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MULTI-MODE MULTI-DIMENSIONAL SYSTEMS WITH

POISSONIAN SEQUENCING∗

ERIK I. VERRIEST†

Abstract. The dynamics of hybrid systems with mode dynamics of different dimensions is

described. The first part gives some deterministic examples of such multi-mode multi-dimensional

(M3D) systems. The second part considers such models under sequential switching at random times.

More specifically, the backward Kolmogorov equation is derived, and Lie-algebraic methods are used

in the case where the modes are linear. For Poissonian switched equi-dimensional modes, the dif-

fusion limit and its implication in vibrational stability are studied. The motion of a pebble on an

elevator belt is given as an example.
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1. Introduction. We consider a hybrid system with inputs and outputs. Such

a system exhibits different modes of operation, but we assume in our model that the

different modes of operation have a behavior that can be captured by a state space

model perhaps exhibiting different dimensions. We coined the name multi-modal

multi-dimensional (M3D) system for this class. A new feature of such a model is that,

at the switching instants, the mapping of the states from old mode to new mode needs

to be specified. This class of systems was introduced in [24] where the optimal timing

(switching) control was studied. This M3D problem is of interest in the approximate

and reduced order modelling for nonlinear systems, as for instance obtained from

piecewise linearization or nonlinear balancing [25]. However, several other instances

of such systems occur rather naturally, e.g., the dynamics of a trampoline jumper,

trapeze circus artists, or simply the motion of material (a slurry) on a transport band

and the Brownian motor (nanoscale motion of myosin) [4, 5] among many others.

Switched systems belong to a general class of hybrid systems, discussed in [1, 2, 22].

In this paper we consider a stochastic M3D problem, where the system cycles through

the modes in sequential fashion, repeating over and over, but with the switching times

governed by a Poison process (PM3D).

The paper is organized as follows: In section 2, we describe the system dynamics,

and sketch some instances where such models may occur. In Section 3 we consider

stochastic switching and derive a hyperbolic PDE to describe the behavior of the

system under randomly timed switching, and describe its limit under fast switching

in the equi-dimensional case. Finally, Section 4 extends these results to the PM3D

∗Dedicated to Roger Brockett on the occasion of his 70th birthday.
†Erik I. Verriest is with the Faculty of Electrical and Computer Engineering, Georgia Institute

of Technology, Atlanta, GA 30332-0250. E-mail: erik.verriest@ece.gatech.edu, presently on leave at

SCD, ESAT, KULeuven, Leuven, Belgium

77



78 ERIK I. VERRIEST

case.

2. Dynamics of M3D Systems. The dynamical system discussed in this paper

is a switched mode system where we assume that the control on the system consists

of a continuous time input u(·) and the switching times, {τi}. In the stochastic

problem, the latter are random and modeled as Poisson arrival times. For simplicity,

we assume in this paper that the different modes (controlled vector fields from the set

{f (a)(x(a), u)}, with a ∈ Ξ), are sequenced in periodic order. The output in mode a is

y = h(a)(x(a)). It will be assumed that in each mode, the system may have different

order. Thus, let dim x(a) = n(a).1

It will be advantageous to introduce ξ(t), a discrete state, taking values in the

finite set, Ξ, to denote the mode operating at time t. If ξ(t) = a ∈ Ξ, then the

dynamical system at t is given by the system in state space form

(1) ẋ(a)(t) = f (a)(x(a), u), y = h(a)(x(a), u).

with x(a) the state in the state space of mode a.

It is then simpler to parameterize the state by the sequential index rather than the

identifier in Ξ. Thus if t is in the interval (τi−1, τi), set

x(ξ(t)) = xi(t),

f (ξ(t))(x(t), u(t)) = fi(xi(t), u(t)),

h(ξ(t))(x(t), u(t)) = hi(xi(t), u(t))

The subscript i is not the i-th component of x in this paper!

2.1. State Space. In view of the above model, we take the discrete bundle over

Ξ, with fiber R
n(a)

at a ∈ Ξ as the state space for this multi-mode delay system. The

vector x(a)(t) ∈ R
n(a)

is called the partial state at t, and ξ(t) ∈ Ξ, the hybrid state

(mode variable). The piecewise constant function ξ(t) is restricted to have only finitely

many discontinuities in any finite interval. (This holds true in a Poisson switching

model)

Sequential switching implies that only the transitions 1 → 2 → · · · → N → 1 · · ·

are allowed. Hence we should use [i] = i mod N as index, but for the sake of

simplicity of notation, we’ll simply keep i. Between switchings, the dynamics in mode

i are given by the smooth system

ẋi = fi(xi, u)

y = hi(xi, u)

At the switching instants, say from mode i to mode i+1, we consider pseudo continuity

(defined below).

1More generally, we could also let the input and output spaces be different in each mode. However,

this does not add anything essentially novel and only complicates notation.
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2.2. Pseudo continuity of the partial state. By pseudo-continuity, it will be

understood that at the transition time τi, the state xi in mode i is mapped to state

xi+1 = Sixi, where the switching matrices {Si}
N
i=1 are fixed, with Si ∈ R

ni+1×ni .

Note that if the cycle product PN
1 = SNSN−1 · · ·S2S1 were nilpotent, any arbi-

trary initial state would be zeroed with u ≡ 0 in an infinitesimally short time simply

by fast switching. We shall exclude this case by imposing that the ordered product
∏N

i=1 Si is not nilpotent.

A linear state transformation may be applied in each of the given modes. Indeed,

letting for Ti ∈ GLni
(R), Tixi = xi, the effect on the switching matrices is

Si = Ti+1SiT
−1
i ,

and transforms the ordered product PN
1 by similarity, i.e.,

P
N

1 = T1P
N
1 T−1

1

This induces a transformation T = {T1, · · · , TN} on the discrete bundle. Such a

transformation may be invoked to derive a canonical realization for the M3D system,

for instance by requiring that PN
1 is in the Jordan canonical form.

Example

Consider the case N = 2, with n1 = 2, n2 = 3 and

S1 =







2 1

1 1

1 0






. S2 =

[

1 2 3

−1 2 0

]

.

