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ADAPTIVE CONTROL OF LINEAR TIME INVARIANT SYSTEMS:

THE “BET ON THE BEST” PRINCIPLE∗

S. BITTANTI† AND M. C. CAMPI‡

Abstract. Over the last three decades, the certainty equivalence principle has been the funda-

mental paradigm in the design of adaptive control laws. It is well known, however, that for general

control criterions the performance achieved through its use is strictly suboptimal. In order to over-

come this difficulty, two different approaches have been proposed: i) the use of cost-biased parameter

estimators; and ii) the injection of probing signals into the system so as to enforce consistency in the

parameter estimate.

This paper presents an overview of the cost-biased approach. New insight is achieved in this

paper by the formalization of a general cost-biased principle named “Bet On the Best”-BOB. BOB

may work in situations in which more standard implementations of the cost-biasing idea may fail to

achieve optimality.

Key words: adaptive control; stochastic systems; certainty equivalence principle; long-term

average cost; optimality.

1. Introduction: an overview of adaptation as a means to achieve an

“ideal” control objective. An adaptive control problem is a control problem in

which some parameter describing the system is known with uncertainty. During the

operation of the control system, the controller collects information on the system be-

havior, thereby reducing the level of uncertainty regarding the value of the parameter.

In turn, as the level of uncertainty is reduced, the controller is tuned more accurately

on the system parameter so as to obtain a better control result. In this procedure it

is essential that the controller chooses the control actions so as to minimize the per-

formance index, as well as probe the system so that uncertainty is reduced to better

select future control actions.

In this paper we consider adaptive long-term average optimal control problems.

In adaptive control, due to the uncertainty affecting the true value of the system

parameter, the control law cannot be expected to be optimal in finite time. When

the cost criterion is of the long-term average type, however, the control performance

in finite time does not affect the asymptotic value of the control cost. Hence, even in

an adaptive context there is a hope to achieve optimality, i.e. to drive the long-term
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average cost to the value which would have been obtained under complete knowledge

of the system. When this happens, we say that the adaptive control law meets the

ideal objective.

A control problem with an unknown system parameter is equivalent to a control

problem with complete system knowledge in which the state comprises the set of all

probability distributions on the unknown parameter, Striebel (1965). This theoretical

result, however, does not translate into practical solution methods due to the com-

plexity involved in handling the corresponding infinite dimensional problem. To make

the problem tractable, it is common practice to resort to special solution methods able

to abate the computational complexity.

The most common special solution methods rely on the so-called certainty equiv-

alence principle, Bar-Shalom and Tse (1974), Bar-Shalom and Wall (1974). The un-

known parameter is estimated via some estimation method and the estimate is used as

if it were the true value of the unknown parameter. In this approach, the distribution

of the unknown parameter is simply substituted by a single estimate representing, in

some sense, the most probable value of it.

Certainty equivalent adaptive control schemes have been studied by many au-

thors. Goodwin et al. (1981) prove that a certainty equivalent controller based on

the stochastic approximation algorithm achieves the ideal objective for minimum out-

put variance costs. This result has been extended to least squares minimum output

variance adaptive control in Sin and Goodwin (1982), Bittanti et al. (1990), Campi

(1991), and Bittanti and Campi (1996). A complete analysis of a minimum output

variance self-tuning regulator equipped with the extended least squares algorithm can

be found in Guo and Chen (1991). Again, the main result is that this adaptive scheme

achieves the ideal objective.

The fact that the ideal objective is met in the situations described in the above

mentioned papers is due to the special properties of the minimum output variance

cost criterion. On the other hand, it is well known that the certainty equivalence

principle suffers from a general identifiability problem, namely the parameter estimate

can converge with positive probability to a false value, e.g. Aström and Wittenmark

(1973), Becker et al. (1985), Campi (1996), Campi and Kumar (1998). When a cost

criterion other than the output variance is considered, this identifiability problem

leads to a strictly suboptimal performance. See e.g. Lin et al. (1985), Polderman

(1986a,b), and van Schuppen (1994) for a discussion on this problem in different

contexts.

