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A GAUSSIAN MIXTURE MODEL TO DETECT CLUSTERS

EMBEDDED IN FEATURE SUBSPACE

YUANHONG LI∗, MING DONG∗, AND JING HUA∗

Abstract. The goal of unsupervised learning, i.e., clustering, is to determine the intrinsic

structure of unlabeled data. Feature selection for clustering improves the performance of grouping

by removing irrelevant features. Typical feature selection algorithms select a common feature subset

for all the clusters. Consequently, clusters embedded in different feature subspaces are not able to

be identified. In this paper, we introduce a probabilistic model based on Gaussian mixture to solve

this problem. Particularly, the feature relevance for an individual cluster is treated as a probability,

which is represented by localized feature saliency and estimated through Expectation Maximization

(EM) algorithm during the clustering process. In addition, the number of clusters is determined

simultaneously by integrating a Minimum Message Length (MML) criterion. Experiments carried

on both synthetic and real-world datasets illustrate the performance of the proposed approach in

finding clusters embedded in feature subspace.

1. Introduction. Clustering is unsupervised classification of data objects into

different groups (clusters) such that objects in one group are similar together and dis-

similar from another group. Applications of data clustering are found in many fields,

such as information discovering, text mining, web analysis, image grouping, medi-

cal diagnosis, and bioinformatics. Many clustering algorithms have been proposed

in the literature [8]. Basically, they can be categorized into two groups: hierarchical

or partitional. A clustering algorithm typically considers all available features of the

dataset in an attempt to learn as much as possible from data. In practice, however,

some features can be irrelevant, and thus hinder the clustering performance. Feature

selection, which chooses the “best” feature subset for clustering, can be applied to

solve this problem.

Feature selection is extensively studied in supervised learning scenario [1–3], where

class labels are available for judging the performance improvement contributed by a

feature selection algorithm. For unsupervised learning, feature selection is a very dif-

ficult problem due to the lack of class labels, and it has received extensive attention

recently. The algorithm proposed in [4] measures feature similarity by an information

compression index. In [5], the relevant features are detected using a distance-based

entropy measure. [6] evaluates the cluster quality over different feature subsets by

normalizing cluster separability or likelihood using a cross-projection method. In [7],

feature saliency is defined as a probability and estimated by the Expectation Maxi-

mization (EM) algorithm using Gaussian mixture models. A variational Bayesian ap-
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proach is presented in [9]. The algorithm described in [10] employs a criterion on the

psychological similarity for content-based image retrieval systems. An evolutionary

local selection algorithm is used in [11] to search for possible combination of features

and numbers of clusters, with the guidance of the k-means algorithm. The benefits

of feature selection include simplifying the problem by discarding irrelevant informa-

tion, improving the learning performance, reducing the storage cost of databases, and

providing more precise knowledge of the underlying model that generates the data.

The aforementioned algorithms perform feature selection in a global sense by pro-

ducing a common feature subset for all the clusters. This, however, can be problematic

in practice, where the local intrinsic property of data matters more for grouping anal-

ysis [12]. In the illustrative example shown in Figure 1, the relevant feature subset for

cluster C1 is {x1, x2}, while clusters C2 and C3 are better to be recognized on {x2}

and {x1}, respectively. A common feature subset, i.e., {x1, x2}, can not reflect the

inherent structural properties of the three clusters. Clustering with local features is

highly desired. To this end, bipartite graph partitioning algorithms [13, 14] attempt

to partition features together with patterns such that the output contains relevant

features for each individual cluster. However, features are divided exclusively, which

prevents a feature to be relevant to more than one cluster. Other approaches in this

direction, usually referred as subspace clustering [15], seek density areas embedded in

a high dimensional feature space [16–20]. These algorithms navigate the possible sub-

spaces heuristically [20] or in a grid manner [16], often requiring the density threshold

and the cluster number as inputs. In addition, the clusters produced are overlapping

in many cases.