With

T1 =
1

2

[

2 1

0 −1

]

. T2 =
1

14







1 6 6

7 −14 0

6 −6 −6






.

we get

S1 =







1 0

0 1

0 0






. S2 =

[

7 0 0

0 1 0

]

.

In general, one can make Si in the form [I, 0] or

[

I

0

]

for i = 1, · · · , N − 1, and SN

in Jordan canonical form (augmented with zeros). We note in passing that any cycle

product PN+k
k will have the same nonzero eigenvalues. For this canonical form, the

small dimensional state is embedded into a larger one, and a larger one is truncated

to map to the smaller state space at the switching time. At the end of the cycle, the

map SN in addition rescales the state components (in the simple case).
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2.3. Examples of M3D Systems.

2.3.1. Autonomous system (passive jumper). The first mode describes the

jumper resting on the trampoline, so that the total mass is M + m, and the system

has order two. If the velocity is sufficiently high, the jumper will be released from the

platform, resulting in two uncoupled two-dimensional systems. See Figure 1.

p

p

M

mass m

Fig. 1. The trampoline jumper

Mode 1

{

ẋ = v

v̇ = − k
M+m

x − g
M+m

Mode 2

{

ẋ = v

v̇ = − k
M

x − g
M

{

ẏ = u

u̇ = − g
m

Both modes occur if x2
0 +

v2

0

ω2
0

≥
(

Mg
k

)2

, where ω0 =
√

k/(M + m)g is the natural

radial frequency when the jumper adheres to the platform.

Note that when the jumper is airborne, the platform oscillates with radial frequency
√

k/Mg.

For precise initial conditions (x0, v0) the hybrid system may exhibit a sustained os-

cillation. In the other cases the system is damped. For instance if the platform is

pressed down and then released, the initial velocity is zero. Figure 2 shows for three

different initial values of x0, the motion of the jumper (dashed) and the platform

(solid) as function of time.

t
2 4 6 8 10 12 14

K10

K5

0

5

10

t
5 10 15 20

K10

0

10

20

t
5 10 15 20 25

K20

K10

0

10

20

30

40

50

Fig. 2. Sustained oscillations for various initial conditions.

The active jumper uses impulsive control, and thus incurs the problem of timing

the impulses, and choosing their magnitude, p. See Figure 1.

2.3.2. Switched Capacitor Circuit. Consider the simple switched capaci-

tor circuit of Figure 3. The time constants are τ1 = R1C1, τ2 = R2C2, τ0 =

(C1 + C2)R1R2/(R1 + R2).



MULTI-MODE MULTI-DIMENSIONAL SYSTEMS 81

R2

R1

C2 C1
+

−
V

Fig. 3. Switched Circuit

Switch open: dim=2

q̇1 +
1

τ1
q1 =

V

R1

q̇2 +
1

τ2
q2 = 0

Switch closed: dim=1

q̇ +
1

τ0
q =

V

R1

The state transitions at the switches are given below:

Open → Closed: q = q1 + q2

Closed → Open:

[

q1

q2

]

= 1
C1+C2

[

C1

C2

]

q.

2.3.3. Approximate models for nonlinear systems. Model reduction for

a nonlinear system, evolving on M via balancing may lead to a system that has

coordinate patches of differing dimensions. The reduced state space then has the

structure of a CW complex [25]:

Indeed, in a balanced form, the canonical Gramian, Λ : M → R
n, a positive

definite matrix, characterizes the local input-to-state as well as the state-to-output

properties (see [25]). Λ defines a Riemannian metric on the tangent bundle TM.

Let Λ be approximated by ˜Λ of rank k ≤ n, in some subdomain of M. If x has the

property dim ˜Λ(x) = k, we say that x lives in a patch of rank k. A smooth nonlinear

system partitions M in patches of different ranks. The idea behind model reduction

is to collapse the patch of rank k to a k-dimensional cell. This gives a cell decom-

position for the reduced state space. Note that in general, M will not be reduced

to a single cell of some rank as in the LTI case! Model reduction in the nonlinear

case is not uniform. A precise meaning of the reduced model must then be a hybrid

system with modes of different dimension. Noninteresting dynamics may be forgotten

in one patch, thus just keeping the interesting I-O part of the dynamics. Likewise,

when crossing from a lower to a higher dimensional patch, the lost state components

may be retrieved (by local observers). In this application, transitions are actually

determined by switching manifolds.

Another instance stems from the approximation of a given system via piecewise

linearization, having a different linear model (potentially of different dimension) in

different subsets of the state space.
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2.3.4. Communication constrained control. In [6] an approximate stochas-

tic model of different dimension for the observation and control mode for a remote

system controlled via a one way communication link was considered, and an opti-

mal switching policy established. The difference in dimensions stems here from the

different reduction of the observer in both modes.

3. Randomly Switched Parameter Systems. In the remaining part of this

paper it is assumed that the switching occurs at random times (a Poisson process)

where perhaps the rate can be influenced. We first relate this problem to the so-

called vibrational control problems, and review a simple scalar model whose random

evolution is described by a hyperbolic PDE, known as the telegraphers equation.

In the next subsection, we follow this outline to derive the backwards Kolmogorov

equation for a randomly switched parameter system i.e., a multi-mode system with

the same dimension in each mode. which will serve as a warmup for the general

PM3D system in Section 4.

3.1. Vibrational Control. In an influential paper [16], Meerkov introduced the

idea of vibrational control. He proved that if ẋ = Ax is ‘observable in principle’, which

means that there exists a c such that the pair (A,c) is observable, then a necessary and

sufficient condition for vibrational stabilizability is Tr A < 0. A vibrational control,

B(t), can then be found such that the system

(2) ẋ = [A + B(t)]x

has the property x(t) → 0 for any initial condition.

It was conjectured that a necessary and sufficient condition for the existence of a

stationary random (matrix) process W (t) such that

(3) ẋ = [A + W (t)]x

is asymptotically stable with probability 1, is also that Tr A < 0. This conjecture

was soon proven to be a fact by Arnold, Crauel and Wihstutz [8]. In this section

we consider a stochastic vibrational control of bang - bang type, governed by random

switching of the modes in a M3D system.

