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MAXIMIZATION OF THE PORTFOLIO GROWTH RATE UNDER

FIXED AND PROPORTIONAL TRANSACTION COSTS

JAN PALCZEWSKI∗ AND  LUKASZ STETTNER†

Abstract. This paper considers a discrete-time Markovian model of asset prices with economic

factors and transaction costs with proportional and fixed terms. Existence of optimal strategies

maximizing average growth rate of portfolio is proved in the case of complete and partial observation

of the process modelling the economic factors. The proof is based on a modification of the vanishing

discount approach. The main difficulty is the discontinuity of the controlled transition operator of

the underlying Markov process.
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1. Introduction. On a given probability space (Ω,F , P) with discrete filtration

(Ft)t=0,1,..., where F0 is trivial, consider a market model driven by a time homoge-

neous Markov process
(
S(t), Z(t)

)

t=0,1,...
, where S(t) =

(
S1(t), . . . , Sd(t)

)
∈ (0,∞)d

denotes prices of d financial assets and Z(t) ∈ (E, E), where E is a locally compact

separable metric space with Borel σ-algebra E , stands for economic factors. Models

with economic factors have been gaining popularity in financial mathematics recently

although it has been noted that they add substantially to the complicacy of math-

ematical methods required for their analysis as compared to models without factors

(see eg. [3], [4], [13], [23]). A main advantage of models with economic factors lies

in the fact that economic factors can influence market trends therefore change the

long-term behaviour of prices. They answer the main criticism of pure Markovian

models related to the lack of memory of price processes. Moreover, it is known that

models with economic factors allow for better calibration to market data (see [4]).

In the above model, under transaction costs consisting of proportional and constant

terms, we maximize the functional

(1) J(Π) = lim inf
T→∞

1

T
E ln XΠ(T ),

where XΠ(T ) is the wealth of the portfolio (trading strategy) Π at time T . This

functional computes an average growth rate of the portfolio Π. Indeed, (1) can be
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rewritten as

(2) J(Π) = lim inf
T→∞

1

T
E

T−1∑

k=0

ln
XΠ(k + 1)

XΠ(k)
,

where ln XΠ(k+1)
XΠ(k) is a continuously compounded rate of return in time interval [k, k+1].

Functionals of the form (2) are known as long-run average cost functionals. They have

been widely studied in the context of stochastic control of Markov processes (see [2],

[18], [20] and references therein). Financial applications require, however, additional

constraints on admissible controls and give rise to a new class of control problems

(see [1], [8], [11], [12], [14], [23] for growth-rate optimization problems on finite and

infinite time horizons).

The main result of this paper states that under very general assumptions on the

process driving the market there exists an optimal Markovian control for the functional

(1). This result is proved by a modification of a vanishing discount approach, as

considered in [18], which leads to a certain Bellman inequality. Main difficulties arise

from discontinuity of the controlled transition operator of the underlying Markov

process, due to a constant term in the transaction costs structure. The above result

is not only valid in the case when economic factors are completely observed, but also

in models in which economic factors cannot be perfectly read. We also show that

the optimal strategy maximizing long run average portfolio growth rate in the case

of fixed plus proportional transaction costs is also optimal in the case of proportional

transaction costs.

The results obtained in this paper are new in the case of fixed plus proportional

transaction costs. They extend application of a general theory of stochastic control to

financial problems with a constant term in the transaction cost structure. Moreover,

they generalize [1], [23] in the case of only proportional transaction costs.

The paper is organized as follows. In Section 2 we set up a financial model, derive

its basic properties and introduce notation. Section 3 presents main results of the

paper followed by discussion and remarks. The proof of the main result is contained

in Section 4. The case with incomplete observation of the economic factor process is

considered in Section 5.

2. Preliminaries. In this section we specify the model in full detail and intro-

duce necessary notation. The dynamics of the price process is governed by

(3)
Si(t + 1)

Si(t)
= ζi

(

Z(t + 1), ξ(t + 1)
)

, Si(0) = si > 0, i = 1, . . . , d,

where
(
ξ(t)

)

t=1,2,...
is a sequence of i.i.d. random variables with values in a Polish

space (Eξ , Eξ) and functions ζi : (E, E)× (Eξ , Eξ) → (0,∞) are Borel measurable, i =

1, . . . , d. The process Z(t) is a time-homogeneous Markov process. We assume that
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(
S(t), Z(t)

)

t=0,1,...
is a Feller Markov process, i.e. its transition operator transforms

the space bounded continuous functions into itself. We shall write ζi(t) for ζi
(
Z(t +

1), ξ(t + 1)
)

whenever it does not lead to ambiguity. We denote by ζ(t) the vector
(
ζ1(t), . . . , ζd(t)

)
.

Denote by (Fz
t )t=0,1,... the filtration, where Fz

0 is a trivial σ-algebra and (Fz
t )t=1,2,...

is generated by the process
(
ξ(t), Z(t)

)

t=1,2,...
with Z(0) = z. Notice that the filtration

generated by the process
(
S(t), Z(t)

)

t=0,1,...
starting from (s, z) ∈ (0,∞)d × E is

identical to (Fz
t )t=0,1,..., since it is independent of the initial value of asset prices:

Si(t) = Si(0)

t∏

s=1

ζi
(

Z(s), ξ(s)
)

.

Fix initial values (s, z) for the process
(
S(t), Z(t)

)

t=0,1,...
. A trading strategy is

a sequence of pairs
(
(Nk, τk)

)

k=1,2,...
, where τk is an (Fz

t )-stopping time, τk+1 >

τk, k = 1, 2, . . ., and Nk is Fz
τk

-measurable random variable with values in [0,∞)d

representing the number of shares held in portfolio in the time interval [τk, τk+1). By

N(0) we denote a deterministic initial portfolio and we set τ0 = 0. The share holding

process at time t is given by

N(t) =

∞∑

k=1

1t∈[τk,τk+1)Nk.

In what follows we shall consider transaction costs of the form

(4) c̃(N1, N2, S) =

d∑

i=1

(

c1
i S

i(N i
1 − N i

2)
+ + c2

i S
i(N i

1 − N i
2)

−
)

+ c,

where S stands for asset prices, N1 denotes portfolio contents before transaction, N2

– after transaction, and c is the constant cost charged independently of the size of

transaction. Proportional transaction costs are divided into two parts: c1
i ∈ [0, 1) is

a proportion of the transaction volume paid on buying of asset i, while c2
i ∈ [0, 1) is

applied on selling of asset i. We assume that portfolios are self-financing, i.e.

(5) Nk · S(τk) = Nk−1 · S(τk) + c̃
(
Nk−1, Nk, S(τk)

)
, k = 1, 2, . . . .

In the case of no transaction costs or proportional transactions costs it is natural

to reformulate the problem in terms of proportions. We will also benefit here from

this reformulation. Let

(6)
X(t) = N(t) · S(t),

X−(t) = N(t − 1) · S(t).

Hence, X−(t) is the wealth of the portfolio before possible transaction at t, and X(t)

is the wealth just after the transaction. If there is no transaction at t both values are
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identical. In a similar way we construct two processes representing proportions:

(7)

πi(t) =
N i(t)Si(t)

X(t)
,

πi
−(t) =

N i(t − 1)Si(t)

X−(t)
,

for i = 1, 2, . . . , d. Since short sales are prohibited we have π(t), π−(t) ∈ S, where

S = {(π1, . . . , πd) : πi ≥ 0,
d∑

i=1

πi = 1}.

Denote by S0 the simplex S with its interior

S0 = {(π1, . . . , πd) : πi ≥ 0,
d∑

i=1

πi ≤ 1}

and let g : S0 → S be the projection to the boundary

g(π1, . . . , πd) =
( π1

∑
πi

, . . . ,
πd

∑
πi

)

.

The self-financing condition can be written as

(8) X−(τk) = X(τk) + X−(τk)
(

c
(
π−(τk), π̃k

)
+

c

X−(τk)

)

, k = 1, 2, . . .

for some π̃k ∈ S0 such that π(τk) = g
(
π̃k

)
and

c(π−, π̃) =
d∑

i=1

(

c1
i (π̃

i − πi
−)+ + c2

i (π̃
i − πi

−)−
)

is the proportion of the portfolio wealth that is consumed by proportional part of

transaction costs. From (5) one can deduce that π̃k = X(τk)
X−(τk)π(τk) fulfills (8). We

shall show that this is a unique solution to (8). Given π−, π ∈ S, x− > 0 define a

function

F̃π−,π,x−(δ) = c
(
π−, δπ

)
+

c

x−

+ δ.

Notice that (8) is equivalent to

F̃π−(τk),π(τk),X−(τk)
( d∑

i=1

π̃i
k

)

= 1.

