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REGULARITY OF RENORMALIZED SELF-INTERSECTION LOCAL

TIME FOR FRACTIONAL BROWNIAN MOTION∗

YAOZHONG HU† AND DAVID NUALART†

Abstract. Let BH
t

be a d-dimensional fractional Brownian motion with Hurst parameter H ∈

(0, 1). We study the regularity, in the sense of the Malliavin calculus, of the renormalized self-

intersection local time

ℓ =

Z
T

0

Z
t

0

δ0(BH

t − BH

s )dsdt − E

�Z
T

0

Z
t

0

δ0(BH

t − BH

s )dsdt

�
,

where δ0 is the Dirac delta function.

1. Introduction. The fractional Brownian motion on R
d with Hurst parameter

H ∈ (0, 1) is a d-dimensional Gaussian process BH = {BH
t , t ≥ 0} with mean zero

and covariance function given by

E(BH,i
t BH,j

s ) =
δij

2
(t2H + s2H − |t − s|2H),

where i, j = 1, . . . , d, and s, t ≥ 0. We will assume that d ≥ 2. The self-intersection

local time of BH is formally defined by

(1) I =

∫ T

0

∫ t

0

δ0(B
H
t − BH

s )dsdt,

where δ0(x) is the Dirac delta function. Using the heat kernel

pε(x) = (2πε)−d/2e−
|x|2

2ε ,

we approximate the self-intersection local time of BH by

(2) Iε =

∫ T

0

∫ t

0

pε(B
H
t − BH

s )dsdt.

The asymptotic behavior of Iε as ε tends to zero is studied in [5], and the following

results are proved.

i) If H < 1
d , then Iε converges in L2 as ε tends to zero.

ii) If 1
d < H < 3

2d , then

Iε − TCH,dε
− d

2
+ 1

2H ,

converges in L2 as ε tends to zero to a limit ℓ, where

CH,d =
1

(2π)
d

2

∫ ∞

0

(

z
1

2H + 1
)− d

2

dz.
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iii) If 1
d = H < 3

2d , then

Iε −
T

2H(2π)
d

2

log
1

ε
,

converges in L2 as ε tends to zero.

iv) If 3
2d ≤ H < 3

4 , then the random variables







1

(log 1
ε )

1
2

(Iε − E(Iε)) if H = 3
2d

ε
d

2
− 3

4H (Iε − E(Iε)) if H > 3
2d

converge as ε tends to zero in distribution to a normal law N(0, T σ2), where

σ2 is a constant depending on d and H .

We denote by ℓ the limit introduced in ii) and iii). It turns out that ℓ is also

equal to the limit in L2 of Iε − E (Iε) as ε tends to zero. If H < 1
d , then ℓ will be

defined as the limit in L2 of Iε − E (Iε) as ε tends to zero. The random variable

ℓ is called the renormalized self-intersection local time of the fractional Brownian

motion.

In this paper we shall study the regularity, in the sense of Malliavin calculus, of

the renormalized self-intersection local time ℓ, assuming H < 3
2d . We prove that, for

any real α > 0, ℓ belongs to the Sobolev space D
α,2, provided H < min( 3

2d , 2(α∧1)
d+2α ).

This result generalizes that obtained by Hu in [4] in the case α = 1. The proof of

this result is established via chaos expansions.

In Section 2, we recall the chaos expansion of self-intersection local time obtained

in [5]. In Section 3, we state and prove the main result of the paper.

2. Wiener chaos expansion of the self-intersection local time. In this

section we recall the Wiener chaos expansion of the renormalized self-intersection local

time ℓ obtained in [5].

Let H be the Hilbert space defined as the closure of set E of step functions from

R+ to R
d with respect to the scalar product

〈(
1[0,t1], . . . ,1[0,td]

)
,
(
1[0,s1], . . . ,1[0,sd]

)〉

H
=

1

2d

d∏

i=1

(
t2H
i + s2H

i − |ti − si|
2H

)
.