In the remainder of this section we recall a simple model analyzed by Kac [14],

which was the main inspiration for this work. The derivation is repeated here in

order to provide some insight and to make this paper more self contained. The case

of switching governed by a general Markov chain is considered in subsection 3. When

the operation of the system alternates between two modes, more explicit descriptions

can be given. This is taken up in section 4, and contains an application to stochastic

stabilization. Preliminary work, leading to these results was reported in [18, 19].
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3.2. Kac’s Randomly Switched Model. The following setup, taken from Kac

[14], gives an elementary, yet insightful derivation of the backward Kolmogorov equa-

tion for a physically simple stochastic switched system. Consider a particle moving in

one dimension, with speed c, but with direction switched at random times (Poisson

arrival times, rate λ). He analyzed the problem by first discretizing the interval [0, t]

into N intervals of length ∆t, and allowing switching only at times n∆t. Let vn be

the speed in the n-th interval, then vn+1 = σnvn, where σn = −1 if a switch occurs

at n∆t, an event which happens with probability ǫ = λ∆t; and σN = 1 if no switch

occurs. Clearly, the stochastic state equations are

vn+1 = σnvn,(4)

xn+1 = xn + vn∆t, |v1| = c(5)

These equations are readily iterated to

(6) vn = (σn−1 · · ·σ1)v1,

and for the displacement (c = 1/∆t):

(7) xn = v1∆t[1 + σ1 + σ2σ1 + · · · + (σn−1 · · ·σ1)]
def
=

v1

c
yn.

Letting x + yn and x − yn be respectively the position of the particle starting at x

with initial velocity v1 = c or v1 = −c, consider for any function f

(8) f±
n (x) = Ef(x ± yn)

where the expectation is over the path, determined by σ1, . . . , σn. Taking the expec-

tation first over σ1, one derives

f
+
n (x) = (1 − ǫ)f+

n−1(x + c∆t) + ǫf
−
n−1(x + c∆t).(9)

Upon taking limits for ∆t → 0, this yields finally:

(10)
∂f+

∂t
= c

∂f+

∂x
+ λ(f− − f+).

Likewise, by symmetry,

(11)
∂f−

∂t
= −c

∂f−

∂x
+ λ(f+ − f−).

The equations (10) and (11) are known as the backward Kolmogorov equations. In-

troducing the combinations (symmetric and antisymmetric components)

G =
1

2
(f+ + f−)(12)

H =
1

2
(f+ − f−).(13)
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Kac derived, after eliminating H , a hyperbolic equation known as the telegraphers

equation.

(14)
1

c

∂2G

∂t2
= c

∂2G

∂x2
−

2λ

c

∂G

∂t
.

with the boundary conditions:

G(x, 0) = f(x)(15)

Gt(x, 0) = 0(16)

The latter being implied by H(x, 0) = 0.

A number of interesting properties were discussed:

1. For λ = 0, equation (14) reduces to the wave equation, which can be solved

by the methods of characteristics. The solution is

(17) G(x, t) =
1

2
[f(x + ct) + f(x − ct)]

2. For λ 6= 0, Kac expressed the displacement by a path integral

(18)

∫ t

0

v(τ) dτ = c

∫ t

0

(−1)N(τ) dτ,

where N(τ) is the number of switches in the interval [0, τ). If {τk} are the

Poisson arrival times, then,

(19) N(τ) = #{k|τk ≤ τ}.

In terms of a stochastic time, T (τ) =
∫ t

0
(−1)N(τ) dτ , the solution of the

general equation (14) is represented by

(20) G(x, t) =
1

2
E{f(x + cT (τ)) + f(x − cT (τ))]

This form displays that the solution to the stochastic problem still has the

structure of the underlying characteristics. In fact these ideas have been

extended to a generalized characteristics method, encompassing not only the

classical (deterministic) and Brownian methods of characteristics, but also for

characteristic propagators of higher order order partial differential equations.

See for instance [9]

3. In the limit λ → ∞, c → ∞, but λ/c2 constant, the equation (14) reduces to

(21)
∂G

∂t
=

c2

2λ

∂2G

∂x2
.

In the limit, the evolution is governed by the diffusion equation.
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3.2.1. General Markov Chains. The result of Kac has been extended by many

other researchers to a general theory of random evolution, of which the monograph

by Pinsky [17] gives an exciting overview. The theory has also found applications in

quantum physics [10, 11, 13].

Start with a randomly switched equi-dimensional systems of the form

(22)
dx(t)

dt
= F (t, x(t), ζ(t)),

where ζ(t), the state of a finite state Markov chain (hence piecewise constant) with

state space Z, models a parameter process, or a randomly switching control. The

process x(t) is assumed to be continuous at the jump times of ζ(t). The combined

process (x(t), ζ(t))′ is Markovian with state space Rn × Z. These processes are also

referred to as piecewise deterministic processes. Next, the evolution operators T z
t are

defined on a Banach space of space-time functions by

(23) T z
t f(x, τ) = f(Φz(t + τ, τ, x), t + τ),

where

∂

∂t
Φz(t + τ, τ, x) = F (t, Φz(t + τ, τ, x), z)(24)

Φz(τ, τ, x) = x.(25)

Thus Φz(t + τ, τ, x) solves the deterministic (for the mode parameterized by z) non

autonomous ordinary differential equation with initial condition x at time τ . Said

differently, Φz(t + τ, τ, x) is a parametrization (by t) of the trajectory of the system

state passing through x at time τ for mode z. Also note that t represents the time

lapse between the initial and the final time. For each z, the family {T z
t | t > 0} is a

contraction semigroup under the composition law. The semigroup property follows

from the (assumed) uniqueness of the solution of the differential equation.

The general random evolution operator defines a vector valued Markov process

on Rn × Z. This random evolution is studied by the expectation semigroup, defined

by

(26) T̃ z
t f(x, τ) = E[f(x(t + τ), t + τ) |x(τ) = x, ζ(τ) = z].