In order to overcome this problem, two approaches have been proposed in the

literature. The first one consists in adding a dither noise to the control input so as to

improve the excitation characteristics of the signals, Caines and Lafortune (1984). As
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a consequence, standard parameter estimators are then able to provide consistent esti-

mates and the mentioned identifiability problem automatically disappears. However,

as noted by Chen and Guo (1987a), this may result in a degradation of the control

system performance. Asymptotic optimality is recovered by letting the additive noise

vanish in the long run (attenuating excitation). Many optimality results have been

established along this line, Chen and Guo (1986, 1987a,b, 1988, 1991), Guo and Chen

(1991), Guo (1996), Duncan et al. (1999), while persistence of excitation conditions

of different types have been used in Duncan and Pasik-Duncan (1986,1991), Caines

(1992).

The second approach has its origins in the work by Kumar and Becker (1982). It

consists in the employment of a cost-biased parameter estimator, and does not require

the use of any extra probing signal. The basic idea is as follows. Consider a standard

(i.e. without biasing) estimator operating in a closed-loop adaptive control system.

It is natural to expect that this estimator is able to correctly describe the closed-loop

behavior of the system. Thus, one expects that the asymptotic behavior of the true

system with the loop closed by the adaptively chosen controller will be the same as the

behavior of the estimated system with the loop closed by the same controller. This

implies that the long-term average cost associated with these two control systems will

be the same. Since the adaptive controller is selected to be optimal for the estimated

system, this also means that the adaptively controlled true system attains the optimal

performance for the estimated system. On the other hand, the fact that the estimator

is able to describe the closed-loop behavior of the true system by no means implies

that the true system has been correctly estimated. As a matter of fact, it is possible

that the estimated system and the true system share the same behavior in the actual

closed-loop conditions, while they would behave differently in other situations. Even

more so, it can be the case that if one knew the true system at the start, an optimal

controller for it could be designed that outdoes the performance obtained by the

adaptively chosen controller. These observations carry two consequences. First, the

adaptive controller can be strictly suboptimal. Second, if this is the case, then the

asymptotically estimated system has associated an optimal cost which is strictly larger

than the optimal cost for the true system. In this way, we come to the conclusion that

the standard parameter estimator has a natural tendency to return estimates with an

optimal cost larger than or equal to that of the true system and, if it is strictly larger,

this leads to a strictly suboptimal performance.

Motivated by this observation, Kumar and Becker (1982) conceived of introducing

a cost-biasing term in the parameter estimator that favors those parameter estimates

corresponding to a smaller optimal cost. The cost-bias must be strong enough such

that the estimator can never stick at a parameter estimate with an optimal cost larger
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than the true one. At the same time, however, it must be delicate so that the ability of

identifying the closed-loop dynamics is not destroyed. If these two objectives are met

simultaneously, then the performance of the true closed-loop system will be the same

as the one of the estimated closed-loop system. Moreover, the latter is no worse than

the optimal performance for the true system due to the cost-biasing and, therefore,

optimality is achieved. This approach has been investigated in different contexts in

the following papers, Kumar and Becker (1982), Kumar (1983a,b), Milito and Cruz

(1987), Borkar (1993), Campi and Kumar (1998), Prandini and Campi (2001).

Objective of this paper

This paper is primarily an overview of cost-biased adaptation as a means to achieve

optimality. Additionally, the cost-biased idea is here cast into a novel and fruitful

viewpoint via the introduction of a new principle named “Bet On the Best” - BOB.

BOB bears a promise of more general applicability than standard implementations of

the cost-biasing idea.

Structure of the paper

The structure of the paper is as follows. The BOB principle is presented in Sections 2

and 3. As an example, in Section 4 the BOB principle is applied to a scalar adaptive

linear quadratic Gaussian (LQG) control problem.