In this paper, we focus on the clustering problems with exclusive partitioning. We

propose to detect clusters embedded in feature subspace based on EM with a local

feature saliency measure. The number of clusters is also simultaneously detected

by integrating a Minimum Message Length (MML) criterion. Through experiments

performed on both synthetic and real-world datasets, we demonstrate the advantages

of the proposed localized feature selection method over the global one. The rest of the

paper is organized as follows: In Section 2, we introduce some essential background

on EM-based clustering and simultaneous global feature selection. In Section 3, we

perform model detection for Gaussian mixture through EM with an integrated local

feature saliency. The proposed algorithm is evaluated on both synthetic and real-

world datasets in Section 4. Finally, we summarize our work in Section 5.

2. Background on EM-based Clustering and Global Feature Selection.

From a model-based perspective, each cluster can be mathematically represented by a

parametric distribution. The entire dataset is therefore modeled by a mixture of these

distributions. The most widely used model in practice is the mixture of Gaussians.
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The clustering process thereby turns to estimating the parameters of the Gaussian

mixture, usually by the EM algorithm.

Traditionally, a finite mixture of densities with K components is represented by,

(1) p(y) =

K∑

j=1

αjp(y|θj),

where αj is the a priori probability, and θj is a set of parameters of component j.

The parameters are estimated by maximizing the likelihood as,

(2) θ̂ML = argmax
θ

[log p(Y|θ)] .

Let Z = {zij}N×K be a set of missing (latent) cluster labels, where zij = 1 if yi

is a sample of p(·|θj), and zij = 0 otherwise. Z can be also written as a vector

Z = (z1, . . . , zN ) such that zi = j if yi is a sample of p(·|θj). The log-likelihood when

Z is observed is,

(3) log p(Y,Z|θ) =

N∑

i=1

K∑

j=1

zij log[αjp(yi|θj)]

Let W = E[Z|Y, θ̂(t)] represent the expected value of Z, where θ̂(t) is the estimate of

θ at iteration t. The parameters can be estimated by the following updating rule,

(4) θ̂(t + 1) = arg max
θ

{log p(Y,W|θ̂(t))}

Assuming features are conditionally independent, the mixture of densities can be

described as,

(5) p(y|θ) =

K∑

j=1

αjp(y|θj) =

K∑

j=1

αj

D∏

l=1

p(yl|θjl)

where D is the number of features. Define the global feature saliency ρl to be the

probability that feature l is salient to all the components. Then, (1 − ρl) is the

probability that l is not salient to any of the components. Let Φ = (φ1, . . . , φD) be

the feature relevance vector with φl = 1, if feature l is relevant and, φl = 0, otherwise.

Then, ρl = Pr(φl = 1). Finally, the likelihood function can be rewritten as [7],

(6) p(y|θ) =

K∑

j=1

αj

D∏

l=1

[ρlp(yl|θjl) + (1 − ρl)q(yl|λl)]

where q(·(λl)) is a common density, which defines the distribution of an irrelevant
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feature l. If we treat Φ as missing variables, the feature saliency vector ρ can be

estimated by the EM algorithm [7].

3. Detecting Clusters Embedded in Feature Subspace. In this section, we

present a probabilistic model based on Gaussian mixture to detect clusters embedded

in feature subspace. First, we define a localized feature saliency and show how it

could be integrated into EM clustering. Then, we estimate the number of clusters

with the MML criterion.

3.1. Localized Feature Saliency . In our approach, the importance of a fea-

ture can be different for different clusters, which implies that the feature relevance

takes a matrix form, Φ = {φjl}K×D, where φjl = 1 indicates that feature l is associ-

ated with component j, otherwise φjl = 0. Let ρjl = Pr(φjl = 1) be the probability

that feature l is relevant to component j. Then, the likelihood can be obtained based

on the following proposition.