Its backward generator, A, is given by

[Af(x, t)]z =
∂f(x, t)z

∂t
+ F ′(t, x, z)[∇xf(x, t)]′+

+
∑

w 6=z

q(t, z, w)[f(x, t)w − f(x, t)z ].(27)
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The prime denotes transposition, and ∇xf = ∂f
∂x

is the row vector of partial derivatives

of f w.r.t. x. The second term is the crypto-deterministic term, stemming from the

deterministic evolution in between the switches. The last term is due to the random

switching, thus effectively mixing the underlying deterministic systems parameterized

by Z. The matrix q(t, ·, ·) is the generator of the Markov chain. The domain of A

consists of the set of functions f(t, x, z) with, for each fixed z ∈ Z, continuous first

order partial derivatives in t and x.

3.3. Hyperbolic PDE for switched linear systems. For simplicity we limit

our discussion to the case where all modes have linear time invariant autonomous

state space representations

ẋi = Aixi(28)

y = cixi.(29)

Let, between switchings, ζ(t) indicate which mode is switched on at t. It will

be shown that the evolution is described by (hyperbolic) PDE’s, playing the same

role as the (parabolic) backward Kolmogorov equation. The formal adjoint leads to

the forward equation for the probabilities, which is again akin to the Fokker-Planck

equation (See also [3]).

We first discuss the case where each mode has the same dimension. The com-

plexity of the evolution equation is determined by the Lie algebra generated by the

set {Ai}. It is shown that a parabolic equation is obtained as a special limiting case.

Hence, the fast switching limit leads to diffusive behavior, in turn leading to a cor-

rection term for the drift. A system that is unstable on the average, may therefore

be stabilizable by random switching between the different modes. This provides the

stochastic extension of the philosophy of vibrational control introduced by Meerkov.

The great benefit it that the ‘control’ proceeds in an unstructured fashion, i.e., with-

out interfering in a deterministic way, hence also without the need of precise or even

partial information on the states, as remarked in [8].

3.3.1. Equal Dimension Autonomous Case. Let f be a differentiable func-

tion of x and t, and consider the functions u(i) : R × R
n → R by

(30) u(i)(t, x) = u(t, x, zi) = Ezif [Φζ(t, 0)x],

thus defining the expectation semigroup for this case. (Φζ(t, 0)x is the state at time

t if the initial condition at time zero was x.) This expectation is conditioned on the

starting mode. Because of the time invariance, the starting time is taken at 0. Since Z

is countable, denote Z = {z1, . . . , zN}, where N is possibly ∞. Let A(ζt = zi) = Ai,
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then the u(i), satisfy the backwards equation conditioned on the starting mode zi:

(31)
∂u(i)

∂t
=

∂u(i)

∂x
Aix +

∑

j 6=i

qi→j [u
(j) − u(i)]

where, for j 6= i, qi→j is the rate of the transition i → j for the continuous time

Markov jump process. The

(32) [q]i→j =
d

dτ
Prt,τ (i→j)|τ→t+ ,

are also known as the infinitesimal parameters. These transition rates define a tran-

sition probability rate matrix Q, with for i 6= j : Qij = qi→j and Qii = −
∑

j 6=i Qij

[12]. The elements in the rows of Q sum to 0.

In vector form, setting u′ = [u(1), . . . , u(N)], the coupled backward equations are

(33)
∂u

∂t
=









x′A′
1(

∂
∂x

)′

. . .

x′A′
N ( ∂

∂x
)′









u + Qu.

Let us simplify the notation by defining the symbols: ∂i = x′A′
i(

∂
∂x

)′ and ∂ = ∂
∂t

.

Then the system (33) is compactly written as the vector PDE

(34) ∂u = diag(∂i)u + Qu.

This system of equations can be rewritten in terms of symmetrical components,

thus generalizing the sum and difference considered by Kac. Using the discrete Fourier

transform, introduce the variables

(35) ûm =
∑

k

Fmku(k)

where

(36) Fmk =
1

N
ej2π

(m−1)(k−1)

N

is the mk entry of the (discrete) Fourier transform matrix. In view of the row sum

property of the stochastic matrix, the equation (34) transforms to a symmetric com-

ponent form

(37) ∂û = ∆û + ̂Qû

where now ̂Q11 = 0.

An interesting class of multi mode systems is the class of asynchronously cyclic

systems. It is assumed that none of the modes in Z are absorbing, and that tran-

sitions have a cyclic order. This class is the stochastic generalization of the class
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of periodic systems. It is known that linear periodic controllers enhance the closed

loop characteristics of deterministic time-invariant plants. Topics such as gain margin

augmentation, blocking zero removal, and the simultaneous stabilization of a finite

family of linear time-invariant plants have been addressed in the control literature.

Similar questions can be asked for the class of cyclic multi mode systems.

Consider an asynchronously cyclic system with N modes, each having the same

average sojourn time (equal to 1
λ
, consistent with an exponential distribution). For

this system, the transition probability rate matrix is given by λ(−I + C), where C is

the circulant matrix

(38) C =















0 1
...

. . .
. . .

...
. . . 1

1 · · · · · · 0















Pre multiplication of the hyperbolic system of equations by F , and postmultiplication

by F∗ yields after some algebra, the symmetric component form

(37), with

(39) (∆)kl =
∑

α

∂αµα(k−l) ; µ = e
j2π
N .

and

(40) ̂Q = λN













0

µ − 1

. . .

µN − 1













.

The differential operator matrix ∆ is Toeplitz (in fact circulant), and the mixing op-

erator ̂Q is diagonal. In general, the symmetric components yield complex coupled

equations, except for the case N = 2.

Example: The three-cyclic second order multi mode system with

A1 = −3I ; A2 =

[

0
√

3

−
√

3 0

]

= −A3 ;

is completely commutative ([A1, A2] = [A2, A3] = [A3, A1] = 0), and has discrete

Fourier transform (µ = µ−1 = µ2)

Â(µ) =

[

−1 µ−µ2

√
3

µ−µ√
3

−1

]

.
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Consequently, its symmetric components are

Â1 = Â(1) = −I; Â2 = Â(µ) =

[

−1 j

−j −1

]

;

Â3 = Â(µ2) =

[

−1 −j

j −1

]

.