It can be proved (see [23]) that there exists a unique function ẽ : S×S×(0,∞) → [0, 1]

such that

F̃π−,π,x−
(
ẽ(π−, π, x−)

)
= 1,
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if F̃π−,π,x−(δ) = 1 has a solution δ ∈ (0, 1] and ẽ(π−, π, x−) = 0, otherwise (the wealth

of the portfolio is too small to perform requested change of proportions). For technical

reasons this is an undesirable condition. Therefore, we shall modify transaction costs

in such a way that the transaction is possible at any moment. Let

(9) x∗ >
c

1 − maxi ch
i

, h = 1, 2,

and modify (4) in the following way

c̃(N1, N2, S) =

d∑

i=1

(

c1
i S

i(N i
1 − N i

2)
+ + c2

i S
i(N i

1 − N i
2)

−
)

+







c, when N1 · S ≥ x∗,

cN1·S
x∗ , when N1 · S < x∗.

(10)

Notice that for portfolios with the wealth over x∗ usual constant plus proportional

transaction costs are applied as in (4). Transaction costs are modified only for wealth

below x∗, when the constant cost is replaced by appropriate proportional term. It is

not restrictive in practical applications where portfolio wealth is counted in thousands

of dollars. As an example consider fixed cost of 1 USD and proportional cost – 0.5%.

We obtain from (9) that x∗ > 1.0051 USD.

With the new transaction costs structure the self-financing condition (8) takes the

form

X−(τk) = X(τk) + X−(τk)
(

c
(
π−(τk), π̃k

)
+

c

X−(τk) ∨ x∗

)

, k = 1, 2, . . .

where a ∨ b = max(a, b) and π̃k = X(τk)
X−(τk)π(τk). Given π−, π ∈ S, x− > 0 we define a

function

Fπ−,π,x−(δ) = c
(
π−, δπ

)
+

c

x− ∨ x∗
+ δ.

The above self-financing condition is equivalent to

Fπ−(τk),π(τk),X−(τk)
( d∑

i=1

π̃i
k

)

= 1.

Lemma 2.1. There exists a unique function e : S × S × (0,∞) → (0, 1], such that

Fπ−,π,x−
(
e(π−, π, x−)

)
= 1.

Moreover, e is continuous and inf e(π−, π, x−) > 0.

Proof. The proof is rather straightforward and resembles the proof of Lemma 1 in

[23].
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The uniqueness of the function e implies that X(τk)
X−(τk) = e

(
π−(τk), π(τk), X−(τk)

)
.

Therefore, any transaction can be described solely by means of proportions. Given

a pre-transaction wealth X−(τk) and proportions π−(τk) at time τk one chooses any

post-transaction proportions π(τk) ∈ S. As a result the wealth is diminished to

X(τk) = X−(τk)e
(
π−(τk), π(τk), X−(τk)

)
.

Furthermore,

X−(t + 1) =

d∑

i=1

πi(t)X i(t)

Si(t)
Si(t + 1) = X(t)

(

π(t) · ζ(t)
)

.

Therefore,

(11) X−(t) = X−(0)

t−1∏

s=0

(

π(s) · ζ(s)
) ∞∏

k=1

(

1τk<te
(
π−(τk), π(τk), X−(τk)

)
+ 1τk≥t

)

and the wealth of the portfolio is independent of initial prices of the assets. There-

fore, instead of writing P
(s,z) and E

(s,z), it suffices to stress the dependence of the

probability measure on the initial condition of the Markov process
(
Z(t)

)
by writing

P
z and E

z .

For a given initial value z ∈ E, we say that a sequence Π = ((π1, τ1), (π2, τ2), . . .) of

S-valued random variables such that πk is Fz
τk

-measurable and τk is a (Fz
t )-stopping

time, is an admissible trading strategy or an admissible portfolio for z. Thanks to

the modified form of transaction costs no portfolio can lead to bankruptcy in a finite

time. Let us denote the set of all admissible portfolios for z by Az. For z ∈ E and

Π ∈ Az we define the corresponding pre-transaction proportion process πΠ,z
− (t) by

(12)
πΠ,z
− (0) = π−,

πΠ,z
− (t) = πk ⋄ ζ(τk + 1) ⋄ . . . ⋄ ζ(t), τk < t ≤ τk+1,

where for simplicity of the notation we set τ0 = 0 and

(13) π ⋄ ζ = g(π1ζ1, . . . , πdζd), π ∈ S, ζ ∈ (0,∞)d.

The corresponding post-transaction proportion process is given by

(14)
πΠ,z(0) = π−, τ1 > 0,

πΠ,z(t) = πk ⋄ ζ(τk + 1) ⋄ . . . ⋄ ζ(t), τk ≤ t < τk+1.

The wealth process XΠ,z
− (t) is given by (11). In the sequel we shall skip the subscript

Π, z unless it leads to ambiguity. The goal of this paper is to maximize the functional

(15) Jπ−,x−,z(Π) = lim inf
T→∞

1

T
E

z ln X−(T )
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over all portfolios Π ∈ Az, where π− is an initial proportion, x− denotes initial wealth

and z is an initial state of the economic factor process. Observe that due to (11) we

have

(16)

Jπ−,x−,z(Π) = lim inf
T→∞

1

T

{ T−1∑

t=0

E
z ln π(t) · ζ(t)

+

∞∑

k=1

E
z
{

1τk<T ln e
(
π−(τk), πk, X−(τk)

)}
}

.

3. Existence of optimal strategies. Denote by P (z, dy) the transition oper-

ator of the process Z(t). We will need the following assumptions:

(A1) The process
(
S(t), Z(t)

)
satisfies the Feller property i.e. its transition operator

maps the space of continuous bounded functions into itself.

(A2) S × E ∋ (π, z) 7→ h(π, z) = E
z
{

ln π · ζ
(
z(1), ξ(1)

)}
is a bounded, continuous

function.

(A3) sup
z,z′∈E

sup
B∈E

(
Pn(z, B) − Pn(z′, B)

)
= κ < 1 for some n ≥ 1.

(A4) sup
π−,π∈S

sup
z∈E

E
z 1

e(π−, π, x∗) π · ζ
(
z, ξ(1)

) < 1.

We have

Theorem 3.1. Under assumptions (A1)-(A4) there exists a measurable function

p : S × (0,∞) × E → S, a constant λ and a measurable set I ⊆ S × (0,∞) × E such

that

(17) λ = Jπ−,x−,z(Π∗) = sup
Π∈A

Jπ−,x−,z(Π),

where the optimal portfolio Π∗ =
(
(π∗

1 , τ∗
1 ), (π∗

2 , τ∗
2 ), . . .

)
is given by the formulae

τ∗
1 = inf{t ≥ 0 :

(
π−(t), X−(t), Z(t)

)
∈ I},

τ∗
k+1 = inf{t > τ∗

k :
(
π−(t), X−(t), Z(t)

)
∈ I},

π∗
k = p

(
π−(τ∗

k ), X−(τ∗
k ), Z(τ∗

k )
)
.

Theorem 3.1 states that for any initial state of the market and for any initial share

holding there exists an optimal portfolio maximizing the average growth rate. This

portfolio has a Markovian structure: decision about a transaction at t is based only

on the state of the market at t and not before t. This decision process is governed

by the impulse set I and the impulse function p. Clearly, every Markovian portfolio

is admissible. Notice also that the optimal growth rate is equal to a constant λ

independently of the initial conditions. This is an inherent property of the so-called

long-run average cost functionals (see [2], [9]).
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Remarks.

(1) Assume that Z(t) is a Feller process, which is clearly required for (A1) to

hold. If ζi(z, ξ), i = 1, . . . , d, are continuous in z then (A1) is satisfied. Indeed, let

φ : (0,∞)d × E → R be a continuous bounded function. Define

g(s, z, ξ) =

∫

E

φ
(
s1ζ1(z̃, ξ), . . . , sdζd(z̃, ξ), z̃

)
P (z, dz̃).

It is continuous by the Feller property of Z(t) and bounded by the boundedness of φ.

Consequently, the mapping

(s, z) 7→ E
(s,z)φ

(
S(1), Z(1)

)
=

∫

Eξ

g(s, z, ξ)ν(dξ),

where ν is a distribution of ξ(1) on Eξ, is continuous by dominated convergence

theorem and (A1) holds. In particular, if Z(t) is a Markov chain with a finite state

space (A1) is always satisfied.

(2) Notice that (A2) reads that expected one period growth rate is finite.

(3) Assume that ζi(z, ξ), i = 1, . . . , d, are bounded functions separated from 0 and

continuous in z. Consequently, h(π, z) is bounded. By (A1) Z(t) is a Feller process,

hence h(π, z) is continuous by the same argument as above and (A2) holds.

(4) By Jensen’s inequality

inf
π∈S

h(z, π) = min
i=1,...,d

E
z
{

ln ζi
(
Z(1), ξ(1)

)}
.

Therefore, h(π, z) is bounded from below if and only if

inf
z∈E

E
z
{

ln ζi
(
Z(1), ξ(1)

)}
> −∞, i = 1, . . . , d.

(5) Condition (A2) does not imply boundedness of ζi. Consider a generalized

Black-Scholes model with economic factors (see [3], [4], [13]), i.e.

