largest componentwise magnitudes of the vector w. For a given
α, Mα denotes the marker set output by SIS as

Mα = {1 ≤ i ≤ p :: |wi| is amongst the [αn] largest of all },

where [αn] denotes the integer part of αn. The authors in [16] suggest that α should
be chosen such that [αn] < n. However, since we want to demonstrate that the SSVS
and the LASSO can handle more markers than the number of samples, we select 200
markers with the largest correlations. Therefore, for our data, we used α = 10/3. The
SIS reduces the number of markers to o(n) number of markers.

2.2. Stochastic Search Variable Selection. The SSVS was proposed by
George et al. [3]. The SSVS uses a hierarchical Bayes model to identify the associated
variables. Here, we assumed that the phenotype follows a multiple regression model
of a subset of the markers. The canonical regression setup is given by

(1) Y = Xβ + ε,

where the phenotype data Y is n × 1, genotype data X = [X1, . . . ,Xp] is n × p, Xi

is the genotype data for marker i, β = (β1, . . . , βp)
′
, and ε ∼ N(0, θ2) where θ2 is

scalar. The number of samples in the population is given by n and the number of
markers by p.

A latent variable γi is defined as the indicator whether marker i is selected in the
model or not. The β′is follow a mixture model of the form:

(2) βi|γi ∼ (1− γi)N(0, σ2) + γiN(0, τ2).

And any prior information about the γi’s can be incorporated by setting a prior on
the γi’s. Let f(γ) denote the prior. In our model, we assumed that the γi’s are
independent with marginal distributions as below:

(3) P (γi = 1) = 1− P (γi = 0) = 1/p.

To obtain (2) as the prior for βi|γi, a multivariate normal prior is used as follows:

(4) β|γ ∼ N(0,DγRDγ).

R is the prior correlation matrix and Dγ is defined as

(5) Dγ = diag[φ1, φ2, . . . , φp],
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where φi = σ if γi = 0 and φi = τ if γi = 1. We used the prior correlation matrix R

as the identity matrix, but correlations between the markers can be incorporated in
this prior correlation matrix. The prior on the residual variance is given by

(6) θ2|γ ∼ InverseGamma(n/2, ‖Y −Xβ‖2/2).

The posterior probabilities of γ can be estimated from the Markov chain generated
by the Gibbs Sampler. We run the Gibbs Sampler for 2000 iterations to achieve
stationarity and then run it for an additional 8000 iterations to estimate the posterior
probabilities.

2.3. LASSO. The LASSO, or the “least absolute shrinkage and selection oper-
ator”, tries to shrink some coefficients and set most of the coefficients exactly equal
to 0 to achieve a model with a small number of variables and a small mean square
error.

Using the linear model

Y = Xβ + ε,

where Y,X,β, ε are the same as above. The LASSO tries to minimize ‖Y −Xβ̂‖2

subject to the L1 norm
∑

j |βj | ≤ t. Here t ≥ 0 is the tuning or shrinkage parameter.
This statement can be rephrased as

β̂ = argminβ(‖Y −Xβ‖2 + λ
∑

j

|βj |).

By using the L1 norm, the LASSO ensures that a subset of the predictors are exactly
0. Some studies have been done on the consistency of the LASSO. Zhao and Yu
[17] proved that when a condition known as the Strong Irrepresentable Condition is
satisfied and when the error terms have some finite moments, the LASSO is strongly
sign consistent, i.e. ∃λ = f(n) which is independent of Y or X such that

lim
n→∞

P (sign(β̂(λ)) = sign(β)) −→ 1.

for large p and q where q is the number of markers which are not associated with
the phenotype. However, we only have 56 samples, hence we cannot rely on this
condition for the LASSO to pick up the correct markers. The LASSO is a quadratic
programming problem but can be solved by a simple modification to the Least Angle
Regression algorithm by Efron et al.[7].