In the sequel, we will also need the commutator for the differential operators

∂i = x′A′
i(

∂
∂x

)′, namely

[∂i, ∂j ] =

[

x′A′
i

(

∂

∂x

)′

, x′A′
j

(

∂

∂x

)′
]

= x′[Aj , Ai]
′

(

∂

∂x

)′

def
= ∂[j,i].(41)

The notation indicates that the Lie-product operator corresponds again to a linear

vector field.

3.4. Alternating Systems. In this section we consider systems having only

two modes (N = 2), which we shall denote by + and −, corresponding to ẋ = A+x,

and ẋ = A−x. The “time-average” system is ẋ = A0x, with A0 = 1
2 [A+ + A−]. We

shall define the “excursion” by Ω = 1
2 [A+ − A−].

Then û′ = [12 (u+ + u−), 1
2 (u+ − u−)]′ = [G, H ]′. Similarly, denote ∂1 = ∂+, ∂2 = ∂−,

and define the symmetric operators ∂0 = 1
2 (∂+ + ∂−), and ∂ω = 1

2 (∂+ − ∂−). Finally

set p = ∂ − ∂0.

We first derive the PDE for G (the true average over both initial modes) and its initial

conditions. Then we show that the behavior in the limit for fast switching is modeled

by a parabolic PDE, associated with a linear Itô system. The stability properties of

this limit system, and therefore also the long term behavior of the switched system is

investigated via this Itô representation. We close this section with some illustrative

examples.

3.4.1. Hyperbolic Backward Equation. The system of PDE’s is given in

terms of its symmetric components by

(42)

[

p

∂ω

]

H =

[

∂ω

p

]

G +

[

−2λ

0

]

H

To obtain a higher order partial differential equation in G only, H needs to be elimi-

nated. Assume that, for some pk, qk, the following relation holds:

(43)

[

p

qk

]

H =

[

∂ω

pk

]

G +

[

−2λ

0

]

H.
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Then, operating on the left with the 1× 2 operator [−qk p ], not to be confused with

a Lie product (Lie bracket), one obtains

(44) [p, qk] H = (−qk∂ω − ppk + 2λpk)G.

This is put in the form

(45) qk+1H = pk+1G,

thus defining the recursions:

qk+1 = [p, qk](46)

pk+1 = −qkq + ppk + 2λpk.(47)

The ‘initial conditions’ for this recursion are: q0 = q = ∂ω, and p0 = p = ∂ − ∂0.

Invoking the ‘ad’-notation for repeated Lie brackets, we have

(48) qk = adk
pq

def
= [p, [p, . . . [p, q0] . . .]], (k brackets).

Combine the set of equations in matrix form, we obtain

(49)























p0

q0

q1

q2

...

qk























H =























q0

p0

p1

p2

...

pk























G +























−2λ

0

0

0
...

0























H.

Note that adk
pq = (−1)kadk

∂0
∂ω, so that the sequence {adk

pq} is completely determined

by the sequence of matrix commutators {adk
A+

A−}, or {adk
A0

Ω}. Hence there exists

an integer m < n2 + 1 and scalars α1, . . . , αm such that

(50) adm
p q = −

m
∑

i=1

αi adm−i
p q.

In turn, this yields, with α0 = 1, the higher order PDE

(51)
m

∑

i=0

αipm−iG = 0,

with initial data G(0, x) = φ(x), H(0, x) = 0. Note also that the relation (41) implies

that adk
pq = (−1)kadk

∂0
∂ω = adk

p∂ω , are differential operators of first order in x. On

the other hand, the pk are operators of order k + 1 in both x and time τ . So the

PDE we obtained is of higher order, in fact m + 1, and more derivatives of G need

to be specified in this Cauchy problem. This information is already present in the
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data. Indeed, since at t = 0, H ≡ 0, we get also qkH ≡ 0 (which is easily shown by

induction), leading to pkG = 0 at t = 0.

To proceed further, rewrite the basic coupled PDE’s in the following form:

(52) ∂

[

G

H

]

=

[

∂0 ∂ω

∂ω ∂0 − 2λ

][

G

H

]

.

By repeated differentiation with respect to t, we get, by virtue of the commutation of

∂ with both of ∂0 and ∂ω ,

(53) ∂k

[

G

H

]

=

[

∂0 ∂ω

∂ω ∂0 − 2λ

]k [

G

H

]

.

Evaluating the expression at t = 0, and keeping in mind that at t = 0, G(x, 0) ≡ φ(x)

and H(x, 0) ≡ 0, then the initial conditions follow from

(54) ∂kG|t=0 = [1 0]

[

∂0 ∂ω

∂ω ∂0 − 2λ

]k [

φ

0

]

.

This completely specifies the Cauchy problem.

3.4.2. Limit Parabolic System. Next, let us investigate the limit system for

very fast switching, and large excursions. Recall first that for an Itô process, x(t),

modeled by

(55) dx = f(x)dt + g(x)dw(t)

where w(t) is an m-dimensional standard Brownian motion, and where f and g satisfy

the usual regularity conditions, there is an associated diffusion process. For any u(x, t),

twice differentiable with respect to the components of x and once with respect to t,

this associated diffusion satisfies Kolmogorov’s backward equation

(56)
∂

∂t
u(x, t) = ∇u(x, t) · f(x, t) +

1

2
Tr gg′ Hess u(x, t).

Renormalize for the switching system, the large excursions by setting Ω = ω Ω0,

where Ω0 is some normalized excursion, and ω a ”strength”-parameter. Consider also

a high switching rate, λ. It is shown next that the limit for λ → ∞ and ω → ∞, but

such that σ2 = ω2

2λ
remains constant, reduces the hyperbolic PDE to a parabolic PDE

of the form (56). Consequently, the sample trajectories can be represented by the

solution of an Itô system, which is important from the point of view of the stability

analysis.

Theorem 1. If λ → ∞ and ω → ∞, but with σ2 = ω2

2λ
kept constant, then the

evolution of the limiting alternating system is governed by the parabolic PDE

(57) (∂ − ∂0 − σ2∂ω
2
)G = 0
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where now ∂ω = x′Ω′
0[

∂
∂x

′
]. This holds, independent of the commutativity properties

(of A0 and Ω0).