Si(t+1) = Si(t) exp
(

σi
(
Z(t+1)

)
·
(
W (t+1)−W (t)

)
+µi

(
Z(t+1)

))

, i = 1, . . . , d,

where Z(t) is a Feller process, W (t) is an m-dimensional Wiener process and σi :

E → R
m, µi : E → R, i = 1, . . . , d, are continuous bounded functions. Clearly, (A1)

is satisfied by Remark (1). To show (A2) we recall the definition

h(π, z) = E
z ln

( d∑

i=1

πi exp
(

σi
(
Z(1)

)
· ξ(1) + µi

(
Z(1)

))
)

with ξ(1) = W (1) − W (0). Consequently,

E
z
{
−D1

(
Z(1)

)
‖ξ(1)‖2−D2

(
Z(1)

)}
≤ h(π, z) ≤ E

z
{
D1

(
Z(1)

)
‖ξ(1)‖2+D2

(
Z(1)

)}
,
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where ξ has a standard normal distribution ν on R
m, D1(z) = maxi=1,...,d ‖σi(z)‖2,

D2(z) = maxi=1,...,d |µ
i(z)| and ‖ · ‖2 stands for the L2 norm in R

m. It proves bound-

edness of h(π, z). Continuity with respect to π follows by the dominated convergence

theorem. By a similar argument

z̃ 7→

∫

Rm

ln

( d∑

i=1

πi exp
(
σi(z̃) · ξ + µi(z̃)

)
)

ν(dξ)

is continuous. Hence, due to the Feller property of Z(t), the function h(π, z) is

continuous with respect to z and (A2) is satisfied. In particular, (A2) is satisfied if

Z(t) is a Markov chain with a finite state space.

(6) Assumption (A3) corresponds to uniform ergodicity of Z(t) and implies, in par-

ticular, the existence of a unique invariant measure which is approximated uniformly

by the iterations of the transition operator P (see [7]).

(7) In the stochastic control literature a one-step uniform ergodicity is usually

assumed, which is equivalent to (A3) with n = 1 (see e.g. condition (UE) in [23]).

Allowing for n > 1 opened a new class of applications and is especially important

in the financial context. It can be shown that (A3) is satisfied if Z(t) is a recurrent

Markov chain with a finite state space.

(8) Assumption (A4) links a transaction cost and a growth rate of one-stage in-

vestment. It says, in general, that no matter what strategy we choose the portfolio

wealth is increasing on average.

4. Proof of Theorem 3.1. The proof uses a generalization of the vanishing

discount method ([2], [9], [18], [23]) due to [18]. Main idea is to obtain a Bellman

inequality for our optimization problem as a limit of modified Bellman equations for

discounted problems related to (16). Given π−, x−, z consider the functional

J
π−,x−,z
β (Π) = E

z

{ ∞∑

t=1

βth
(
π(t), Z(t)

)
+

∞∑

k=1

βτk ln e
(
π−(τk), πk, X−(τk)

)
}

, β ∈ (0, 1),

and the value function

vβ(π−, x−, z) = sup
Π∈Az

J
π−,x−,z
β (Π).

Denote by M the impulse operator acting on measurable functions

(18) Mw(π−, x−, z) = sup
π∈S

{

ln e(π−, π, x−) + w
(
π, x− e(π−, π, x−), z

)}

.

Lemma 4.1. The impulse operator maps the space of continuous bounded func-

tions into itself. Moreover, given any bounded continuous function w there exists a

measurable selector for Mw.

Proof. The proof is standard (see [9] or [17]).
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Theorem 4.2. Under (A1)-(A2) the function vβ is continuous and bounded, and

satisfies the Bellman equation

(19) vβ(π−, x−, z) = sup
τ

E
z
{ τ−1∑

t=0

βth(π(t), Z(t)) + βτMvβ

(

π−(τ), X−(τ), Z(τ)
)}

,

where π−(t) and X−(t) are processes representing the proportions and the wealth of

the portfolio before transaction with the following dynamics: π−(0) = π−, π−(t+1) =

π−(t) ⋄ ζ(t) and X−(0) = x−, X−(t + 1) = X−(t) π−(t) · ζ(t) .

Proof. By Lemma 2.1 the function ln e(π−, π, x−) is bounded, and by (A2) h(π, z)

is bounded. Therefore, vβ(π−, x−, z) is bounded. For a continuous bounded function

v : S × (0,∞) × E 7→ R, let

Tβv(π, x, z) = sup
τ

E
z
{ τ−1∑

t=0

βth(π(t), Z(t)) + βτMv
(

π−(τ), X−(τ), Z(τ)
)}

.

Operator Tβ maps the space Cb = Cb(S × (0,∞) × E; R) of bounded continuous

functions into itself. It follows from (A1), the Feller property of the transition operator

of the process
(
S(t), Z(t)

)
, by a general result on the continuity of the value function

of optimal stopping problems. Let

v0
β(π−, x−, z) =

∞∑

t=0

βt
E

zh
(
π−(t)

)
, X−(t)

)
, vk+1

β = Tβvk
β .

Thanks to continuity of vk
β and Mvk

β it can be shown that vk
β is a value function for the

maximization of Jβ over admissible portfolios with at most k transactions. Observe

that it is never optimal to have two transactions at the same time (P(τk = τk+1) > 0)

due to subadditivity of the transaction cost structure. Therefore, we have the estimate

‖vβ − vk
β‖∞ ≤

∞∑

l=k

βl‖h‖∞ = βk ‖h‖∞
1 − β

,

which implies that vk
β tends uniformly to vβ . Consequently, vβ is a continuous bounded

function and satisfies vβ = Tβvβ equivalent to the Bellman equation (19).

4.1. Proportional transaction costs. Now we shall concentrate on the case

without the constant term in the transaction cost function, i.e. when c = 0. Conse-

quently, e(π−, π, x−) satisfies the equation

e(π−, π, x−) = 1 − c
(
π−, e(π−, π, x−)π

)
,

and the function e(π−, π, x−) is independent of x−, so we can denote it by e(π−, π).

Since Jπ−,x−,z depends on the portfolio wealth only in the transaction costs term,

which by the above comment no longer takes X− into account, we can skip x−

J
π−,z
β (Π) = E

z

{ ∞∑

t=1

βth
(
π(t), Z(t)

)
+

∞∑

k=1

βτk ln e
(
π−(τk), πk

)
}

, β ∈ (0, 1).
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Consequently, we shall denote by vβ(π−, z) the value function corresponding to this

functional. By Theorem 4.2 it is bounded and continuous. However, in the sequel we

shall need a boundedness property which is uniform in β ∈ (0, 1).

Lemma 4.3. For arbitrary β ∈ (0, 1), π−, π′
− ∈ S, z ∈ E

vβ(π−, z)− vβ(π′
−, z) ≤ − ln

(
inf
π,π′

e(π, π′)
)
.

Proof. It is an easy consequence of the fact that for an arbitrary Π =
(
(π1, τ1), (π2,

τ2), . . .
)
∈ Az

Jπ−,z(Π) ≤ Jπ′
−,z(Π′) − ln e(π′

−, π−),

where Π′ =
(
(π−, 0), (π1, τ1), (π2, τ2), . . .

)
.

Lemma 4.4. Under (A3) there exists M < ∞ such that

|vβ(π−, z) − vβ(π′
−, z′)| ≤ M ,

for β ∈ (0, 1), π−, π′
− ∈ S, z, z′ ∈ E.

Proof. Let e = infπ−,π∈S e(π−, π). Fix z, z′ ∈ E and π−, π′
− ∈ S. Denote by Π the

portfolio optimal for vβ(π−, z), and by Π′ the portfolio optimal for vβ(π′
−, z′) (they ex-

ist due to Theorem 4.2). The corresponding proportion processes πΠ,z
− (t), πΠ′,z′

− (t) will

be written as π−(t), π′
−(t) and the corresponding wealth processes XΠ,z

− (t), XΠ′,z′

− (t)

as X−(t), X ′
−(t). We have then

vβ(π−, z)− vβ(π′
−, z′) =

n−1∑

t=0

βt
E

zh
(
π−(t), z(t)

)
+

∞∑

k=1

E
z
{

1τk<nβτk ln e
(
π−(τk), πk

)}

−
n−1∑

t=0

βt
E

z′

h
(
π′
−(t), z′(t)

)

−
∞∑

k=1

E
z′

{

1τk<nβτk ln e
(
π′
−(τk), πk

)}

+ βn
(

E
zvβ

(
π−(n), z(n)

)
− E

z′

vβ

(
π′
−(n), z′(n)

))

.

There are at most n transactions between 0 and n − 1, since it is never optimal to

have more than one transaction at a moment (by subadditivity of the cost function).