2.4. Elastic Net. The Elastic Net uses the linear model and tries to minimize
the least square error using a novel regularization penalty. It uses two regularization
parameters (λ1, λ2). The linear model is given below :

Y = Xβ + ε,
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where Y, X, β and ε have their usual meanings. The definition for the naive Elastic
Net estimator is given below. For any fixed non-negative λ1 and λ2, the naive Elastic
Net criterion is defined as

L(λ1, λ2,β) = |Y −Xβ|2 + λ2

p∑
i=1

β2
i + λ1

p∑
i=1

|βi|.

The naive Elastic Net estimator β̂ is the minimizer of the above equation:

β̂ = arg minβ{L(λ1, λ2,β)}.

An artificial data set (Y∗,X∗) is defined as follows:

X∗ = (1 + λ2)−1/2

(
X

√
λ2Ip

)
,

where Ip is the p× p identity matrix and p is the number of markers. And

Y∗ =

(
Y

0

)
,

where 0 is the p× 1 0-vector.
It can be shown that the naive Elastic Net solves a lasso-type problem given by

β̂∗ = arg minβ̂∗ |Y∗ −X∗β∗|2 +
λ1√

1 + λ2

|β∗|1.

The Elastic Net estimates are given as

β̂(elastic net) =
√

1 + λ2β̂
∗.

This kind of scaling undoes the overshrinking effect when we combine the L1 and
L2 penalties. To choose the coefficients, a two dimensional cross validation is per-
formed. The LARS extension which implements the Elastic Net algorithm, called the
LARS-EN, outputs a sequence of variables corresponding to a given λ2. λ1 has a one
to one correspondence with the number of iterations that the LARS-EN algorithm
was run for. Therefore selecting the active model at a given iteration for a partic-
ular λ2 would give us the Elastic Net solution corresponding to particular value of
(λ1, λ2). To estimate the model parameters, different values of λ2 are chosen (i.e.
(0, 0.01, 0.1, 1, 10, 100)) and the other tuning parameter is chosen using 10 fold cross
validation. The chosen λ2 is the one giving the minimum cross-validation error. The
Elastic Net has been shown to have a grouping effect, i.e. variables highly correlated
with each other are included and excluded in the model together. This is extremely
useful in association mapping as many markers are in high LD with each other.
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2.5. Area Under the Curve. For simulation studies, the Area Under the
Curve (AUC) statistic was used to assess the power of the method. The True Positive
Rates(TP) and the False Positive Rates(FP) are defined as follows:

TP (c) =
Number of Markers correctly classified as causal markers

Number of Causal Markers
,

FP (c) =
Number of Markers wrongly classified as causal markers

Number of Non-Causal Markers
,

where c is the cutoff used in the method. For the SSVS c is the cutoff for the posterior
probability for the γj ’s. For the LASSO, c is the number of iterations that the LASSO
is run. The Receiver Operating Characteristic (ROC) curve is the two-dimensional
plot of TP(c) vs. FP(c) ( or sensitivity vs. (1-specificity) ) for −∞ < c < ∞. The
overall performance of a classifier can be measured by the area under the ROC curve.
This quantity is called the AUC. An AUC of 0.5 represents a complete random guess.

For the SSVS, the AUC is calculated using the following formula modified from
[18]

AUC =
1

nCnCc

∑
i∈C,j∈Cc

I{γi > γj},

where C is the set of indices of the causal markers and Cc is the set of indices of the
non-causal markers. nC and nCc are the number of causal and non-causal markers
respectively. For the LASSO, the following formula is used to calculate the AUC

AUC =
1

nCnCc

∑
i∈C,j∈Cc

I{δi < δj},

where δi represents the first iteration at which the ith marker enters the model. This
corresponds to a cutoff of iterations used to select the model for the LASSO.
The AUC for the Elastic Net is calculated using the same formula as the LASSO,
using the λ2 from the set {0, 0.01, 0.1, 1, 10, 100} as given in [5].