Note that by expanding the symbols,

∂ω
2

= x′Ω′
0

(

∂

∂x

)′

x′Ω′
0

(

∂

∂x

)′

(58)

= x′Ω′2
0

(

∂

∂x

)′

+ Tr

[

Ω0xx′Ω′
0

(

∂2

∂x∂x′

)]

,(59)

so that in terms of the original problem data, the parabolic PDE (57) is

(60)
∂G

∂t
=

∂G

∂x
(A0 + σ2 Ω2

0)x + σ2 Tr (Ω0xx′Ω′
0 Hess G),

where ‘Hess G’ denotes the Hessian matrix of G.

Proof. First observe that the recursions (46) and (47) for the differential operators

give

(61) pk+1 = −[adk
p∂ω]∂ωω2 + ppk + 2λpk.

Dividing by (2λ)k+1 we get

(62)
pk+1

(2λ)k+1
= −[adk

p∂ω]∂ω

ω2

2λ

1

(2λ)k
+

p

2λ

pk

(2λ)k
+

pk

(2λ)k
.

Letting for k = 1, 2, . . .

(63) πk =
pk

(2λ)k
,

then we get

(64) πk+1 = −
1

(2λ)k
σ2[adk

p∂ω ]∂ω +
∂ − ∂0

2λ
πk + πk −→ πk

as λ → ∞, but keeping ω2

2λ
= σ2. Thus, for k ≥ 1, we find πk+1 = πk, while by direct

calculation, (47) yields π1 → ∂ − ∂0 − σ2∂ω
2
.

Thus in all cases, i.e., whether commuting or not, we find the same diffusion

limit system (60). In the sequel, we shall characterize the limit system by the triple

(A0, Ω0, σ
2).

3.4.3. Stability of the Limit System. We first recall some general properties.

For the appropriate definitions of stability we refer to the literature [7, 15]. See also

J.L. Willems for some explicit stability criteria [20, 21]. A necessary (resp. sufficient)

condition for exponential stability in mean square of the Itô system

(65) dx = Axdt + Bxdw(t)
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is that for every (for some) symmetric positive definite matrices R, there exist a

positive definite symmetric solution P of the generalized Lyapunov equation

(66) PA + A′P + B′PB + R = 0.

Exponential stability in mean square implies weak stochastic stability, and for au-

tonomous systems, is implied by stochastic stability [7, p.196]. By a theorem of

Khasminskii, weak stochastic stability and (strong) stochastic stability are equivalent

for linear time invariant systems [15, p. 245]. If the equilibrium of a linear equation

is asymptotically stable, it is automatically globally asymptotically stable (G.A.S.).

If A and B are commuting, more can be said: Indeed, the solution to the SDE is [7,

p. 144]

(67) x(t) = exp

[(

A −
1

2
B2

)

t + Bw(t)

]

x0

which is easily verified with the Itô differential rule. Since w(t)
t

→ 0 a.s., this verifies

that global asymptotic stability will hold if A − 1
2B2 has all its eigenvalues in the left

half plane.

These remarks lead directly to the following:

Theorem 2. If symmetric positive definite matrices P and Q exist, such that

(68) P (A0 + q Ω2
0) + (A0 + q Ω2

0)
′P + 2q Ω′

0PΩ0 + Q = 0.

then the alternating system (A0, Ω0, q) is globally asymptotically stable.

Proof. The diffusion equation (60) is equivalent to the Itô representation

(69) dx = (A0 + q Ω2
0)xdt +

√

2q Ω0xdw(t).

Thus we shall have global asymptotic stability if the condition (68) holds.

Corollary. If the modal matrices A+ and A− commute, then the limit of the

randomly switched system is G.A.S. iff the averaged system A0 = 1
2 [A+ + A−] is

asymptotically stable.

Proof. Under the given condition, A0 and Ω0 commute. Then, the G.A.S. condi-

tion is by (67) the asymptotic stability of

(70) (A0 + q Ω2
0) −

1

2
(2q)Ω2

0 = A0.
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3.4.4. Examples.

1. Scalar system: ẋ = (a0±ω)x. One finds q1 = [p0, q0] = 0. Hence the resulting

PDE is p1G = 0 or,
[

(

∂

∂τ
− a0x

∂

∂x

)2

−

(

ωx
∂

∂x

)2

+ 2λ

(

∂

∂τ
− a0x

∂

∂x

)

]

G = 0.

The limit system, with ω2

2λ
= σ2 is

∂G

∂τ
= (a0 + σ2)x

∂G

∂x
+ σ2x2 ∂2G

∂x2
.

This limit system satisfies the Itô equation:

dx = (a0 + σ2)xdt +
√

2σ2 xdw(t),

and is G.A.S. if a0 < 0.

2. Consider the second order system

ẋ = a0xdt ±

[

σ ω

−ω σ

]

xdw(t)

Here obviously, the matrices A0 and Ω (or A+ and A− commute). Introducing

ρ = σ/ω the two modes of the system are

A+ =

[

a0 + ωρ ω

−ω a0 + ωρ

]

A− =

[

a0 − ωρ −ω

ω a0 − ωρ

]

.

Both modes have a complex conjugate pole pair (ω 6= 0) and hence are oscil-

latory. The limit diffusion (ω2

2λ
= σ2) is associated with the Itô process

dx = (a0I + σ2Ω2)xdt +
√

2σ2 Ωxdw(t).

It does not depend on the parameter ρ. We have G.A.S. if a0 < 0, i.e., if the

averaged system is G.A.S. Note that one mode, A+ or A−, may be unstable,

as long as the average is stable.

3. The second order system

ẋ = −σxdt ±

[

2σ

−2σ

]

xdw(t)

has two unstable modes.

A+ =

[

σ

−3σ

]

; A− =

[

−3σ

σ

]

.