Due to the fact that h is bounded and −∞ < ln e ≤ ln e(π−, π) ≤ 0 by Lemma 2.1,

we have

vβ(π−, z)− vβ(π′
−, z′)

≤ n‖h‖sp − n ln e + βn
(

E
zvβ

(
π−(n), z(n)

)
− E

z′

vβ

(
π′
−(n), z′(n)

))

,
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where ‖f‖sp = sup f − inf f is the span semi-norm. Choose arbitrary π∗ ∈ S and

observe that

E
zvβ

(
π−(n), z(n)

)
− E

z′

vβ

(
π′
−(n), z′(n)

)

= E
z
{
vβ

(
π−(n), z(n)

)
− vβ

(
π∗, z(n)

)}
+ E

z′{
vβ

(
π∗, z′(n)

)
− vβ

(
π′
−(n), z′(n)

)}

+ E
zvβ

(
π∗, z(n)

)
− E

z′

vβ

(
π∗, z′(n)

)
.

By Lemma 4.3 we have

E
z
{
vβ

(
π−(n), z(n)

)
− vβ

(
π∗, z(n)

)}
≤ − ln e,

E
z′{

vβ

(
π∗, z′(n)

)
− vβ

(
π′
−(n), z′(n)

)}
≤ − ln e.

Notice that

E
zvβ

(
π∗, z(n)

)
− E

z′

vβ

(
π∗, z′(n)

)

=

∫

E

vβ(π∗, y) dP n(z, dy) −

∫

E

vβ(π∗, y) dP n(z′, dy)

=

∫

E

vβ(π∗, y) q(dy),

with q = Pn(z, ·) − Pn(z′, ·). Let Γ ∈ E be the set coming from the Hahn-Jordan

decomposition of the signed measure q, i.e. q is non-negative on Γ and non-positive

on Γc. By (A3)

∫

E

vβ(π∗, y) q(dy) =

∫

E

(

vβ(π∗, y) − inf
y′∈E

vβ(π∗, y′)
)

q(dy)

≤

∫

Γ

(

vβ(π∗, y) − inf
y′∈E

vβ(π∗, y′)
)

q(dy)

+

∫

Γc

(

vβ(π∗, y) − inf
y′∈E

vβ(π∗, y′)
)

q(dy)

≤ ‖vβ(π∗, ·)‖sp q(Γ) ≤ κ ‖vβ(π∗, ·)‖sp.

Consequently,

vβ(π−, z)− vβ(π′
−, z′) ≤ n‖h‖sp − (n + 2) ln e + κ‖vβ(π∗, ·)‖sp.

Since π−, π′
− ∈ S and z, z′ ∈ E were arbitrary we obtain

‖vβ(π∗, ·)‖sp ≤ n‖h‖sp − (n + 2) ln e + κ‖vβ(π∗, ·)‖sp,

which yields the required result with

M =
n‖h‖sp − (n + 2) ln e

1 − κ
.
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4.2. Technical estimates. We shall derive the estimates on the diminution of

the portfolio wealth under transaction costs.

Lemma 4.5. For π−, π ∈ S, x− ∈ (0,∞)

i) e(π−, π) ≥ e(π−, π, x−) ≥ e(π−, π, x̃−), x− ≥ x̃− > 0.

ii) e(π−, π) − e(π−, π, x−) ≤
c

(x− ∨ x∗)
(
1 − maxi c1

i

) .

iii) ln
e(π−, π)

e(π−, π, x−)
≤

1

inf π̃−,π̃ e(π̃−, π̃, x∗)

c

(x− ∨ x∗)
(
1 − maxi c1

i

) .

Proof. Noticing a+ − b+ ≤ (a − b)+ and a− − b− ≤ (a − b)− we obtain for

δ1, δ2 ∈ [0, 1]

(20)

c(π−, δ2π) − c(π−, δ1π) =
d∑

i=1

(
c1
i

(
(π−)i − δ2πi

)+
− c1

i

(
(π−)i − δ1πi

)+

+ c2
i

(
(π−)i − δ2πi

)−
− c2

i

(
(π−)i − δ1πi

)−)

≤
d∑

i=1

(
c1
i (δ1 − δ2)

+πi + c2
i (δ1 − δ2)

−πi

)
.

Consequently,

(21) |c(π−, δ2π) − c(π−, δ1π)| ≤ |δ2 − δ1|max
i

(c1
i , c2

i ).

By definition we have

(22)
e(π−, π) = 1 − c

(
π−, e(π−, π)π

)
,

e(π−, π, x−) = 1 − c
(
π−, e(π−, π, x−)π

)
−

c

x− ∨ x∗
.

We shall prove (i) by contradiction. Assume that e(π−, π) < e(π−, π, x−). Easily,

0 ≤ e(π−, π, x−) − e(π−, π) ≤ c
(
π−, e(π−, π)π

)
− c

(
π−, e(π−, π, x−)π

)
−

c

x− ∨ x∗
.

By (21) we obtain

e(π−, π, x−) − e(π−, π) ≤
(
e(π−, π, x−) − e(π−, π)

)
max

i
(c1

i , c2
i ) −

c

x− ∨ x∗
.

It gives the estimate

1 +
c

x− ∨ x∗
(
e(π−, π, x−) − e(π−, π)

) ≤ max
i

(c1
i , c2

i ),

which contradicts the assumption that c1
i , c2

i ∈ [0, 1). The proof of e(π−, π, x−) ≤

e(π−, π, x̃−) follows a similar line of argument.

Notice that from (i), (22) and (20) we obtain

e(π−, π) − e(π−, π, x−) = c
(
π−, e(π−, π, x−)π

)
− c

(
π−, e(π−, π)π

)
+

c

x− ∨ x∗

≤
(
e(π−, π) − e(π−, π, x−)

)
max

i
c1
i +

c

x− ∨ x∗
,
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which immediately proves (ii). For (iii) we use the inequality ln(1 + x) ≤ x for x > 0.

Corollary 4.6. The value function vβ(π−, x−, z) is non-decreasing in x−.

Proof. Given π− ∈ S, z ∈ E and x̃− ≤ x−

vβ(π−, x̃−, z) − vβ(π−, x−, z) ≤ sup
Π∈Az

{
J

π,x̃−,z
β (Π) − J

π,x−,z
β (Π)

}
.

Fix π ∈ Az and observe that

J
π−,x̃−,z
β (Π) − J

π−,x−,z
β (Π)

=

∞∑

k=1

βτk

(

ln e
(
π−(τk), πk, X̃−(τk)

)
− ln e

(
π−(τk), πk, X−(τk)

))

,

where τ0 = 0, π−(0) = π−,

π−(t) = πk ⋄ ζ(τk + 1) ⋄ . . . ⋄ ζ(t), τk < t ≤ τk+1

and X−(t), X̃−(t) are given by (11). By Lemma 4.5 (i) we have X−(t) ≥ X̃−(t), t ≥ 0

and consequently J
π,x̃−,z
β (Π) − J

π,x−,z
β (Π) ≤ 0.

Lemma 4.7. Under (A4), there exists a constant D > 0 such that for π− ∈ S,

z ∈ E, x− > 0

0 ≤ vβ(π−, z) − vβ(π−, x−, z) ≤
D

x−

, β ∈ (0, 1).

Proof. It suffices to obtain an estimate for

J
π−,z
β (Π) − J

π−,x−,z
β (Π)

independent of z ∈ E, Π ∈ Az , π− ∈ S, and β ∈ (0, 1). Since

J
π−,z
β (Π) − J

π−,x−,z
β (Π) =

∞∑

k=1

E
z
{

βτk ln
e
(
π−(τk), πk

)

e
(
π−(τk), πk, X−(τk)

)

}

,

Lemma 4.5 (i) implies that J
π−,z
β (Π)−J

π−,x−,z
β (Π) ≥ 0. To obtain the second inequal-

ity notice that as in the proof of Theorem 4.2 we can restrict ourselves to portfolios

with at most one transaction at a moment. By Lemma 4.5

J
π−,z
β (Π) − J

π−,x−,z
β (Π) =

∞∑

k=1

E
z
{

βτk ln
e
(
π−(τk), πk

)

e
(
π−(τk), πk, X−(τk)

)

}

≤
∞∑

k=1

E
z d

x∗ ∨ X−(τk)
≤

∞∑

t=0

E
z d

X−(t)
,

where

d =
1

inf π̃−,π̃ e(π̃−, π̃, x∗)

c
(
1 − maxi c1

i

) .
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Let

∆ = sup
π−,π∈S

sup
z∈E

E
z 1

e(π−, π, x∗) π · ζ
(
z, ξ(1)

)

and notice that ∆ < 1 by (A4). Applying Jensen’s inequality and the following

estimate

X−(t) ≥ x−

t−1∏

s=0

e
(
π−(s), π(s), X−(s)

)
π(s) · ζ(s + 1)

we obtain

∞∑

t=0

E
z d

X−(t)
≤

d

(1 − ∆)x−

.

4.3. Bellman inequality. Denote by H = S × (0,∞) × E the state space of

our Markovian control model. It is locally compact, which will be needed in Lemma

4.9. Denote by q a controlled transition operator, i.e. a function q : H× S → P(H),

where P(H) is the space of Borel probability measures on H, given by the following

relation: for any bounded measurable function f : H → R

(23)

∫

H

f(π̃−, x̃−, z̃) q(π−, x−, z, π)(dπ̃−, dx̃−, dz̃) = E
zf

(
π⋄ζ

(
z, ξ(1)

)
, X−(1), z(1)

)
,

where

X−(1) =







x− e(π−, π, x−)
(
π · ζ

(
z, ξ(1)

))
, when π− 6= π,

x− π · ζ
(
z, ξ(1)

)
, when π− = π.