2. The adaptive control setting. This section serves the purpose of intro-

ducing the general control set-up and that of fixing notations. Explicit assumptions

on the stochastic nature of signals are delayed to subsequent sections. Measurability

conditions are assumed for granted throughout.

Consider a linear time invariant system described as

(1) xt+1 = A(θ◦)xt + B(θ◦)ut + w
(1)
t+1,

(2) yt = C(θ◦)xt + w
(2)
t+1,

where xt ∈ Rn is the state, ut ∈ R1 is the control variable, yt ∈ R1 is the system

output, w
(1)
t+1 and w

(2)
t+1 are noise processes. θ◦ is an unknown true parameter belonging

to a given parameter set Θ.

The adaptive control process takes place as follows. At time t the adaptive con-

troller has access to the observations ot = {u1, u2, . . . , ut−1, y1, y2, . . . , yt}. Based

on this, it selects the control input ut. As a consequence of this control action,

the state transits from xt to xt+1 according to equation (1), a new output yt+1

generated according to equation (2) becomes available and a cost c(ut, yt) is paid.

Then, the observation set is updated to ot+1 = ot ∪ {ut, yt+1} and the controller
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selects the subsequent control input. A control law is a sequence of functions lt :

Rt−1×Rt → R1, and lt(ot) is the corresponding control input after we have observed

ot = {u1, u2, . . . , ut−1, y1, y2, . . . , yt}.
The control objective is to minimize the long-term average cost criterion

J = lim sup
N→∞

1

N

N∑

t=1

c(ut, yt).

For any θ ∈ Θ and for a system as in (1) and (2) with θ in place of θ◦, we assume

that, for any control law lt, J ≥ J ⋆
θ a.s. (almost surely), where J ⋆

θ is a deterministic

quantity, and that J ⋆
θ is achieved a.s. by applying a control law l⋆θ,t. l⋆θ,t is named

an optimal control law. Our objective is that of driving J to the optimal value J ⋆
θ◦

for the true system with parameter θ◦. In the actual implementation of a control

action, however, θ◦ is not known and, therefore, information regarding its value must

be accrued through time via the observations ut and yt (adaptive control problem).

3. The “Bet On the Best” (BOB) principle. The BOB principle has first

appeared in the conference paper Campi (1997). This is the first time this principle

is discussed in a journal paper.

We start with an example in which the certainty equivalence principle leads to

a control cost which is strictly suboptimal. A similar example is also provided in

Kumar (1983b), where, differently from the present case, a finite parameter set is

considered. This example will serve as a start for the subsequent discussion where

we first summarize some well-recognized facts regarding the certainty equivalence

approach. The discussion will then culminate in the formulation of the BOB principle.

Example 1. Consider the system

xt+1 = a◦xt + b◦ut + wt+1,

where wt is an i.i.d. N(0, 1) noise process and state xt is accessible: yt = xt. Vector

[ a◦ b◦ ] is unknown but we know that it belongs to a compact set Θ = {[ a b ] :

b = 8a/5 − 3/5, a ∈ [0, 1]}. Our objective is to minimize the long-term average cost

lim supN→∞ 1/N
∑N

t=1[qx
2
t + u2

t ], where q = 25/24.

In order to determine an estimate of [ a◦ b◦ ] the standard least squares algorithm

is used. This amounts to selecting at time t the vector [ aLS
t bLS

t ] which minimizes

the index
∑t−1

k=1(xk+1 −axk − buk)
2. Once estimate [ aLS

t bLS
t ] has been determined,

according to the certainty equivalence principle the optimal control law for parameter

[ aLS
t bLS

t ] is applied.