Then, the mapping 1[0,t] → BH
t is a linear isometry between H and the Gaussian

space spanned by BH . For any n ≥ 1 we denote by In the multiple stochastic integral

which provides an isometry between the symmetric tensor product (H)
⊗n

equipped

with the norm
√

n! ‖·‖H⊗n and the nth Wiener chaos of BH .

Given a multi-index in = (i1, . . . , in), 1 ≤ ij ≤ d, we set

α(in) = E [Xi1 · · ·Xin
] ,
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where the Xi are independent N(0, 1) random variables. Notice that

α(i2m) =
(2m1)! · · · (2md)!

(m1)! · · · (md)!2m
,

if n = 2m is even and for each k = 1, . . . , d, the number of components of i2m equal

to k, denoted by 2mk, is also even, and α(in) = 0, otherwise.

Proposition 1. Assume Hd < 3
2 . Then, we have

ℓ =
∞∑

m=1

I2m(f2m),

where f2m is the element of (H)⊗2m given by

f2m(i2m, r1, . . . , r2m) =
(2π)−

d

2 α(i2m)

(2m)!

×

∫ T

0

∫ t

0

dsdt|t − s|−Hd−2Hm
2m∏

j=1

1[s,t](rj).(3)

Let us introduce the following notation.

(4) λ = |t − s|2H , ρ = |t′ − s′|2H ,

and

(5) µ =
1

2

[
|s − t′|2H + |s′ − t|2H − |t − t′|2H − |s − s′|2H

]
.

Notice that λ is the variance of BH,1
t − BH,1

s , ρ is the variance of BH,1
t′ − BH,1

s′ , and

µ is the covariance between BH,1
t − BH,1

s and BH,1
t′ − BH,1

s′ , where BH,1 denotes a

one-dimensional fractional Brownian motion with Hurst parameter H .

The L2-norm of the 2mth Wiener chaos of ℓ can be computed as follows.

E

[

(I2m(f2m))2
]

= (2m)! ‖f2m‖2
H⊗(2m)

= (2m)!
∑

m1+···+md=m

(2m)!

(2m1)! · · · (2md)!

(2π)
−d

((2m)!)
2 α(i2m)2

×

∫

T

λ− d

2
−mρ−

d

2
−mµ2m dsdtds′dt′

=
αm

(2π)d22m

∫

T

(λρ)−
d

2
−m µ2mdsdtds′dt′,(6)

where

αm =
∑

m1+···+md=m

(2m1)! · · · (2md)!

(m1!)
2 · · · (md!)

2 ,
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and

T = {(s, t, s′, t′) : 0 < s < t < T, 0 < s′ < t′ < T }.

The following lemma will be useful later.

Lemma 2. For any z ∈ [0, 1) we have

∞∑

m=0

(2m)!

(m!)222m
zm =

1
√

1 − z
.

Proof. This is a well-known result that can be checked, for instance, by noticing

that

∞∑

m=0

(2m)!

(m!)222m
zm =

√
2πE

(

ez(Y/2)2
)

,

where Y is a standard normal random variable.

3. Regularity of the renormalized self-intersection local time. For any

α > 0, we denote by D
α,2 the class of “smooth” functionals of the fractional Brownian

motion, in the sense of Meyer-Watanabe. That is,

D
α,2 = {F ∈ L2 :

∞∑

n=0

(n + 1)α
E((Jn (F ))

2
) < ∞} ,

where Jn(F ) is the n-th chaos of F , namely, F =
∑∞

n=0 Jn(F ).

The following theorem is the main result of this paper.

Theorem 3. Fix α > 0. Assume that H < min( 3
2d , 2(α∧1)

d+2α ). Then the renormal-

ized self-intersection local time ℓ belongs to D
α,2.

Remark 4. If α = 1, we recover the result by Hu [4].

The theorem is the direct consequence of the following two lemmas which are

themselves interesting.