3. Results.

3.1. Simulation Studies. For simulation studies, we considered the phenotype
data for 60 individuals. The genotype data was simulated as follows: we selected a
set of markers from chromosome 1 of the Hapmap CEU population data at different
marker densities. The density of markers was varied according to the average number
of markers selected from every 1,000 markers of the Hapmap Phase I data. We used
60 markers per sample in the simulations. Among them, five markers were selected to
be associated with the phenotype. These markers were labeled as the causal markers.
The phenotype was simulated from a linear model with different coefficients according
to the following equation:

Yj = βX1j + βX2j + . . . + βX5j + εj ,



46 SUDEEP SRIVASTAVA AND LIANG CHEN

where Yj is the simulated phenotype for the jth individual, X1j , X2j , . . . , X5j denotes
the genotypes of the five causal markers for the jth individual, β denotes the coefficient
of the causal markers and ε′js are simulated as i.i.d N(0, 1). The AUC statistic was
calculated for the three methods and are summarized in Table 1. AUC values are
shown for the SSVS with σ = 0.05 and different values of τ , the LASSO and the
Elastic Net. The AUC values for a single marker F-test are also shown in Table 1.
The SSVS consistently has a higher AUC value than the other two methods. The
Elastic Net has a smaller AUC than the LASSO when the effect size is small and LD
is high, but is consistently higher than the LASSO in other cases. The single marker
F-test has a higher AUC than the LASSO and the Elastic Net when the marker effect
is small. However, the LASSO and the Elastic Net are better in other cases.

Figures 1 and 2 show the ROC curves for the LASSO and the SSVS. Figure 1
shows the ROC curves for the LASSO with the marker data set at different marker
densities for β = 1. These marker densities are measured as selecting 100,10 and 1
marker on an average per 1000 markers in the Hapmap data. We can see that the area
under the ROC curve increases as the marker density decreases. This is because when
the marker density decreases, the independence between the markers “increases” and
hence the method can detect the causal markers more effectively. The same is seen
in Figure 2 for the SSVS (β = 1, σ = 0.05 and τ = 1). However, since the values
are very close to each other, the curves nearly overlap with one another. Also, the
ROC Curves intersect with each other, making it difficult to judge which one has the
higher AUC. More detailed values are listed in Table 1. It clearly shows that the
AUC increases when marker density decreases. The AUC values also change as the
parameter τ changes for the SSVS. When coefficient β = 1, τ = 1 gives the maximum
AUC score. However, the differences are small. The ROC has a dip at the end for
the lasso in Figure 1. The LASSO is implemented as a modified LARS algorithm
which can remove predictors after they are added into the model. Since the algorithm
with different iteration cutoffs corresponds to a LASSO solution for a particular λ,
we used the iteration number as the cutoff to make the ROC curve. However, as we
increase the number of iterations in the cutoff, more false positives might be included
and the true positive rate might also decrease as true causal markers are removed
from the model. Fortunately, these mainly happen when the false positive rate is high
(e.g., > 0.7). And we are interested in the performance of the method when the false
positive rate is reasonably low. If we assume that a variable is never removed from
the model and calculate the sensitivity and specificity, we will get a ROC curve which
is monotone increasing.

3.2. Daunorubicin-Induced Cytotoxicity Data. We considered 3,967,790
SNPs in the real data analysis. Markers with a minor allele frequency less than
0.01 were screened out. After this step, 2,598,208 markers remained. A total of
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Fig. 1. ROC Curves for the LASSO for different marker densities (β = 1).
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Fig. 2. ROC Curves for the SSVS for different marker densities (β = 1, σ = 0.05, τ = 1).

56 unrelated CEU individual have the phenotype data available. Using SIS, the
correlation was calculated between the phenotype and the genotype. The top 200
markers were chosen for the SSVS, the LASSO, and the Elastic Net.

For the SSVS, the results can vary dramatically by changing the initial parameters
of τ and σ. We use σ = 0.05, 0.01, 0.001, 0.0001 and corresponding values of τ based
on the values of τ2

σ2 = 400, 1600, 3600. Table 2 shows the number of variables selected
for the models with different parameters and posterior probability cutoffs. The results
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are robust to the posterior probability cutoffs, which also indicates the convergence
of the Chain. Using the model with the largest adjusted R2, we select σ = 0.0001
and τ = 0.012 giving an adjusted R2 of 0.9641. Figure 3 shows the positions (green
triangles) of the markers which were selected by the SSVS with model parameters
σ = 0.0001, τ = 0.012.