Proposition 1. Let p(·|θjl) represent the distribution of a salient feature l for a

particular component j, and q(·|λjl) the distribution if feature l is non-salient to the

particular component. Assuming that the features are conditionally independent, the

likelihood function can be written as,

(7) p(y|θ) =
K∑

j=1

αj

D∏

l=1

(
ρjlp(yl|θjl) + (1 − ρjl)q(yl|λjl)

)

Proof. Let φj = (φj1, . . . , φjD). For a particular component j, we have

p(y|z = j, φj) =

D∏

l=1

(
p(yl|θjl)

)φjl
(
q(yl|λjl)

)1−φjl

p(y, φj , z = j) = p(y|z = j, φj)p(φj |z = j)P (z = j)

= αj

D∏

l=1

(
p(yl|θjl)

)φjl
(
q(yl|λjl)

)1−φjl

D∏

l=1

ρ
φjl

jl (1 − ρjl)
1−φjl

= αj

D∏

l=1

(
ρjlp(yl|θjl)

)φjl
(
(1 − ρjl)q(yl|λjl)

)1−φjl(8)

Marginal density on y gives

p(y|θ) =

K∑

j,Φ

p(y, φj , z = j)

=

K∑

j=1

αj

∑

φjl

D∏

l=1

(ρjlp(yl|θjl))
φjl ((1 − ρjl)q(yl|λjl))

1−φjl
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=

K∑

j=1

αj

D∏

l=1

(ρjlp(yl|θjl) + (1 − ρjl)q(yl|λjl))(9)

where θ = {{αj}, {θjl}, {ρjl}, {λjl}} is the set of all the parameters.

Taking {zij} and {φjl} as latent variables, we derive the E-step and M-step of

the EM algorithm to estimate the parameter set.

E-Step: Compute the expectation of the log-likelihood.

From Equation (8), the expected complete log-likelihood of the dataset based on

θ(t) is

Eθ(t) [log P (Y, z, Φ)]

=
∑

i,j,Φ

P (zi = j, Φ|yi)(log αj +
∑

l

φjl (log ρjl + log p(yil|θjl))

+ (1 − φjl) (log(1 − ρjl) + log q(yil|λjl)))

=
∑

j

(
∑

i

P (zi = j|yi)) log αj

+
∑

jl

∑

i

P (zi = j, φjl = 1|yi)(log p(yil|θjl) + log ρjl)

+
∑

jl

∑

i

P (zi = j, φjl = 0|yi) (log q(yil|λjl) + log(1 − ρjl))(10)

The probabilities are computed as follows,

P (zi = j|yi) =
αj

∏
l[ρjlp(yjl|θjl) + (1 − ρjl)q(yjl|λjl)]∑

j αj

∏
l[ρjlp(yjl|θjl) + (1 − ρjl)q(yjl|λjl)]

(11)

P (zi = j, φjl = 1|yi) =
ρjlp(yjl|θjl)

ρjlp(yjl|θjl) + (1 − ρjl)q(yjl|λjl)
P (zi = j|yi)(12)

P (zi = j, φjl = 0|yi) =
(1 − ρjl)q(yjl|λjl)

ρjlp(yjl|θjl) + (1 − ρjl)q(yjl|λjl)
P (zi = j|yi)(13)

M-step: Maximize the log-likelihood.

The three parts of Equation (10) can be maximized separately by updating the

following quantities,

α̂j =

∑
i P (zi = j|yi)∑

j

∑
i P (zi = j|yi)

(14)

µ̂θjl
=

∑
i P (zi = j, φjl = 1|yi)yjl∑

i P (zi = j, φjl = 1|yi)
(15)
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σ̂2
θjl

=

∑
i P (zi = j, φjl = 1|yi)(yjl − µ̂θjl

)2∑
i P (zi = j, φjl = 1|yi)

(16)

µ̂λjl
=

∑
i P (zi = j, φjl = 0|yi)yjl∑

i P (zi = j, φjl = 0|yi)
(17)

σ̂2
λjl

=

∑
i P (zi = j, φjl = 0|yi)(yjl − µ̂λjl

)2∑
i P (zi = j, φjl = 0|yi)

(18)

ρ̂jl =

∑
i P (zi = j, φjl = 1|yi)∑

i P (zi = j, φjl = 1|yi) +
∑

i P (zi = j, φjl = 0|yi)
(19)

The EM algorithm alternates between the E-step, which computes an expectation

of the likelihood by including the latent variables as if they were observed, and the M-

step, which maximizes the expected likelihood found in the E-step. The parameters

found in the M-step are then used to begin another iteration of the E-step, and the

process is continued until the algorithm converges to a finite mixture model with

feature saliency associated with each cluster. Thus, clustering and localized feature

saliency detection is achieved simultaneously.