Lemma 5. a) The renormalized self-intersection local time ℓ belongs to D
N,2,

where N ≥ 1, is an integer, if and only if
∫

T

µ2Nδ−
d

2
−Ndsdtds′dt′ < ∞.

b) The renormalized self-intersection local time ℓ belongs to D
N+β,2, where N ≥ 0, is

an integer, and 0 < β < 1, if for some 1 > β′ > β

(7)

∫

T

µ2(N+β′)δ−
d

2
−N−β′

dsdtds′dt′ < ∞.

Proof. From (6) we obtain that, for all α > 0, a necessary and sufficient condition

for ℓ to be in D
α,2 is

(8) B :=

∞∑

m=1

mααm

22m

∫

T

γm

(λρ)
d

2

dsdtds′dt′ < ∞,
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where

γ =
µ2

λρ
.

Using Lemma 2 we deduce the following formula for all z ∈ [0, 1)

(9)
∞∑

m=0

αm

22m
zm = (1 − z)−

d

2 .

Suppose first that α = N is an integer. In this case, differentiating both sides of

(9) N times with respect to z yields

∞∑

m=N

αm

22m
m(m − 1) · · · (m − N + 1)zm−N = C(1 − z)−

d

2
−N ,

where C = d
2

(
d
2 + 1

)
· · ·

(
d
2 + N − 1

)
. Hence,

∞∑

m=N

αm

22m
m(m − 1) · · · (m − N + 1)zm = CzN(1 − z)−

d

2
−N ,

and we get that (8) is equivalent to

∫

T

γN (1 − γ)−
d

2
−N

(λρ)
d

2

dsdtds′dt′ =

∫

T

µ2Nδ−
d

2
−Ndsdtds′dt′ < ∞,

where

δ = λρ − µ2.

This proves part a) of the lemma.

Suppose now that k = N + β, with 0 < β < 1, and N ≥ 0. Multiplying both

members of Equation (9) by (y − z)−β and integrating in the variable z from 0 to y,

we obtain

∞∑

m=0

αm

22m

Γ(1 − β)Γ(m)

Γ(1 − β + m)
ym−β+1 =

∫ y

0

(1 − z)−
d

2 (y − z)−βdz.

Hence,

∞∑

m=0

αm

22m

Γ(1 − β)Γ(m)

Γ(1 − β + m)
ym =

∫ 1

0

(1 − yt)−
d

2 (1 − t)−βdt.

Differentiating this identity N + 1 times with respect to z yields

∞∑

m=N+1

αm

22m
m(m − 1) · · · (m − N − 2)

Γ(1 − β)Γ(m)

Γ(1 − β + m)
zm−N−1

= C

∫ 1

0

(1 − zt)−
d

2
−N−1tN+1(1 − t)−βdt,
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where C = d
2

(
d
2 + 1

)
· · ·

(
d
2 + N

)
. Hence, (8) is equivalent to

(10)

∫

T

(λρ)−
d

2 γN+1

(∫ 1

0

(1 − γy)−
d

2
−N−1yN+1(1 − y)−βdy

)

dsdtds′dt′ < ∞.

We claim that for all β′ > β,

∫ 1

0

(1 − y)−β(1 − γy)−
d

2
−N−1dy ≤ k(1 − γ)−

d

2
−N−β′

.

In fact, (1 − γy)−
d

2
−N−1 ≤ (1 − y)β′−1(1 − γ)−

d

2
−N−β′

. Thus,

∫ 1

0

(1 − y)−β(1 − γy)−
d

2
−N−1dy ≤ (1 − γ)−

d

2
−N−β′

∫ 1

0

(1 − y)−β+β′−1dy

≤
1

β′ − β
(1 − γ)−

d

2
−N−β′

.

Hence, (10) holds if

∫

T

(λρ)−
d

2 γN+1(1 − γ)−
d

2
−N−β′

dsdtds′dt′

=

∫

T

(λρ)β′−1µ2(N+1)δ−
d

2
−N−β′

dsdtds′dt′ < ∞,

and (7) holds because µ2 ≤ λρ.

Lemma 6. Fix a positive real number α > 0. Suppose that H < min
(

3
2d , 2(α∧1)

d+2α

)

.