Both have eigenvalues {σ,−3σ}. The matrices A0 and Ω (or A+ and A−)

commute, hence by the Corollary, the system is G.A.S. if σ > 0.
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4. Consider the noncommuting second order system with

A0 =

[

λ1

λ2

]

; Ω =

[

0 ω

0 0

]

,

where λ1 6= λ2. The Lie brackets are

[A0, Ω] = (λ1 − λ2)Ω,

[A0, [A0, Ω]] = (λ1 − λ2)
2Ω,

[Ω, [A0, Ω]] = 0.

Hence q1 = [p0, q0] = −[∂0, ∂ω] = (λ1 − λ2)∂ω , from which p1G = (λ2 −

λ1)p0G, i.e.,

(

∂

∂τ
− λ1x1

∂

∂x1
− λ2x2

∂

∂x2

)2

− ωx2
∂

∂x1
ωx2

∂

∂x1
+

+2λ

(

∂

∂τ
− λ1x1

∂

∂x1
− λ2x2

∂

∂x2

)

= (λ1 − λ2)

(

∂

∂τ
− λ1x1

∂

∂x1
− λ2x2

∂

∂x2

)

.

The limit system, with ω2

2λ
= σ2, is

∂G

∂τ
=

[

λ1x1
∂G

∂x1
+ λ2x2

∂G

∂x2

]

+ σ2x2
2

∂2G

∂x2
1

which is in fact the same limit as one would have obtained under the com-

mutation assumption. The corresponding Itô system is

[

dx1

dx2

]

=

[

λ1

λ2

][

x1

x2

]

dt +

+
√

2σ2

[

0 1

0 0

][

x1

x2

]

dw(t).

G.A.S. holds if there exist positive Q11, Q22 such that the following equations

have positive solutions for P11 and P22:

2λ1P11 + 2qP22 + Q11 = 0

2λ2P22 + Q22 = 0

Obviously, the above conditions can only hold if both λ1 < 0, λ2 < 0.
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5. The final example may be the most interesting one. It illustrates that in the

noncommutative case, G.A.S. may hold, even if the time-averaged system is

unstable! Consider the following (noncommuting) example

A0 =

[

λ1

λ2

]

; Ω0 =

[

1

−1

]

.

The generalized Lyapunov equation leads to the system

2(λ1 − σ2)p11 + 2σ2p22 + r11 = 0

2(λ2 − σ2)p22 + 2σ2p11 + r22 = 0

2

(

λ1 + λ2

2
− σ2

)

p12 − 2σ2p12 + r12 = 0

Its solution is

p11 =
1

2∆
[σ2(r11 + r22) − λ2r11]

p22 =
1

2∆
[σ2(r11 + r22) − λ1r22]

p12 =
r12

4σ2 − (λ1 + λ2)

where

∆ = λ1λ2 − (λ1 + λ2)σ
2 = (λ1 − σ2)(λ2 − σ2) − σ4.

If ∆ < 0, a positive definite solution to the Lyapunov equation does not

exist. But if ∆ > 0, then the additional conditions are σ2 − λi > 0. In the

(λ1, λ2)-parameter plane, we get a stability region bounded by the branch of

the hyperbola with top at the origin and vertical and horizontal asymptotes

respectively through (σ2, 0) and (0, σ2). For σ = 0, the third quadrant is

the domain of stability, but for increasing σ this domain is enlarged. Note

however that at least one of the eigenvalues of A0 needs to be negative. As

σ → ∞, all pairs below the line λ2 = −λ1 are stabilizable. (Figure 4).

Thus it follows that if the average eigenvalue of the system is negative, i.e.,

TrA0 < 0, stabilizability is possible with fast switching, even though the

averaged system (A0) may not be stable.

4. Kolmogorov PDE for PM3D Systems. In this section we consider the

Poisson switching for the M3D model described in Section 2. As the state space is

a discrete bundle in this case, we use a new (albeit somewhat redundant) notation.

Represent the state by (ζ; x1, x2, . . . , xN ) ∈ X = Ξ× (Rn1 ⊕· · ·⊕R
nN) equipped with

the equivalence: ∀i = 1, . . . , N ; ζ = i implies

(ζ; x1, · · · , xi−1, xi, xi+1 · · ·xN ) ∼ (ζ; x′
1, · · · , x′

i−1, xi, x
′
i+1 · · ·x

′
N ),
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σ2

σ2

λ
2

λ
1

Fig. 4. Stability region in (λ1, λ2)-plane.

for all (x′
1, . . . , x

′
i−1, x

′
i+1, . . . , x

′
N ) ∈ (Rn1 ⊕· · ·Rni−1 ⊕R

ni+1 ⊕R
nN ). This means that

only the ni-dimensional state component xi is relevant when ζ = i.

Let f be an arbitrary differentiable function defined on this state space X, thus

satisfying, when ζ = i

f(i,x) = f(i,x′) with x′
i = xi.

With some abuse of notation, collapse this notation again to f(i, xi), and consider

the path functionals

(71) F (i)(ζ,x, t) = F (t, i, xi)
def
= Eif [Φζ(t, 0)x]

where Ei denotes expectation condition on the initial mode being the i-th. This

defines the expectation semigroup for the PM3D case.

Setting up the conditional Kolmogorov backward equation (conditioned on the

initial mode) proceeds as in the previous section. There is however a potential problem

with the averaging over the initial state, stemming from the different dimensions in

various modes. What is needed is a compatibility restriction for the class of functions

f(ζ,x) and initial states x. We impose

f(i, xi) = f(j, xj)

implying that the observable f yields the same value, regardless the mode. This

implies at once that the mode itself is not detectable from one simple observation.

Another added difficulty is the incorporation of the pseudo continuity in the Kol-

mogorov equation.

4.1. Alternating PM3D Systems. For the two mode system we use the binary

(0,1) notation instead of (1,2). Following the ideas in the previous section, taking the
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quasi-stationarity and the compatibility into account, one obtains the coupled PDE’s

∂F 0

∂t
=

∂F 0

∂x0
(A0x0 + b0u) + π1

0 [F 1(S10x0, t) − F 0(x0, t)](72)

∂F 1

∂t
=

∂F 1

∂x1
(A0x1 + b1u) + π0

1 [F 0(S01x1, t) − F 1(x1, t)](73)

4.2. An Example: A Pebble Elevator Belt. Consider a pebble on a con-

veyor belt, moving with velocity v. For some time, the pebble may stick to the band

and move with it. At other times the pebble may be airborne, and initiate a free fall,

rolling back on the transport band until it sticks again (Figure 5).

x

v

α

Fig. 5. The conveyor belt

Letting x be the distance from the bottom of the band, the first mode (sticking)

obeys

ẋ = v

In the rolling mode, the dynamics is modeled by

ẋ = y

ẏ = −g sin α

Let g sin α = 1 to minimize notation. We neglect impulsive behavior at the transitions,

so that the switching rules are

stick → slip : x → [x, v]T .

slip → stick : [x, y] → [x]T .