Table 2

Number of markers selected by the SSVS for different posterior probability cutoffs.

The LASSO algorithm was run till the residual was below a certain level . The
optimum number of iterations was selected using a 10 fold cross validation. The
minimum mean square error was achieved at the 115th iteration. The LASSO selected
56 markers in the final model. The positions of the markers are also shown in Figure 3
(blue diamonds). The Venn diagram in Figure 4 shows that the SSVS and the LASSO
identify 10 common markers.

The Elastic Net algorithm was also used to select significant markers. The λ2

parameter was selected from possible values of 0,0.01,0.1,1,10 and 100 using a 10 fold
cross validation. A λ2 = 0.1 was used in the final model as it gave the minimum
cross validation score. The number of iterations were further chosen using a 10 fold
cross validation and a model of size 160 was chosen (red circles in Figure 3). Among
these selected markers, 23 were also identified by the SSVS and 55 were identified by
the LASSO. The 10 markers common between the SSVS and the LASSO were also
selected by the Elastic Net. From Figure 3, we can see that the models chosen by the
different methods are quite consistent, except for the size of the model.

4. Discussion. We show that the SSVS outperforms the LASSO and the Elastic
Net in simulation studies. All the three methods have similar trends in power as we
change marker density and coefficients of the markers. For the daunorubicin data
set, the SSVS, the LASSO and the Elastic Net select a significantly common model,
however the size of the SSVS model is small. The Elastic Net selects a very large
model. None of the common markers selected have been previously reported to be
associated with daunorubicin induced cytotoxicity. However, in the prescreening, the
SIS only selects two markers which have been previously reported to be associated



50 SUDEEP SRIVASTAVA AND LIANG CHEN

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●●●●

●

●

● ●

●

●

0 50 100 150 200

5
10

15
20

Markers Selected by the SSVS, the LASSO and the elastic net

 Marker Position ( Mbps )

C
hr

om
os

om
e 

N
um

be
r

●

Markers Selected by the SSVS

Markers Selected by the LASSO

Markers Selected by the elastic net

Markers Selected by all three methods

Fig. 3. Positions of markers selected by the SSVS, the LASSO and the Elastic Net.

SSVS LASSO

Elastic Net

6 markers 1 markers

13 
markers

10 
markers

45 
markers

0

92 markers

Fig. 4. Comparison of the outputs of the three methods for the Daunorubicin-induced cytotox-
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with daunorubicin induced cytotoxicity, rs220200 and rs10142144.

The methods have their advantages and disadvantages in their application to
model selection. The SSVS is computationally intensive as it requires computation of
a matrix inverse at each iteration. The LARS requires the inverse computation of a
matrix with the size of the active set. Therefore as the number of iterations increases,
the time required for an iteration would increase. Both the LASSO and the Elastic Net
use the LARS algorithm and hence have the same problem. However, since the SSVS
requires the Markov chain achieve stationarity, it requires much more time than the
LASSO and the Elastic Net. Therefore, we need to carry out a marker screening step
(e.g., SIS procedure) before running any of the three methods. The Gibbs Sampler
in the SSVS requires prior parameter selection. The parameters for the SSVS have
been selected according to [3] for different values of σ. However, it is impossible
to explore the whole space. The final results may be very sensitive to parameter
estimation. Biological information can be incorporated using the prior parameters.
For the LASSO on the other hand, the cutoff needs to be selected. A cross-validation
scheme as used in this paper could be biased by the data set. The Elastic Net involves
a two fold cross validation where one of the parameters are again chosen from a specific
set. As the size of this set increases, the cross validation procedure can become very
computationally intensive. In real data, it would be beneficial to use multiple methods
and weight the results accordingly.

Neither of the methods are able to find any association with rs120525235 and
rs3750518 mentioned in [14]. These markers are not detected by the SIS. However
[14] uses gene expression data along with the genotype-phenotype association study.
Thus, they used additional data resources. More methods need to be developed to
integrate gene expression into GWA studies.