Then
∫

T

µ2αδ−
d

2
−αdsdtds′dt′ < ∞.

Proof. Denote

(11) T ∩ {s < s′} = T1 ∪ T2∪T 3,

where

T1 = {(t, s, t′, s′) : 0 < s < s′ < t < t′ < T },

T2 = {(t, s, t′, s′) : 0 < s < s′ < t′ < t < T },

T3 = {(t, s, t′, s′) : 0 < s < t < s′ < t′ < T }.

We will make use of the notation:

i) If (t, s, t′, s′) ∈ T1, we put a = s′ − s, b = t − s′ and c = t′ − t. On this region, the

functions λ, ρ and µ defined in (4) and (5) take the following values

λ = λ1 := λ1(a, b, c) := (a + b)2H , ρ = ρ1 := (b + c)2H ,(12)

µ = µ1 := µ1(a, b, c) :=
1

2

[
(a + b + c)2H + b2H − c2H − a2H

]
.(13)
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ii) If (t, s, t′, s′) ∈ T2, we put a = s′ − s, b = t′ − s′ and c = t − t′. On this region we

will have

λ = λ2 := b2H , ρ = ρ2 := (a + b + c)2H ,(14)

µ = µ2 :=
1

2

[
(b + c)2H + (a + b)2H − c2H − a2H

]
.(15)

iii) If (t, s, t′, s′) ∈ T3, we put a = t − s, b = s′ − t and c = t′ − s′. On this region we

will have

λ = λ3 := a2H , ρ = ρ3 := c2H ,(16)

µ = µ3 :=
1

2

[
(a + b + c)2H + b2H − (b + c)2H − (a + b)2H

]
.(17)

For i = 1, 2, 3 we set

δi = λiρi − µ2
i .

Note that λi, ρi, µi and so on, i = 1, 2, 3, are functions of a, b, and c.

In the sequel we will denote by k a generic constant that may depend on H and

d.

The following lower bounds were obtained by Hu in [4] using the local nondeter-

minism property of the fractional Brownian motion (see Berman [2]).

δ1 ≥ k
[
(a + b)2Hc2H + (b + c)2Ha2H

]
,(18)

δi ≥ kλiρi, i = 2, 3.(19)

Using the above decomposition of the region T , it suffices to show that Ai < ∞,

for i = 1, 2, 3, where

Ai :=

∫

[0,T ]3
µ2N

i δ
− d

2
−N

i dadbdc.

Then the proof of the lemma will de done in three steps:

Step 1. We claim that

A1 < ∞.

We have

µ1 =
1

2

(
(a + b + c)2H + b2H − a2H − c2H

)

=
1

2

(
(a2 + b2 + c2 + 2ab + 2ac + 2bc)H + b2H − a2H − c2H

)

≤ b2H + 2H−1aHbH + 2H−1aHcH + 2H−1bHcH .
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The, using (18) yields

µ2α
1 ≤ k

(
b4αH +

(
a2αHb2αH + a2αHc2αH + b2αHc2αH

))

≤ 3k
(
b2αH + δα

)
.

As a consequence,

(20) µ2α
1 δ

− d

2
−α

1 ≤ k
(

δ
− d

2

1 + b4αHδ
− d

2
−α

1

)

.

Using again (18) we obtain

δ
− d

2

1 ≤ k
[
(a + b)H(b + c)HaHcH

]− d

2

≤ k (abc)
− 2

3
Hd

,

where − 2
3Hd > −1.

In order to treat the second term of (20) we consider two different cases. Assume

first that d ≤ 6α .Then

b2αHδ
− d

2
−α

1 ≤ k
[
(a + b)2Hc2H + (b + c)2Ha2H

]− d

2
−α

b4αH

≤ k
[
(bc)2H + (ba)2H

]−d

2
−α

b4αH

≤ k (ac)
−H( d

2
+α) bH(2α−d),

and both exponents are larger than −1, because H < 2
d+2α ≤ 1

d−2α .