3.2. Model Selection Based on Minimum Message Length (MML). Al-

ternation of E and M steps in the above algorithm eventually results in a maximum

likelihood estimate of Gaussian mixtures, which requires the number of clusters K as

prior knowledge. To overcome this difficulty, we employ the MML criterion to detect

the optimal number of clusters [7]. The MML criterion for our model with respect to

θ is as follows,

J(θ) = − log(Y|θ) +
1

2
(K + DK) log(N)

+
R

2

D∑

l=1

K∑

j=1

log(Nαjρjl) +
S

2

D∑

l=1

K∑

j=1

log(Nαj(1 − ρjl))(20)

In the above equation, R and S are the number of parameters of p(·) and q(·), respec-

tively, which for a Gaussian distribution is 2. Also, − log(Y|θ) corresponds to log-

likelihood, and 1
2 (K+DK) log(N) represents the code-length of standard Message De-

scription Length (MDL) of parameters αjs and ρjls. While Nαjρjl indicates the effec-

tive number of data for estimating θjl,
R
2

∑D

l=1

∑K

j=1 log(Nαjρjl) computes the code-

length corresponding to the parameters θjl. Similarly, S
2

∑D

l=1

∑K

j=1 log(Nαj(1−ρjl))

represents the code-length for parameters λjl. The optimal mixture model is the one

that minimizes the cost function J(θ) in Equation (20),

θ̂ = argmin
θ

(J(θ))(21)

The algorithm introduced above works well in general cases. However, extreme
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bad initialization may lead to some clusters with singular covariance matrices, and

thus adversely affect the cost function J(θ). Those clusters can be pruned based on

a modification of Equation (14) [7],

α̂j =
max

(∑
i P (zi = j|yi) −

RD
2 , 0

)
∑

j max
(∑

i P (zi = j|yi) −
RD
2 , 0

)(22)

The effect of Equation (22) is that some small trivial components are quickly elimi-

nated at an early stage. Similarly, Equation (19) is modified to,

ρ̂jl =
max

(∑
i P (zi = j, φjl = 1|yi) −

R
2 , 0

)

max
(∑

i P (zi = j, φjl = 1|yi) −
R
2 , 0

)
+ max

(∑
i P (zi = j, φjl = 0|yi) −

S
2 , 0

)

(23)

The above Equation can prune ρjl to either 1 or 0.

In summary, the proposed EM clustering with localized feature saliency consists

of the following steps,

1. Initialize the algorithm with a large value of K, minimal number of compo-

nents Kmin, and the parameter set θ.

2. Alternate between E-step and M-step until the model converges to a local

maximum. During this step, components with αj = 0 are pruned.

3. Record the parameter set θ and the message length based on Equation (20).

4. Terminate the iterations if K equals Kmin. Otherwise, reduce K to K −1 by

removing the smallest component, and repeat steps (2) and (3).

5. Output the model with the smallest message length.

3.3. Computational Complexity. The computational load of the proposed

algorithm is mainly due to the E and M steps. For every iteration, the complexity of

both the steps is O(KND). The total computational time is dependent on the number

of iterations required for converging. Conventional feature selection algorithms usually

seek optimal features by trying out large number of combinations. On the other hand,

the proposed algorithm computes the localized feature saliency simultaneously with

clustering, thus avoiding the navigation over all possible feature subsets. It only needs

to search over a small set of possible Ks.

4. Experimental Results. In general, the performance of an unsupervised fea-

ture selection algorithm is hard to be evaluated. Localized feature selection makes it

even more difficult as we have an additional layer of complexity brought by the as-

sociation of clusters to different feature subsets. In this section, we provide thorough

evaluation of the proposed algorithm by comparing it with the global feature selection

approach [7] on both synthetic and real-world datasets. In addition, we show the need
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for feature selection in clustering and the benefits of selecting features locally through

a case-study on Boston housing dataset.