Suppose now that at a certain instant point t the least squares estimate is

[ aLS
t bLS

t ] = [ 1 1 ]. Since the corresponding optimal control law is given by

ut = −5/8 xt (see e.g. Bertsekas (1987)), the squared error at time t+1 turns out to be
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(xt+1−axt−but)
2 = (xt+1−axt−(8a/5−3/5)(−5/8 xt))

2 = (xt+1−3/8 xt)
2, ∀[ a b ] ∈

Θ. The important feature of this last expression is that it is independent of parameter

[ a b ] ∈ Θ. Hence, the term added at time t + 1 to the least squares index does

not influence the location of its minimizer and the least squares estimate remains

unchanged at time t+1: [ aLS
t+1 bLS

t+1 ] = [ aLS
t bLS

t ] = [ 1 1 ]. As the same rationale

can be repeated in the subsequent instant points, we can conclude that the estimate

sticks at [ 1 1 ].

Now, the important fact is that the least squares estimates can in fact take value

[ 1 1 ] with positive probability, even when the true parameter is different from

[ 1 1 ]. Moreover, the optimal cost for the true parameter may be strictly lower than

the incurred cost obtained by applying the optimal control law for parameter [ 1 1 ].

To see that this is the case, suppose that [ a◦ b◦ ] = [ 0 − 3/5 ] and assume that the

system is initialized with x1 = 1 and u1 = 0. Then, at time t = 2 the least squares

estimate minimizes the cost (x2 − a)2 = (w2 − a)2. Thus, [ aLS
2 bLS

2 ] = [ 1 1 ]

whenever w2 > 1, which happens with positive probability. In addition, it is easily

seen that the cost associated with the optimal control law for parameter [ 1 1 ] is 5/3

whereas the optimal cost for the true parameter [ a◦ b◦ ] = [ 0 − 3/5 ] is 25/24. �

A careful analysis of the example above reveals where the trouble comes from with

a straightforward use of the certainty equivalence principle. When the suboptimal

control ut = −5/8 xt is selected based on the current estimate [ aLS
t bLS

t ] = [ 1 1 ],

the resulting observation is yt+1 = xt+1 = 3/8 xt+wt+1. This observation is in perfect

agreement with the one which would have been obtained if [ aLS
t bLS

t ] = [ 1 1 ]

were the true parameter. Therefore, there is no reason for having doubts as to the

correctness of the estimate [ aLS
t bLS

t ] and thus this estimate is kept unchanged at

the next time point.

This is just a single example of a general estimability problem arising in adaptive

control problems. This general estimability problem can be described as follows:

• applying to the true system a control which is optimal for the estimated

system may result in observations which concur with those that would have

been obtained if the estimated system were the true system;

if the estimation method drives the estimate to a value such that the above happens,

then

• there is no clue that the system is incorrectly estimated and, consequently,

the estimate remains unchanged;

however,

• the adopted control law is optimal for the estimated system, while it may be

strictly suboptimal for the true system.

A way out of this pernicious mechanism is to employ a more fine grained esti-
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mation method based on the optimal long-term average cost for the different systems

with parameters θ ∈ Θ. Developing this idea will lead us to the formulation of the

“Bet On the Best principle”.

We start by observing the following elementary fact:

• suppose we apply to the true system a control law which is optimal for another

system. If the long-term average cost we pay is different from the optimal

cost for this second system, then this system is falsified by the observations

and it can be dropped from the set of possible true systems.

Suppose now that at a certain instant point, we select among the systems which are

still unfalsified the one with lower optimal cost. Then,

• if we pay a cost different from the expected one, we can falsify this system.

In the opposite, we cannot falsify it, but then we are paying a cost which is

minimal over the set of possible true systems. Indeed, this implies that we

are actually paying the optimal cost for the true system.

These considerations can be summarized as follows: selecting a control law which

is optimal for the best unfalsified system (i.e. the system with lower optimal cost

among those that are as far unfalsified by the observations) may lead to an estima-

bility problem only when we are achieving optimality. This is in contrast with what

happens with the straightforward certainty equivalence principle, where an estimabil-

ity problem may arise and, yet, the incurred cost may be strictly suboptimal.