One can see that q is not continuous in any reasonable sense as long as the constant

term in transaction costs is non-null. Indeed, x− π · ζ
(
z, ξ(1)

)
− x− e(π−, π, x−)

(
π ·

ζ
(
z, ξ(1)

))
≥ c.

We cannot apply results known for the vanishing discount approach, since they

require continuity of the transition operator q and a uniform bound on the span semi-

norm of vβ (see [18], [9], [10]). Instead, we shall modify the approach of [18] making

use of the estimates derived in the previous sections.

To simplify the notation consider

η(π−, π, x−, z) =







h(π, z), π− = π,

h(π, z) + ln e(π−, π, x−), π− 6= π.

The Bellman equation (19) has an equivalent form

(24) vβ(π−, x−, z) = sup
π∈S

{

η(π−, π, x−, z) + β

∫

vβ dq(π−, x−, z, π)
}

.
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Let aβ : H → S be a measurable selector for Mvβ (see (18)) and Iβ be the impulse

region

Iβ = {(π−, x−, z) ∈ H : vβ(π−, x−, z) = Mvβ(π−, x−, z)}.

The optimal strategy in this formulation is given by a measurable function fβ : H → S

fβ(π−, x−, z) =







π−, (π−, x−, z) /∈ Iβ ,

aβ(π−, x−, z), (π−, x−, z) ∈ Iβ .

Since vβ is not uniformly bounded in β we introduce the relative discounted value

function

wβ(π−, x−, z) = mβ − vβ(π−, x−, z),

where

mβ = sup
π−∈S

sup
z∈E

vβ(π−, z).

We have

Lemma 4.8.

i) 0 ≤ wβ(π−, x−, z) ≤ M +
D

x−

with M , D > 0 independent of β, π−, x−, z.

ii) The set {(1 − β)mβ : β ∈ (0, 1)} is compact.

Proof. By Lemma 4.4 and 4.7

wβ(π−, x−, z) ≤ mβ − vβ(π−, z) + vβ(π−, z)− vβ(π−, x−, z) ≤ M +
D

x−

.

Part (ii) follows from boundedness of η.

Let λ = lim supβ↑1 mβ , which is finite by statement (ii) of Lemma 4.8. Denote by

βk the sequence of discount factors converging to 1 such that

λ = lim
k→∞

mβk
.

Write

w(k, ϑ) = wβk
(ϑ), w(ϑ) = lim inf

k→∞, ϑ′→ϑ
w(k, ϑ′), ϑ ∈ H.

Lemma 4.9. ([18] Lemma 3.4) Assume that H is locally compact. There exist

sequences of measurable mappings {kn}, kn : H → N and {θn}, θn : H → H such that

i) kn(ϑ) → ∞, θn(ϑ) → ϑ as n → ∞ for any ϑ ∈ H,

ii) w
(
kn(ϑ), θn(ϑ)

)
→ w(ϑ) as n → ∞.

In particular, w is measurable.
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In the sequel we shall need two transition operators related to q. Let q be given

by the formula (23) with

X−(1) = x− e(π−, π, x−)
(
π · ζ

(
z, ξ(1)

))
,

and q with

X−(1) = x−

(
π · ζ

(
z, ξ(1)

))
.

They are weakly continuous. Indeed, it is straightforward by (A1) and the continuity

of e(π−, π, x−) (see Lemma 2.1) that

(π−, x−, z) 7→
(
∫

H

f dq(π−, x−, z),
∫

H

f dq(π−, x−, z)
)

is continuous for any continuous bounded function f : H → R.

Lemma 4.10. ([16] Lemma 3.2) Let {µn} be a sequence of probability measures

on a separable metric space X converging weakly to µ and {gn} be a sequence of

measurable nonnegative functions on X . Then
∫

g dµ ≤ lim inf
n→∞

∫

gn dµn, where g(x) = lim inf
n→∞, y→x

gn(y), x ∈ X .

Now we are ready to derive a Bellman inequality which is the main constitute of

the proof of Theorem 3.1.

Theorem 4.11. Under assumptions (A1)-(A4) there exists a measurable function

f1 : H → S and a measurable function w : H → (−∞, 0] such that

(25) w(ϑ) + λ ≤ η
(
ϑ, f1(ϑ)

)
+

∫

w(ϑ′)q
(
ϑ, f1(ϑ)

)
(dϑ′), ϑ ∈ H.

Proof. From equation (24) we obtain

wβ(ϑ) + (β − 1)mβ = −η
(
ϑ, fβ(ϑ)

)
+ β

∫

wβ(ϑ′)q
(
ϑ, fβ(ϑ)

)
(dϑ′), ϑ ∈ H, β ∈ (0, 1),

where fβ is the optimal strategy for vβ . In the notation of Lemma 4.9

(26)

w
(
kn(ϑ), θn(ϑ)

)
+

(
β(n, ϑ) − 1

)
mβ(n,ϑ)

= −η
(
θn(ϑ), sn(ϑ)

)
+ β(n, ϑ)

∫

w
(
kn(ϑ), ϑ′

)
q
(
θn(ϑ), sn(ϑ)

)
(dϑ′),

where

β(n, ϑ) = βkn(ϑ), sn(ϑ) = fβ(n,ϑ)

(
θn(ϑ)

)
.

Since S is compact the set of accumulation points of {sn(ϑ)}n=1,2,... is non-empty.

Following [17] Lemma 4 we can find a measurable selector of accumulation points
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i.e. a measurable function f1 : H → S such that f1(ϑ) is an accumulation point of

{sn(ϑ)}n=1,2,.... Fix ϑ ∈ H. There exists a subsequence (nk) such that snk
(ϑ) → f1(ϑ)

and either (a) θnk
(ϑ) ∈ Iβ(nk ,ϑ) for every k, or (b) θnk

(ϑ) /∈ Iβ(nk ,ϑ) for every k.

Assume first that (a) holds. From

∫

w
(
kn(ϑ), ϑ′

)
q
(
θn(ϑ), sn(ϑ)

)
(dϑ′) =

∫

w
(
kn(ϑ), ϑ′

)
q
(
θn(ϑ), sn(ϑ)

)
(dϑ′)

and Lemma 4.10 we obtain

lim inf
n→∞

∫

w
(
kn(ϑ), ϑ′

)
q
(
θn(ϑ), sn(ϑ)

)
(dϑ′) ≥

∫

w(ϑ′)q
(
ϑ, f1(ϑ)

)
(dϑ′).

By Corollary 4.6 the functions vβ(π−, x−, z) are non-decreasing in x−. This im-

plies that w(π−, x−, z) is non-increasing in x−. Hence
∫

w(ϑ′)q
(
ϑ, f1(ϑ)

)
(dϑ′) ≥

∫
w(ϑ′)q

(
ϑ, f1(ϑ)

)
(dϑ′) and

(27) lim inf
n→∞

∫

w
(
kn(ϑ), ϑ′

)
q
(
θn(ϑ), sn(ϑ)

)
(dϑ′) ≥

∫

w(ϑ′)q
(
ϑ, f1(ϑ)

)
(dϑ′).

In case (b) we have snk
(ϑ) = πn

−, where θn(ϑ) = (πn
−, xn

−, zn). Since θn(ϑ) → ϑ

and snk
(ϑ) → f1(ϑ) we have f1(ϑ) = π−, where ϑ = (π−, x−, z). From equalities

q
(
θn(ϑ), sn(ϑ)

)
= q

(
θn(ϑ), sn(ϑ)

)
and q

(
ϑ, f1(ϑ)

)
= q

(
ϑ, f1(ϑ)

)
and Lemma 4.10 we

obtain (27). Since η is upper semicontinuous we conclude from (26) that

w(ϑ) − λ ≥ −η
(
ϑ, f1(ϑ)

)
+

∫

w(ϑ′)q
(
ϑ, f1(ϑ)

)
(dϑ′),

which yields (25) with w = −w.

Proof of Theorem 3.1. Fix (π−, x−, z) ∈ H and define a portfolio Π =
(
(π1, τ1), (π2,

τ2), . . .
)

by formulae given in Theorem 3.1 with I = {(π−, x−, z) ∈ H : f1(π−, x−, z) 6=

π−} and p = f1. Iterating (25) T times, dividing by T and passing with T to infinity

we obtain

λ ≤ Jπ−,x−,z(Π) + lim inf
T→∞

E
z w

(
πΠ
−(T ), XΠ

−(T ), Z(T )
)

T
≤ Jπ−,x−,z(Π),

since w is nonpositive. On the other hand, by a well-known Tauberian relation

Jπ−,x−,z(Π) ≤ lim inf
β→1

(1 − β)J
π−,x−,z
β (Π)

≤ lim inf
β→1

(1 − β)vβ(π−, x−, z) ≤ lim inf
β→1

(1 − β)vβ(π−, z) ≤ λ,

which proves the optimality of Π.