4.1. Synthetic Data. First, we applied both our method and the global feature

selection algorithm to several synthetic datasets. As we know the underlying models

from which the patterns were sampled from, the performance of an algorithm is inter-

preted as: can the algorithm find the given model? The synthetic datasets are created

by a data generator. It first generates c Gaussian components N (µj , Σj), j = 1, · · · , c,

separately, where Σj is restricted to a diagonal matrix. Components can have differ-

ent number of features Dj , and different number of patterns Nj . Those Gaussians

are then embedded into subsets of a D-dimensional background with Gaussian noise

N (0, I). Finally, a D-dimensional dataset consisting of c Gaussian mixtures, with

each component corresponding to an individual relevant feature subset is generated.

The total number of patterns is N =
∑c

j=1 Nj. Table 1 shows a summary of the four

synthetic datasets generated.

In the experiments, we initialized the parameters as follows: number of clusters K

is set to 20, the a priori probabilities αj are set equally at 1/20, the feature saliencies

ρjl are set at 0.5, and the common components are set to cover the entire dataset.

We ran the proposed algorithm 10 times independently with stopping threshold of

10−7. The clustering error rates and cluster numbers are computed as the average

over the 10 runs, and standard deviations are calculated accordingly. The feature

saliency for each cluster at each run is mapped to a grey-scale image, where each

column represents a feature, and each row represents an individual run, as shown in

Table 2. For all the four datasets, the proposed algorithm successfully detected the

number of clusters. Each cluster and its relevant feature subset are also detected

correctly. The grey-scale image is steady vertically, indicating that the algorithm

is stable in different runs. In Table 2, we also show the performance of the global

feature selection algorithm [7] on each of the datasets. We can see that the union

of the localized feature subsets is equivalent to the relevant features selected by the

global approach. Moreover, while global algorithm is able to detect the number of

clusters correctly, it can not determine if a salient feature really plays a critical role

for a particular cluster. On the other hand, our approach yields more informative

models, which not only provide information about whether a feature is relevant or

not, but also about which cluster the feature is relevant or irrelevant to.

4.2. Real-world datasets. For the evaluation on real-world datasets, we uti-

lized four datasets: wine, wdbc, vehicle, and zernike, from the UCI machine learning

repository [21], having varying number of features, patterns, and categories. The wine

dataset is used to recognize different wine types by 13 characters of chemical analysis.
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It consists of 178 patterns and 3 categories. The wdbc dataset is used to diagnose if

a breast cancer is benign or malignant based on 30 features and contains 576 data

points. The vehicle dataset contains 846 samples with 18 features extracted from

vehicle silhouettes. The purpose is to classify a given silhouette as one of four types

of vehicles. The zernike dataset records 47 zernike moments extracted from 2000

images of handwriting digits. Summary of these four datasets is shown in Table 3.

The parameters are initialized in the same way as for the synthetic datasets, except

that K is set at 30 for the zernike dataset.

The datasets are provided with class labels for supervised learning, which are

excluded during the clustering process. We assign a class label to each final cluster

afterwards so that a pseudo error rate can be computed for evaluation purpose. The

cluster label is simply selected as the class to which majority of patterns in the cluster

belongs. In other words, we assume that each cluster consists of patterns from the

same class. Comparing the cluster labels of all the patterns with the true class labels

yields the pseudo error rate.

The estimated cluster numbers and pseudo error rates are shown in Table 4 for

both local and global methods. It is clear that the proposed EM clustering with lo-

calized feature saliency generally outperforms the global one with lower error rates

and variances. We also compared the feature saliency of the two algorithms as grey-

scale images in Table 5. Obviously, different clusters have different relevant feature

subsets, which are usually smaller than the globally relevant feature subset. This

result indicates that a globally relevant feature can be irrelevant to some clusters.

Our experiments also show that a locally relevant feature might be treated as glob-

ally irrelevant. For example, the third feature of wine dataset is relevant to the first

cluster (bright column), but, it has been ignored by the global feature selection al-

gorithm (dark column). Thus, EM clustering with localized feature saliency provides

users more accurate knowledge regarding the underlying model from which the cluster

component is generated. Moreover, the vertical belt patterns in the grey-scale images

demonstrates the stability of the proposed algorithm over different runs.