The above observations suggest that a very natural way to overcome the estima-

bility problem posed by the certainty equivalence principle is simply to iteratively

select among the unfalsified systems the one with minimal optimal cost and then

apply the optimal control law for it. We then arrive at formulating the following

procedure of general validity:

The “Bet On the Best” (BOB) principle

At the generic instant point t, do the following:

1. determine the set of unfalsified systems;

2. select the system in the unfalsified set with lowest optimal cost;

3. apply the decision which is optimal for the selected system. �

3.1. Mathematical formalization of the BOB-principle. In this section we

more precisely formalize the concept of unfalsified system and exhibit in mathematical

terms the properties of the unfalsified set such that applying the BOB-principle leads

to optimality.

Let Ut denote the unfalsified set at time t. Clearly, this set will depend on the

observations ot = {u1, u2, . . . , ut−1, y1, y2, . . . , yt} available at time t, and so it is in
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fact a stochastic set. Moreover, we note that set Ut depends through u1, u2, . . . , ut−1

on the control law lk applied from time k = 1 to time k = t− 1. Once the control law

has been fixed, processes ut and yt are completely determined and so is the sequence

of unfalsified sets Ut. The question that we need now to address is: what are the

mathematical conditions Ut has to satisfy so that application of the BOB principle

leads to optimality? This question is answered in this section.

Assume that argminθ∈Ut
J ⋆

θ exists and call it θmin
t . Select the optimal control

action for θmin
t : ut = l⋆

θmin

t
,t
(ot). Then,

Condition i)

lim sup
N→∞

1

N

N∑

t=1

c(ut, yt) = lim sup
N→∞

1

N

N∑

t=1

J ⋆
θmin

t

a.s.

Condition ii)

θ◦ ∈ ∪t ∩k>t Uk a.s.

Securing condition i) appears a doable objective under general circumstances. In

fact, if the long-term average cost paid by applying the optimal control law for θmin
t

were different from the expected average cost, there would be evidence that such a

θmin
t has to be falsified (and, therefore, θmin

t should not be in Ut for some t).

Condition ii) simply says that the falsification procedure must not be overselective

so that it also falsifies the true system (note that considering ∪t ∩k>t Uk rather than

the straightforward Ut allows for transient phenomena due to stochastic fluctuations).

The following simple theorem points out the effectiveness of the BOB-principle

when conditions i) and ii) are met.

Theorem 1. Under conditions i) and ii), the BOB-procedure achieves the ideal

objective, i.e.

lim sup
N→∞

1

N

N∑

t=1

c(ut, yt) = J ⋆
θ◦ a.s.

Proof. Condition ii) implies that θ◦ ∈ Ut, ∀t ≥ t̄, where t̄ is a suitable instant point,

a.s. From this, infθ∈Ut
J ⋆

θ ≤ J ⋆
θ◦

, ∀t ≥ t̄, a.s. Since, according to the BOB-procedure,

at each instant point t we select in Ut the parameter θmin
t with lower optimal cost

J ⋆
θmin

t

, we obtain lim supN→∞ 1/N
∑N

t=1 J ⋆
θmin

t

≤ lim supN→∞ 1/N
∑N

t=1 J ⋆
θ◦

= J ⋆
θ◦

.

Thus, applying condition i) yields

lim sup
N→∞

1

N

N∑

t=1

c(ut, yt) = lim sup
N→∞

1

N

N∑

t=1

J ⋆
θmin

t

≤ J ⋆
θ◦ , a.s.,

so concluding that the incurred cost is optimal. �
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3.2. Discussion. The BOB principle bears a promise of more general applica-

bility than other formulations of the cost-biasing idea.