Corollary 4.12. The portfolio constructed above is optimal for the case with the

term c of the transaction cost function equal to 0. It yields the optimal average growth

rate equal to λ.
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Proof. First notice that λ is the optimal value for the problem with proportional

transaction costs. Indeed, consider the proof of Theorem 4.11 with wβ(π−, z) =

mβ − vβ(π−, z). We obtain an analog of (25) with function w depending on π−, z and

λ as above. Consequently λ is the optimal value for the problem with proportional

transaction costs.

Let Π be the optimal portfolio for the case with fixed and proportional transaction

costs (as defined in Theorem 3.1). Denote by X̄Π(t) the wealth of the portfolio

governed by Π when the fixed term of the transaction cost function is equal to 0.

Obviously X̄Π(t) ≥ XΠ(t) and

lim
T→∞

1

T
E

z ln X̄Π(t) ≥ λ.

Since λ is the optimal value for the problem with proportional transaction costs we

have the opposite inequality.

5. Incomplete observation. Usually investors do not have full information

about factors having impact on the economy. It is due to the time needed to collect and

process statistical data or simply due to inaccessibility of some information. Therefore,

it is natural to extend our model to cover the case where a number of economic factors

is either observable with delay and noise or not observable at all (see [22]). This

general setting is obtained by considering an observation process whose dynamics

depends on the factors. This is well-established in engineering applications, where

the observation process usually consists of noisy and possibly biased readings of the

variables. However, it was argued that in the financial context it is natural to assume

that we have complete observation of a group of factors and the rest is not observable.

It does not substantially change the reasoning but simplifies the notation.

Following the above remark assume that the space of economic factors E is a

direct sum of metric spaces E1, E2 with Borel σ-algebras E1, E2. Therefore, Z(t)

has a unique decomposition into
(
Z1(t), Z2(t)

)
. We shall treat E1 as the observable

part of the economic factor space and Z1(t) as the observable factor process. The

process Z2(t) is the unobservable part of the factor process. We denote by Mt,Z1
t ,Z2

t

filtrations generated, respectively, by ζ(t), Z1(t) and Z2(t). Filtration Yt represents

our observation and is generated by Mt and Z1
t . Although above filtrations depend

on the initial value (z1, z2) of the process Z(t), we will omit this dependence in the

notation. Due to restriction in the available information, we have to modify the set of

admissible portfolios Ã: it consists of all admissible portfolios from A that make use

of the information available in (Yt), i.e. that are Yt-adapted. The goal of this section

is to prove existence of an optimal strategy maximizing the functional

Jπ−,x−,z1,ρ(Π) = lim inf
T→∞

1

T
E

z1,ρ ln XΠ
−(T )
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over all strategies Π ∈ Ã. Here (z1, ρ) ∈ E1×P(Z2) denotes the initial distribution of
(
Z1(t), Z2(t)

)
and P(Z2) stands for the space of probability measures on (Z2, E2), the

a priori knowledge of the value Z2(0). The method of proof will be similar to that of

Section 4. The following assumptions on the transition probabilities are required:

(B1) There exists a measure ν on R
d and a positive continuous bounded function

q : E1 × E2 × R
d → [0,∞) such that for any A ∈ B(Rd)

P
(
ζ(t + 1) ∈ A | Mt ∨ Z1

t+1 ∨ Z2
t+1

)
=

∫

A

q
(
Z1(t + 1), Z2(t + 1), r̃)ν(dr̃).

(B2) There exist a measure p1 on E1 and a positive continuous bounded function

p̂1 : E1 ×E2 ×E1 → (0,∞) such that for any A ∈ E1 (recall that P is a transition

operator of Z(t))

P
(
(z1, z2), A × E2

)
= P

z1 ,z2

(Z1(1) ∈ A) =

∫

A

p̂1

(
z1, z2, z′)p1(dz′).

(B3) There exist a measure p2 on E2 and a positive continuous function p̂2 : E1 ×

E2 × E1 × E2 → (0,∞) such that for any A ∈ E2

P
{
Z2(t + 1) ∈ A | Mt ∨ Z1

t+1 ∨ Z2
t

}
=

∫

A

p̂2

(
Z1(t), Z2(t), Z1(t + 1), z′)p2(dz′).

Remarks.

(1) The above assumptions are standard in the case of stochastic control with incom-

plete information (see [15], [21], [23]).

(2) Assumption (B2) is satisfied if the transition probabilities of the economic factor

process Z(t) are equivalent and enjoy densities (with respect to some probability

measure) that depend continuously on all parameters.

(3) Let Eξ be a bounded open set in R
d and

ζ(z, ξ) =
(
ζ1(z, ξ), . . . , ζd(z, ξ)

)
, (z, ξ) ∈ (E, Eξ).

Assume that ξ has a continuous density k(y) with respect to Lebesgue measure on

Eξ. If ξ 7→ ζ(z, ξ) is a diffeomorphism for every z ∈ E then assumption (B1) holds

with ν being Lebesgue measure on Eξ and

q(z1, z2, r̃) = k
(
g(z, r̃)

)
det

(
Dr̃g(z, r̃)

)
,

where g(z, ·) is the inverse function for ζ(z, ·). If Eξ is an unbounded open set (e.g. the

whole space) we need to assume that k(·) and first derivatives of g(z, ·) with respect

to the second variable are uniformly bounded for every z ∈ E.

(4) Notice that in (B3) we do not assume boundedness of p̂2.

(5) Condition (B3) is slightly stronger than it is usually assumed. Instead we could

use
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(B3’) There exist a measure p2 on E2 and a positive continuous function p̂2 : E1 ×

E2 × R
d × E1 × E2 → (0,∞) such that for any A ∈ E2

P
{
Z2(t+1) ∈ A | Mt∨Z1

t+1∨Z2
t

}
=

∫

A

p̂2

(
Z1(t), Z2(t), ζ(t), Z1(t+1), z′)p2(dz′).

The only difference lies in p̂2 that in (B3’) incorporates additionally the knowledge

of the last price movement ζ(t). However, in our setting (B3) has a straightforward

interpretation. Recall that in Section 3 we require that the economic factor process

Z(t) be itself Markovian. Moreover, the restriction to (B3) simplifies the notation.

The results of this section can be easily generalized to cover (B3’).

With the help of the above assumptions we are able to provide a Markovian rep-

resentation of the filtering process

ρ(t)(A) = P
z
(
Z2(t) ∈ A

∣
∣Mt ∨ Z1

t

)
, A ∈ E2.

Observe that ρ(t) is a random variable with values in the space P(E2) of probability

measures on (E2, E2) equipped with the weak convergence topology.

Lemma 5.1. Under assumptions (B1)-(B3)

ρ(t + 1)(A) = M
(
Z1(t), Z1(t + 1), ζ(t + 1), ρ(t)

)
(A), A ∈ E2,

where

M(z1, z̃1, ς̃, ρ)(A) =

∫

E2

∫

A
q(z̃1, z̃2, ς̃) p̂2(z

1, z2, z̃1, z̃2) p2(dz̃2) p̂1(z
1, z2, z̃1) ρ(dz2)

∫

E2

∫

E2 q(z̃1, z̃2, ς̃) p̂2(z1, z2, z̃1, z̃2) p2(dz̃2) p̂1(z1, z2, z̃1) ρ(dz2)
.

Proof. The proof is rather standard and employs techniques from Lemma 1.1 in

[15] or Lemma 1 in [21].

Lemma 5.2. Under assumptions (B1)-(B3):

i) The process
(
Z1(t), ρ(t)

)
is Markovian with respect to the filtration Yt with

transition operator

Π̇F (z1, ρ)

=

∫

E2

∫

E

∫

Rd

F
(
z̃1, M(z1, z̃1, ς̃, ρ)

)
q(z̃1, z̃2, ς̃)ν(dς̃)P

(
(z1, z2), dz̃1 × dz̃2

)
ρ(dz2)

for a measurable bounded function F : E1 × P(E2) → R. Moreover, Π̇(z1, ρ) trans-

forms the space of continuous, bounded functions into itself.

ii) The process
(
π−(t), Z1(t), ρ(t)

)
is Markovian with respect to the filtration Yt

with transition operator

Π̈F (π−, z1, ρ) =

∫

E2

∫

E

∫

Rd

F
(
π− ⋄ ς̃, z̃1, M(z1, z̃1, ς̃, ρ)

)
q(z̃1, z̃2, ς̃)ν(dς̃)

P
(
(z1, z2), dz̃1 × dz̃2

)
ρ(dz2)
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for a measurable bounded function F : S × E1 × P(E2) → R. Here, π−(t) is the

proportion process given by π−(t) = π−(0) ⋄ ζ(1) ⋄ · · · ⋄ ζ(t). The transition operator

Π̈ transforms the space of continuous, bounded functions into itself.