For d > 6α, we make use of the estimate

b2αHδ
− d

2
−α

1 ≤ k
[
(a + b)HcH(b + c)HaH

]− d

2
−α

b4αH

≤ k (ac)
−(β1+1)( d

2
+α)H

b4αH−β2(d+2α)H ,

where β1, β2 ≥ 0, and β1 + β2 = 1. Taking

β1 =
d − 6α

3(d + 2α)
, β2 =

2d + 12α

3(d + 2α)

we obtain

b2αHδ
− d

2
−α

2 ≤ k (abc)
− 2dH

3 .

Step 2. We claim that

A2 < ∞.

If H ≥ 1
2 we have

µ2 =
1

2

(
(b + c)2H + (a + b)2H − a2H − c2H

)

= Hb

∫ 1

0

[
(a + bu)2H−1 + (c + bu)2H−1

]
du

≤ kb(a + b + c)2H−1.
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Therefore, using (19)

µ2α
2 δ

− d

2
−α

2 ≤ b−H(d+2α)+2α(a + b + c)H(2α−d)−2α.

Using the inequality a + b + c ≥ Caβcβb1−2β , with β = 2Hd
3Hd+6α−6αH , we obtain

µ2α
2 δ

− d

2
−α

2 ≤ k (abc)
− 2dH

3 .

Notice that β ∈ (0, 1
2 ], because H < 2α

d+2α .

Suppose now that H < 1
2 . In this case we have

µ2 ≤ kb
(

aβ(2H−1)b(1−β)(2H−1) + cβ(2H−1)b(1−β)(2H−1)
)

,

for all β ∈ [0, 1]. Hence,

µ2α
2 δ

− d

2
−α

2 ≤ kaβ(2H−1)2αb(1−β)(2H−1)2α+2αδ
− d

2
−α

2

+kcβ(2H−1)2αb(1−β)(2H−1)2α+2αδ
− d

2
−α

2

=: I1 + I2.

By symmetry it suffices to treat the term I1. We have

I1 ≤ kaβ(2H−1)2αb2(1−2β)αH+2αβ−dH(a + b + c)−dH−2αH .

Now we make use of the lower bound

(a + b + c)−1 ≥ kaγ1bγ2cγ3 ,

where γ1 + γ2 + γ3 = 1, and γ1, γ2, γ3 ≥ 0. In this way we obtain

I1 ≤ kaβ1bβ2cβ3 ,

where

β1 = β(2H − 1)2α − γ1H(d + 2α)

β2 = 2(1 − 2β)αH + 2αβ − dH − γ2H(d + 2α)

β3 = −γ3H(d + 2α).

If d ≤ 6α, we choose β = 0, γ1 = γ3 = 1
2 , and γ2 = 0, and we obtain the exponents

β1 = β3 = −
H(d + 2α)

2
> −1

β2 = H(2α − d) > −1.

If d > 6α, we choose

β =
H(d − 6α)

6(1 − 2H)α
, γ1 =

d + 6α

3(d + 2α)
, γ2 = 0, γ3 =

2d

3(d + 2α)
,
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and we obtain the exponents

β1 = β2 = β3 = −
2dH

3
> −1.

Step 3.- We claim that

A3 < ∞.

In this case, (17) and the inequality

b + vc + ua ≥ k(vcua)βb1−2β,

with β ∈ [0, 1], yield

µ3 ≤ k (ac)
1+β(2H−2)

b(1−2β)(2H−2),

provided β < 1
2(1−H) . As a consequence,

µ2α
3 δ

− d

2
−α

3 ≤ k (ac)[1+β(2H−2)]2α−dH−2Hα b(1−2β)(2H−2)2α.

Choosing β = 6α−6Hα−Hd
12α(1−H) , we obtain

µ2α
3 δ

− d

2
−α

3 ≤ k (ac)
− 2dH

3 .

Notice that β > 0 because H < 2α
2α+d < 6α

6α+d , and also β < 1
2(1−H) .
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