In previous contributions such as Kumar (1993b) and Campi and Kumar (1998),

identification was based on a delicate two-term estimation criterion, where the first

term was the standard maximum likelihood and the second term was a cost-biasing

term. A correct estimation of the closed-loop dynamics was relying on the presence

of the first term, which, so to say, had not to be bogged down by the second term

that was pushing the estimate towards parameter locations corresponding to lower

optimal costs. In turn, this was calling for the presence of system noise that could

suitably excite the true system. This delicate balance is automatically overcome with

the BOB philosophy: if the estimate is biased towards parameters that correspond

to a “superoptimal” cost, in the long run an average cost larger than the expected

superoptimal cost will certainly be obtained and, therefore, according to condition i)

in Section 3.1 this parameter will be discarded.

For a practical implementation of the BOB procedure, what remains to determine

is the actual falsification rule. This determination is dependent on the specific control

set-up. To make things concrete, in the next section we present an application to a

scalar adaptive control problem. The recent interesting work by Levanony and Caines

(2005) can be seen as another application of this same BOB principle. In this latter

paper, the analysis is carried out for systems with multivariate state thanks to the

observation that optimizing the LQG cost restricted to a region that shrinks around

where closed-loop identification holds necessarily leads to a consistent estimate. See

also Levanony and Caines (2001a,b) for a recursive implementation of the algorithm.

4. An application of the BOB principle: scalar adaptive LQG control.

4.1. Problem position. Consider the scalar system

(3) xt+1 = a◦xt + b◦ut + wt+1,

where wt is a noise process described as an i.i.d. Gaussian sequence with zero mean

and unitary variance. The true parameter θ◦ = [ a◦ b◦ ] is unknown and belongs to a

known compact set Θ ⊂ R2 such that b 6= 0, ∀[ a b ] ∈ Θ (controllability condition).

The system state is observed without noise, i.e. yt = xt. Finally, the long-term cost

criterion is given by

(4) lim sup
N→∞

1

N

N∑

t=1

[qx2
t + u2

t ], q > 0.

In the case in which the true parameter θ◦ is known, it is a standard matter

to compute the optimal control law that minimizes criterion (4) (see e.g. Bertsekas
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(1987)). Letting p(a◦, b◦) be the positive solution to the scalar Riccati equation

p =
(a◦)2p

(b◦)2p + 1
+ q,

the control input at time t is computed as

ut = K(a◦, b◦)xt,

where gain K(a◦, b◦) is given by

K(a◦, b◦) = − a◦b◦p(a◦, b◦)

(b◦)2p(a◦, b◦) + 1
.

The corresponding optimal cost is simply J ⋆
(a◦,b◦) = p(a◦, b◦).

In the adaptive case where θ◦ is not known, we set the following

Adaptive control problem

Find a control law lt such that, with the position ut = lt(ot), we achieve the ideal

objective, i.e. lim supN→∞ 1/N
∑N

t=1[qx
2
t + u2

t ] = J ⋆
(a◦,b◦) a.s., ∀[ a◦ b◦ ] ∈ Θ. �

4.2. Solving the adaptive control problem via the BOB-principle. To

attack the adaptive control problem with the BOB-principle we need to find a suitable

falsification criterion. The resulting unfalsified sets should satisfy conditions i) and

ii) in Theorem 1.

A hint on how to select the unfalsified sets so as to satisfy condition ii) is provided

by Lemma 1 below.

Name [ aLS
t bLS

t ] the least squares estimate of [ a◦ b◦ ]:

[ aLS
t bLS

t ] := argmin[a b]∈R2

t−1∑

k=1

(xk+1 − axk − buk)
2
,

and define φk := [ xk uk ], and Vt :=
∑t−1

k=1 φT
k φk.

Lemma 1. Choose a function µt such that log
∑t−1

k=1 x2
k = o(µt) and define the

unfalsified set sequence through equation

(5)

Ut :=
{
[ a b ] ∈ Θ : ([ a b ] − [ aLS

t bLS
t ])Vt([ a b ] − [ aLS

t bLS
t ])T ≤ µt

}
.

Then,

[ a◦ b◦ ] ∈ ∪t ∩k>t Uk a.s.