Proof. First we prove that
(
Z1(t), ρ(t)

)
is a Markov process with the above transi-

tion operator. Let F be a measurable bounded function. For simplicity we shall skip

the subscript in the expected value operator. Appropriate conditioning leads to the

result:

E

(

F
(
Z1(t + 1), ρ(t + 1)

)
|Yt)

= E

(

E

(

F
(
Z1(t + 1), ρ(t + 1)

)∣
∣Yt ∨ ζ(t + 1) ∨ Z1(t + 1)

) ∣
∣Yt

)

= E

(

F
(
Z1(t + 1), M(Z1(t), Z1(t + 1), ζ(t + 1), ρ(t))

)∣
∣Yt

)

= E

( ∫

Rd

F
(
Z1(t + 1), M(Z1(t), Z1(t + 1), ς̃, ρ(t))

)

· q
(
Z1(t + 1), Z2(t + 1), ς̃

)
ν(dς̃)

∣
∣Yt

)

= . . .

=

∫

E2

∫

E

∫

Rd

F
(
z̃1, M(Z1(t), z̃1, ς̃, ρ(t))

)
q(z̃1, z̃2, ς̃)ν(dς̃)

· P
(
(Z1(t), z2), dz̃1 × dz̃2

)
ρ(t)(dz2).

To show that (z1, z̃1, ς̃, ρ) 7→ M(z1, z̃1, ς̃, ρ) is continuous, it suffices to prove that

for any A ∈ E2

(z1, z̃1, ς̃, ρ) 7→

∫

E2

∫

A

q(z̃1, z̃2, ς̃) p̂2(z
1, z2, z̃1, z̃2) p2(dz̃2) p̂1(z

1, z2, z̃1) ρ(dz2)

is continuous. By Scheffe’s theorem (see [19])

(z1, z2, z̃1, ς̃) 7→
∫

A

q(z̃1, z̃2, ς̃) p̂2(z
1, z2, z̃1, z̃2) p2(dz̃2) p̂1(z

1, z2, z̃1)

is continuous. Another application of Scheffe’s theorem completes the proof.

A similar argument yields continuity of the mapping

(z1, z̃1, z̃2, ρ) 7→

∫

Rd

F
(
z̃1, M(z1, z̃1, ς̃ , ρ)

)
q(z̃1, z̃2, ς̃)ν(dς̃).

By Feller property of
(
Z1(t), Z2(t)

)
we have continuity of

(z1, z2, ρ) 7→

∫

E

∫

Rd

F
(
z̃1, M(z1, z̃1, ς̃, ρ)

)
q(z̃1, z̃2, ς̃)ν(dς̃)P

(
(z1, z2), dz̃1 × dz̃2

)
.

Finally, application of Scheffe’s theorem completes the proof.

The other statement has an analogous proof.
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Lemma 5.1 can be generalized to obtain a formula for ρ(t) given ρ(0). First observe

that M(z1, z̃1, ς̃ , ρ)(A) = N(z1, z̃1, ς̃, ρ)(A)/N(z1, z̃1, ς̃ , ρ)(E2), where

N(z1, z̃1, ς̃, ρ)(A)

=

∫

E2

∫

A

q(z̃1, z̃2, ς̃) p̂2(z
1, z2, z̃1, z̃2) p2(dz̃2) p̂1(z

1, z2, z̃1) ρ(dz2), A ∈ E2.

Put

N1

(
Z1(0), Z1(1), ζ(1), ρ)(A) = N

(
Z1(0), Z1(1), ζ(1), ρ)(A),

and, for t ≥ 2,

Nt

(
Z1(0), . . . , Z1(t), ζ(1), . . . , ζ(t), ρ

)
(A)

= N
(

Z1(t − 1), Z1(t), ζ(t), Nt−1

(
Z1(0), . . . , Z1(t − 1), ζ(1), . . . , ζ(t − 1), ρ

))

(A).

For (z1, ρ) ∈ E1 × P(E2) we denote by P
(
(z1, ρ), ·

)
the operator

∫

E2

P
(
(z1, z2), ·

)
ρ(dz2).

Easy calculations lead to the following lemma.

Lemma 5.3. i) Nt(· · · )(E2) is a martingale with mean 1 with respect to the

measure P (z1 ,ρ) and filtration Yt.

ii) ρ(t) = Mt

(
Z1(0), . . . , Z1(t), ζ(1), . . . , ζ(t), ρ(0)

)
, where

Mt

(
Z1(0), . . . , Z1(t), ζ(1), . . . , ζ(t), ρ

)
(A) =

Nt

(
Z1(0), . . . , Z1(t), ζ(1), . . . , ζ(t), ρ

)
(A)

Nt

(
Z1(0), . . . , Z1(t), ζ(1), . . . , ζ(t), ρ

)
(E2)

.

Now we shall construct such a measure that processes Z1(t), Z2(t), ζ(t) become

independent and consist of i.i.d. random variables. For (z1, z2) ∈ E1 × E2 consider

L
(z1,z2)
t =

t∏

s=1

q
(
Z1(s), Z2(s), ζ(s)

)
p̂1

(
Z1(s − 1), Z2(s − 1), Z1(s))

p̂2

(
Z1(s − 1), Z2(s − 1), Z1(s), Z2(s)

)
.

By direct calculations Λ
(z1,z2)
t =

(
L

(z1,z2)
t )−1 is a positive martingale with mean 1 with

respect to measure P
(z1 ,z2) and filtration Ft. Let P0 be a probability measure whose

restrictions to Ft have density Λt with respect to P
(z1,z2). The measure P0 may not

be absolutely continuous with respect to P
(z1,z2), but its restrictions to Ft for finite

t are equivalent to P
(z1,z2). It can be easily calculated (see Lemma 1.8 in [15]) that

with respect to measure P0 for any t > 0 processes Z1(s), Z2(s), ζ(s), 1 ≤ s ≤ t,

are independent and consist of i.i.d. random variables with distributions p1, p2, ν,

respectively. The following lemma applies above results to the filtered process:
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Lemma 5.4. For a measurable bounded function f : E1 ×P(E2)× (E1 ×P(E2)×

R
d)t → R we have

E
(z1 ,ρ)f

(
Z1(0), ρ(0), Z1(1), ρ(1), ζ(1), . . . , Z1(t), ρ(t), ζ(t)

)

= E 0

{

Nt

(
z1, z̃1

1 , . . . , z̃1
t , ζ̃1, . . . , ζ̃t, ρ

)
(E2)

f
(
z1, ρ, z̃1

1, ρ̃1, ζ̃1, . . . , z̃1
t , ρ̃t, ζ̃t

)}

,

where E 0 is the expected value operator related to some measure P0 with respect to

which z̃1
s , ζ̃s, s = 0, . . . , t, are independent random variables with distributions p1, ν,

respectively and ρ̃s = Ms

(
z1, z̃1

1 , . . . , z̃1
s , ζ̃1, . . . , ζ̃s, ρ

)
, s = 1, . . . , t.

Proof. By easy calculation we have

E
(z1,ρ)f(· · · ) =

∫

E2

E
(z1,z2)f(· · · )ρ(dz2)

=

∫

E2

E 0L
(z1,z2)
t f(· · · )ρ(dz2)

=

∫

E2

E 0

{
Nt(· · · )(E

2) f(· · · )
}
ρ(dz2) = E 0

{
Nt(· · · )(E

2) f(· · · )
}

,

where E
(z1 ,z2)
0 represents the expected value operator for P0. In the last equality, we

can skip the integration with respect to z2 since the integrand does not depend on

z2.

To formulate an analog of Theorem 3.1 we need two more assumptions. We shall

use the notation from Lemma 5.4. For z1, ẑ1 ∈ E1, ρ, ρ̂ ∈ P(E2), ǫ ∈ (0, 1) and n ≥ 1

consider

Dǫ
n(z1, ρ, ẑ1, ρ̂)(28)

=
{
ω ∈ Ω : Nn(ẑ1, z̃1

1 , . . . , z̃1
n, ζ̃1, . . . , ζ̃n, ρ̂) ≥ ǫNn(z1, z̃1

1 , . . . , z̃1
n, ζ̃1, . . . , ζ̃n, ρ)

}
.

(B4) ∃n∃ǫ∈(0,1),δ>0 such that for z1, ẑ1 ∈ E1, ρ, ρ̂ ∈ P(E2)

E 0

{
1Dǫ

n(z1 ,ρ,ẑ1,ρ̂)Nn(z1, z̃1
1 , . . . , z̃1

n, ζ̃1, . . . , ζ̃n, ρ)
}
≥ δ.

(B5) E2 is compact.

Theorem 5.5. Under assumptions (A1)-(A2), (A4), (B1)-(B5) there exists a

measurable function p : S × (0,∞)×E1×P(E2) → S, a constant λ and a measurable

set I ⊆ S × (0,∞) × E1 × P(E2) such that

(29) λ = Jπ−,x−,z1,ρ(Π∗) = sup
Π∈Ã

Jπ−,x−,z1,ρ(Π),
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where the optimal portfolio Π∗ =
(
(π∗

1 , τ∗
1 ), (π∗

2 , τ∗
2 ), . . .