4.3. Boston Housing Dataset. In this section, we present a case study of

the proposed algorithm on the Boston housing data from UCI [21], which contains

506 neighborhoods in the Boston metropolitan area with 14 attributes, as described

in Table 6. This dataset is often used as a test bed to compare the performance of

prediction methods by estimating the value of the last attribute MEDV from the other

13 attributes. In our experiment, we remove the binary attribute CHAS, and consider

the rest 13 attributes on an equal basis. Our goal is to find groups of neighborhoods

based on these attributes, and to identify the saliency of attributes for each individual

group.
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In our experiment, the number of clusters are initialized to 20, and other param-

eters are initialized in the same way as for the synthetic datasets. As shown in Figure

2, 10 clusters are identified. Notice that the attribute saliency varies for each cluster.

For example, attributes {CRIM, RAD, TAX, PTRT} are important to Group A but

not to Group E, while attribute B is important to Group E but not to Group A.

Figure 2 clearly shows that the distribution of feature saliency over the 13 attributes

is quite different across clusters. Traditional clustering algorithms without feature

selection or with global feature selection is not able to reveal these properties of the

dataset. Our method, on the other hand, can provide this vital information to users

through cluster-wise feature selection.

5. Conclusion. In this paper, we proposed a EM clustering algorithm with lo-

calized feature saliency. In our approach, unsupervised feature selection is performed

by estimating feature saliency of individual clusters simultaneously with the EM clus-

tering. The determination of cluster number is also integrated in our method by

adopting an MML criterion. Experimental results show that the cluster model pro-

duced by the proposed algorithm can provide users more accurate understanding of

the underlying process which generates the data.
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Fig. 1. A three-cluster system with cluster C1 embedded in feature set {x1, x2}, cluster C2

embedded in feature subset {x2}, and cluster C3 embedded in feature subset {x1}.

Table 2

Results on the synthetic datasets. Saliency in the range [0, 1] is mapped to grey-scale [0,
255] linearly. For the clustering with localized feature saliency, each image is a mapping of feature
saliency of one cluster, where rows and columns of pixels represent runs and features, respectively.
The separated row pixels above an image represent the true relevant features. The global feature
saliency is illustrated in the same way.

Localized feature selection Global feature selection
Dataset ĉ(std) Saliency ĉ(std) Saliency
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Table 3

Summary of UCI datasets

data Description N D c

wine wine recognition 178 13 3
wdbc Wisconsin diagnostic breast cancer 569 30 2
vehicle vehicle classification 846 18 4
zernike Zernike moments of digit images 2000 47 10
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Table 4

Cluster numbers and pseudo error rates for UCI datasets.

Localized feature selection Global feature selection
data error (std)(%) ĉ (std) error (std)(%) ĉ (std)

wine 2.1 (1.2) 3 (0) 2.4 (1.2) 3.3 (0.5)
wdbc 7.6 (0.6) 7.1 (0.7) 7.5 (1.2) 7.4 (0.8)
vehicle 44.6 (1.3) 9.2 (1.3) 45.4 (2.6) 10.5 (1.3)
zernike 44.9 (2.2) 15.3 (1.9) 47.6 (2.8) 16.7 (1.3)
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Fig. 2. Localized feature saliency on the Boston housing dataset. The number of objects grouped
together are listed with the group ID.
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Table 5

Feature saliency. Each image is a mapping of feature saliency for a cluster, with exception that
the highlighted one represents the global feature saliency. Saliency values [0,1] are linearly mapped
to grey-scale [0,255]. Each row represents a run, and each column represents a feature.
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Table 6

Attributes for the Boston housing data.

Num. Var. Description
1 CRIM per capita crime rate by town
2 ZN land zoned for lots over 25,000 sq.ft.
3 INDS proportion of non-retail business acres per town
4 CHAS Charles River dummy variable
5 NOX nitric oxides concentration
6 RM number of rooms per dwelling
7 AGE proportion of units built prior to 1940
8 DIS distances to five Boston employment centres
9 RAD accessibility to radial highways
10 TAX full-value property-tax rate
11 PTRT pupil-teacher ratio by town
12 B (Bk − 0.63)2 where Bk is the proportion of blacks
13 LSTT % lower status of the population
14 MEDV Median value of owner-occupied homes in $1000’s
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