Prescreening methods have become of utmost importance with the advances in
technology. We used the SIS to reduce the number of markers from 2598208 to 200.
The authors in the SIS paper [16] suggested to use p = n − 1 or p = n

logn which are
much smaller than 200 in our case. We wanted to demonstrate the ability of these
methods to use more markers than samples. So we chose 200 (much larger than n− 1
and n

logn ) instead. The dimensionality reduction would ideally be method specific. We
need to develop a method-specific algorithm to choose the number of retained markers
after dimensionality reduction. If the causal markers are discarded in the prescreening
step, then it is impossible for any method to identify them. We also demonstrated
the ability of the SSVS, the LASSO and the Elastic Net to handle more markers than
the sample size of 56. However, increasing the number of markers can dramatically
reduce the power. It would be of great interest to address the relationship between
the number of markers chosen in the prescreening step and the statistical power.

The SSVS and the LASSO both rely on the assumption that the predictors are
independent. However, the markers are dependent on each other due to linkage dise-
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quilibrium, which would need to be considered to make an accurate statistical infer-
ence. The Elastic Net with its grouping property is a better choice when there are
highly correlated variables.

REFERENCES

[1] M. I. McCarthy et al., Genome-wide association studies for complex traits: consensus,

uncertainty and challenges. Nature Rev. Genet., 9(2008), pp. 356–369.

[2] L. Kruglyak, The road to genome-wide association studies. Nature Rev. Genet., 9(2008),

pp. 314–318.

[3] E. I. George and R. E. McCulloch, Variable selection via gibbs sampling. Journal of the

American Statistical Association, 88(1993), pp. 881–889.

[4] R. Tibshirani, Regression shrinkage and selection via the lasso. Journal of the Royal Statistical

Society, 58(1996), pp. 267–288.

[5] H. Zou and T. Hastie, Regularization and variable selection via the elastic net. JRST,

67(2005), pp. 301–320.

[6] G. Casella and E. I. George, Explaining the gibbs sampler. The American Statistician,

46(1992), pp. 167–174.

[7] B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani. Least angle regression. Annals of

Statistics, 32(2004), pp. 407–499.

[8] H. Davis and T. Davis, Daunorubicin and adriamycin in cancer treatment: an analysis of

their roles and limitations. Cancer Treat Rep, 63(1979), pp. 809–815.

[9] D. Schurmann, A. Dormann, T. Grunewald, and B. Ruf, Successful treatment of aids-

related pulmonary kaposi’s sarcoma with liposomal daunorubicin. Eur Respir J, 7(1994),

pp. 824–825.

[10] S. Lipschultz, Exposure to anthracyclines during childhood causes cardiac injury. Semin

Oncol, 33(2006), pp. S8–14.

[11] K. Seiter, Toxicity of the topoisomerase ii inhibitors. Expert Opin Drug Saf, 4(2005), pp.

219–34.

[12] R. Young, R. Ozols, and C. Myers, The anthracycline antineoplastic drugs. N Engl J Med,

305(1981), pp. 139–153.

[13] S. Duan, W. K. Bleibel, R. S. Huang, S. J. Shukla, X. Wu, J. A. Badner, and M. E.

Dolan, Mapping genes that contribute to daunorubicin-induced cytotoxicity. Cancer Res,

67(2007), pp. 5425–33.

[14] R. S. Huang, S. Duan, E. O. Kistner, W. K. Bleibel, S. M. Delaney, D. L. Facken-

thal, S. Das, and M. E. Dolan, Genetic variants contributing to daunorubicin-induced

cytotoxicity. Cancer Res, 68(2008), pp. 3161–3168.

[15] E. Candes and T. Tao, The dantzig selector : Statistical estimation when p is much larger

than n. Annals of Statistics, 35(2007), pp. 2313–2351.

[16] J. Fan and J. Lv. Sure independence screening for ultrahigh dimensional feature space. Journal

of the Royal Statistical Society Series B, 70(2008), pp. 849–911.

[17] P. Zhao and B. Yu, On model selection consistency of lasso. Journal of Machine Learning

Research, 7(2006), pp. 2541–2563.

[18] S. Ma and J. Huang, Combining multiple markers for classification using roc. Biometrics,

63(2007), pp. 751–757.