)
is given by the formulas

τ∗
1 = inf{t ≥ 0 :

(
π−(t), X−(t), Z1(t), ρ(t)

)
∈ I},

τ∗
k+1 = inf{t > τ∗

k :
(
π−(t), X−(t), Z1(t), ρ(t)

)
∈ I},

π∗
k = p

(
π−(τ∗

k ), X−(τ∗
k ), Z1(τ∗

k ), ρ(τ∗
k )

)
.

Proof. First observe that by appropriate conditioning we obtain

(30)

J
π−,x−,z1,ρ
β = lim inf

T→∞

1

T

{ T−1∑

t=0

E
z1 ,ρg

(
π(t), Z1(t), ρ(t)

)

+

∞∑

k=1

E
z1,ρ

{

1τk<T ln e
(
π−(τk), πk, X−(τk)

)}
}

,

where

g(π, z1, ρ) =

∫

E2

h(π, z1, z2)ρ(dz2).

Notice that g is continuous and bounded by boundedness and continuity of h. Now,

the proof follows by the same consideration as that in the proof of Theorem 3.1. Under

assumption (B5) the space P(E2) is compact. Therefore, S × (0,∞)×E1 ×P(E2) is

a locally compact separable metric space, which is needed for validity of Lemma 4.9

and Lemma 4.10. Since we do not have (A3), Lemma 4.4 requires a new proof, which

we shall present below. To clarify the notation let

J
π−,z1,ρ
β (Π) = E

(z1,ρ)

{ ∞∑

t=1

βtg
(
π(t), Z1(t), ρ(t)

)
+

∞∑

k=1

βτk ln e
(
π−(τk), πk

)
}

, β ∈ (0, 1).

for Π ∈ Ã. It is a discounted functional related to the problem with only proportional

transaction costs. Denote by vβ(π−, z1, ρ) the value function corresponding to this

functional. By Theorem 4.2 it is bounded and continuous. We shall, however, prove

that it is bounded uniformly in β with respect to the span seminorm.

For a bounded measurable function f : P(E2) → R, µ ∈ M+(E2) (the space of

non-negative non-null finite measures on E2), define an operator

Sf(µ) = µ(E2)f
( µ

µ(E2)

)

.

In order to simplify the notation whenever f depends on more than one variable the

operator Sf is meant to act only on the measure-valued variable. Notice that by

Lemma 5.4

E(z1,ρ)f
(
Z1(t), ρ(t)

)
= E 0Sf

(

Z1(t), Nt

(
z1, z̃1

1 , . . . , z̃1
t , ζ̃1, . . . , ζ̃t, ρ

))

.
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Lemma 5.6. i) The value function vβ(π−, z1, ρ) is concave with respect to the third

variable, i.e. for ρ, ρ̂ ∈ P(E2) and λ ∈ (0, 1)

vβ

(
π−, z1, λρ + (1 − λ)ρ̂

)
≥ λvβ(π−, z1, ρ) + (1 − λ)vβ(π−, z1, ρ̂).

ii) If f : P(E2) → R is a concave bounded measurable function, then Sf is concave.

Proof. We shall present only a sketch of (i) (a full proof can be found in [21]

Theorem 1). First we show that for a bounded measurable F : S × E1 ×P(E2) → R

concave with respect to the third argument,

ρ 7→ Π̈F (π−, z1, ρ)

is concave (the operator Π̈ is defined in Lemma 5.2). Then, using a notation of

Theorem 4.2, we show by induction on k that vk
β(π−, z1, ρ) is concave with respect to

the third argument.

The proof of (ii) is basic and can be found in [5] Lemma 2.

To show a counterpart of Lemma 4.4 we use an approach from Section 5 of [6].

Namely,

vβ(π−, z1, ρ) − vβ(π̂−, ẑ1, ρ̂)(31)

≤ n‖g‖sp − (n + 2) ln e

+
(
E

(z1,ρ)vβ(π∗, Z1(t), ρ(t)) − E
(ẑ1,ρ̂)vβ(π∗, Ẑ1(t), ρ̂(t))

)

for some π∗ ∈ S. Let hβ(π−, z1, ρ) = vβ(π−, z1, ρ)− inf vβ(π−, z1, ρ). Hence ‖vβ‖sp =

‖hβ‖, where ‖ · ‖ is the supremum norm. Using assumption (B4) and Lemma 5.4 we

obtain

E
(z1,ρ)vβ(π∗, Z1(t), ρ(t)) − E

(ẑ1,ρ̂)vβ(π∗, Ẑ1(t), ρ̂(t))

≤E 0

{

1Dǫ
n(z1,ρ,ẑ1,ρ̂)

(

Shβ

(
π∗, z̃1

t , Nn(z1, z̃1
1 , . . . , z̃1

n, ζ̃1, . . . , ζ̃n, ρ)
)

− Shβ

(
π∗, z̃1

t , Nn(ẑ1, z̃1
1 , . . . , z̃1

n, ζ̃1, . . . , ζ̃n, ρ̂)
))}

+ ‖hβ‖ E 0

{
(1 − 1Dǫ

n(z1 ,ρ,ẑ1,ρ̂))Nn(z1, z̃1
1 , . . . , z̃1

n, ζ̃1, . . . , ζ̃n, ρ)
}
.

On Dǫ
n(z1, ρ, ẑ1, ρ̂) we have

Nn(ẑ1, z̃1
1 , . . . , z̃1

n, ζ̃1, . . . , ζ̃n, ρ̂) = ǫNn(z1, z̃1
1 , . . . , z̃1

n, ζ̃1, . . . , ζ̃n, ρ) + (1 − ǫ)µ

for some µ ∈ M+(E2). By Lemma 5.3 µ is not null. Hence by Lemma 5.6 we have

Shβ

(
π∗, z̃1

t , Nn(ẑ1, z̃1
1 , . . . , z̃1

n, ζ̃1, . . . , ζ̃n, ρ̂)
)

≥ ǫShβ

(
π∗, z̃1

t , Nn(z1, z̃1
1 , . . . , z̃1

n, ζ̃1, . . . , ζ̃n, ρ)
)

+ (1 − ǫ)Shβ(π∗, z̃1
t , µ)

≥ ǫShβ

(
π∗, z̃1

t , Nn(z1, z̃1
1 , . . . , z̃1

n, ζ̃1, . . . , ζ̃n, ρ)
)
.
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Consequently, by Lemma 5.3 we have

E
(z1 ,ρ)vβ(π∗, Z1(t), ρ(t)) − E

(ẑ1,ρ̂)vβ(π∗, Ẑ1(t), ρ̂(t))

≤ (1 − ǫ)‖hβ‖δ + ‖hβ‖(1 − δ) = ‖hβ‖(1 − ǫδ).

We insert this estimate in (31) to obtain

‖vβ‖sp ≤ n‖g‖sp − (n + 2) ln e + ‖vβ‖sp(1 − ǫδ).

Hence, we have

‖vβ‖sp ≤
n‖g‖sp − (n + 2) ln e

ǫδ
,

which completes the proof of the counterpart of Lemma 4.4.

Remarks.

(1) If in place of (B4) we had

(32) sup
z1 ,ẑ1∈E1

sup
ρ,ρ̂∈P(E2)

sup
B∈E1⊗B(P(E2))

(
Πn(z1, ρ)1B − Πn(ẑ1, ρ̂)1B

)
= κ < 1

for some n ≥ 1, the proof of Theorem 5.5 would be significantly shorter. Condition

(32) reads exactly as (A3) for the reformulated optimization problem (30). Therefore,

Theorem 3.1 could be directly applied. We should stress, however, that (32) is very

restrictive and is not satisfied in most applications.

(2) Assumption (B5) guarantees that P(E2) is locally compact, which is needed for

existence of Borel measurable selectors used in the proof. Relaxation of this condition

requires use of universally measurable selectors and substantially enlarges the space

of admissible portfolios.

(3) Observe that if P0

(
Dǫ

n(z1, ρ, ẑ1, ρ̂)
)

= 1, assumption (B4) is satisfied with δ = 1.

This covers the case studied in [5] Section 3, where

inf
z1,z̃1,ẑ1∈E1

inf
z2 ,z̃2,ẑ2∈E2

p̂2(z
1, z2, z̃1, z̃2)

p̂2(ẑ1, ẑ2, z̃1, z̃2)
= λ2 > 0,

inf
z1 ,z̃1,ẑ1∈E1

inf
z2,ẑ2∈E2

p̂1(z
1, z2, z̃1)

p̂1(ẑ1, ẑ2, z̃1)
= λ1 > 0.

Then given z1, ẑ1, ρ, ρ̂

N1(ẑ
1, z̃1

1 , ζ̃1, ρ̂) ≥ λ1λ2N1(z
1, z̃1

1 , ζ̃1, ρ) for all z̃1
1 ∈ E2, ζ̃1 ∈ R

d.
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