Note that the stick to slip transition is actually not quasi-continuous due to inertia

(conserved velocity), but the problem is easily circumvented. Consider the class of

functions having only position (x) as their argument. This is a compatible class since

f(ζ,x) = f(0, x0) = f(1, x1) = f(x), and at t = 0, x0 = x1 = x. The resulting

Kolmogorov equations are (suppressing the time argument)

∂F 0(x0)

∂t
=v

∂F 0(x0)

∂x0
+ λ[F 1(x0, v) − F 0(x0)](74)

∂F 1(x1, y1)

∂t
=y

∂F 1(x1, y1)

∂x1
−

∂F 1(x1, y1)

∂y1
+ λ[F 0(x1) − F 1(x1, y1)].(75)
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How does one make sense of F 1(x, y, t) for an initial condition F 1(x, y, 0) = f(x, y)

involving y? The interpretation F 1(x, y, t) = Ef(x(t), y(t)) runs into trouble since y

is not a state variable in the stick mode. However, it is possible to define here the y

as an output variable (with the trivial y = v in this mode.) Equivalently, one may

assume that upon measurement (expressing y(t)), the system switches to the the slip

mode if it wasn’t in there. This idea looks somewhat analogous to the collapse of the

wave function in quantum mechanics.

In order to get an idea of the behavior of the solution to the above system, we

first set λ = 0. In this case, the general solution is for arbitrary functions g0(·) and

g1(·, ·),

F 0(x, t) = g0(x + vt)(76)

F 1(x, y, t) = g1(2x + y2, t − y).(77)

If we let F 0(x, 0) = F 1(x, y, 0) = f(x) then F 0(x, t) = f(x + vt) and F 1(x, y, t) =

f(x + yt − 1
2 t2). Consider next λ 6= 0. Because of switchings, we now expect the

behavior, for the same initial condition, to be asymptotically given by

F 0(x, t) → f(x + kt)(78)

F 1(x, y, t) → f(x + kt − ǫ(y)),(79)

for some k < v. This motivates us to start from the asymptotic (for sufficiently large

t) assumption F 1(x, y, t) ∼ F 0(x + y
λ
− 1

λ2 , t − 1
λ
). In fact, this can be derived by

taking the expectation with respect to first switching time from the slip mode (1) to

the stick mode (0).

Substituting this into the PDE for F 0 gives, upon approximating F 1(x, v)−F 0(x)

by ∂F 0

∂x

(

y
λ
− 1

λ2

)

− ∂F 0

∂t

(

1
λ

)

, the simple transport equation

(80)
∂F 0(x)

∂t
=

(

v −
1

2λ

)

∂F 0(x)

∂x

Compute its solution for initial condition F 0(x, 0) = f(x). Denote this (approxi-

mate) solution by F 0
0 (x, t). Next substitute this solution into the PDE for F 1(x, y, t),

which can now easily be solved, to yield F 1
1 (x, y, t). In turn use this in the first PDE,

which is now solved exactly to yield F 0
1 (x, t). Iterating, one obtains

· · · → F 0
k (x, t) → F 1

k+1(x, y, t) → F 0
k+1(x, t) → · · ·

We compute this for the initial conditions f(x) = x and f(x) = x2. If the process

converges, its limit is respectively E(x(t)|x(0) = 0) and E(x2(t)|x(0) = 0) conditioned

on the initial mode, from which thus the variance may be obtained. In figure 6, the

mean and variance are shown for the process, with λ = v = 1 after one iteration (i.e.,
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respectively F 0
1 and F 1

1 .) The three solid curves give the expected position of the

pebble, enveloped in its 1-σ RMS bounds as function of t for a pebble starting in the

stick mode at x = 0. The dashed curves show this for the slip mode.

t
0 2 4 6 8 10

0

1

2

3

4

5

6

7

8

Fig. 6. Expected value of x(t) and its RMS bounds.

We should add that the model of purely random transitions between the stick

and the slip phase is somewhat unrealistic. The probability of a change from stick to

slip (rolling), is probably higher than for slip to stick. It would not complicate the

model much more to add this realism.

5. Conclusions. We introduced a new class of hybrid systems, having modes

with internal description of varying dimension. The notion of pseudo-continuity was

introduced for the transitions at switching events. We showed several examples and

motivated such systems, including approximations to nonlinear systems, either from

the point of view local balancing, or as a piecewise linearized system and in remote

control with one-way communication.

In the second part of the paper, we discussed a version of the problem where

the switches occur at random times, derived the backward Kolmogorov equation and

discussed in particular the fast switching diffusion approximation. For linear modes,

the Lie-algebraic structure can be exploited to derive vibrational stabilization criteria.

Finally, the last part on PM3D systems, showed how the added difficulty of solving

coupled PDE’s in different numbers of variables can be dealth with. We illustrated this

with a simplified model of a conveyor belt carrying pebbles. The exposed model and

methodology may be relevant in the study of nanoscale motions (Brownian motor).

An approach towards extending these results for randomly switched systems with
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delays is suggested in [23].

REFERENCES

[1] M.S. Branicky, V.S. Borkar, and S. Mitter, A Unified Framework for Hybrid Control

Theory: Model and Optimal Control Theory. IEEE Trans. Auto. Control, 43:1(1998), pp.

31-45.

[2] R.W. Brockett, Hybrid Models for Motion Description Control Systems. In: Essays on Con-

trol: Perspectives in the Theory and its Applications, H.L. Trentelman and J.C. Willems

(Eds.), Birkhäuser, 1993.
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