Proof. The least squares estimate [ aLS
t bLS

t ] writes:
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[ aLS
t bLS

t ] =

(
t−1∑

k=1

φkxk+1

)(
t−1∑

k=1

φT
k φk

)−1

= [ a◦ b◦ ] +

(
t−1∑

k=1

φkwk+1

)(
t−1∑

k=1

φT
k φk

)−1

.

Thus,

([ a◦ b◦ ] − [ aLS
t bLS

t ])Vt([ a◦ b◦ ] − [ aLS
t bLS

t ])T

=

(
t−1∑

k=1

φkwk+1

)(
t−1∑

k=1

φT
k φk

)−1(t−1∑

k=1

φT
k wk+1

)

.

By applying result iii) in Lemma 1 of Lai and Wei (1982) we know that the right

hand side of this last equation is O(log
∑t−1

k=1 ‖φk‖2) a.s.. Moreover, by equation

|uk| ≤ sup[a b]∈Θ |K(a, b)| |xk| we know that log
∑t−1

k=1 ‖φk‖2 = O(log
∑t−1

k=1 x2
k). In

conclusion,

([ a◦ b◦ ] − [ aLS
t bLS

t ])Vt([ a◦ b◦ ] − [ aLS
t bLS

t ])T = O

(

log
t−1∑

k=1

x2
k

)

a.s.

The thesis immediately follows from this last equation by recalling that

O(log

t−1∑

k=1

x2
k) = o(µt).

�

Lemma 1 delivers a lower bound for µt, the fulfillment of which implies that

condition ii) is satisfied. Next, we need to determine a condition such that condition

i) is satisfied as well. This will lead us to introduce an upper bound for µt.

We start by proving the following stability result.

Theorem 2. Choose a function µt such that µt = o(log2∑t−1
k=1 x2

k) and set

ut = K(at, bt)xt, where [ at bt ] belongs almost surely to set Ut defined through

equation (5). Then,

lim sup
N→∞

1

N

N∑

t=1

[|xt|r + |ut|r] < ∞ a.s., ∀r.

The proof of Theorem 2 is based on the following auxiliary lemma, the technical

proof of which is given in Appendix A.

Lemma 2. Under the same assumptions as in Theorem 2 we have
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N∑

t=1,t6∈TN

|(a◦ − at)xt + (b◦ − bt)ut|r = o(

N∑

t=1

|xt|r) a.s., ∀r ≥ 2.

where TN is a set of time instant points depending on N such that |TN | ≤ 2, ∀N (| · |
stands for cardinality).

Proof of Theorem 2.

Fix an integer N . For t ∈ [1, N ], rewrite system (3) as follows

(6) xt+1 =

{

(at + btK(at, bt))xt + pt + wt+1, t 6 ∈TN

(a◦ + b◦K(at, bt))xt + wt+1, t ∈ TN

where pt is a perturbation term defined as

pt := (a◦ − at)xt + (b◦ − bt)ut,

and TN is the set of instant points mentioned in Lemma 2.

Set

α := sup
[a b]∈Θ

|a◦ + b◦K(a, b)|,

ρ := sup
[a b]∈Θ

|a + bK(a, b)|.

Since K(a, b) is the optimal gain for system xt+1 = axt + but + wt+1, the closed-loop

dynamical matrix a + bK(a, b) is stable, i.e. |a + bK(a, b)| < 1. Since Θ is a compact

set, we then have ρ < 1.

With these positions, state xt generated by system (6) can be bounded as follows

|xt| ≤ α2
t−1∑

k=1,k 6∈TN

ρ(t−1−k)−2|pk| + α2
t−1∑

k=1

ρ(t−1−k)−2|wk+1| + α2ρ(t−1)−2|x1|.

Form this,

(7)

N∑

t=1

|xt|r ≤ c

N−1∑

t=1,t6∈TN

|pt|r + c

N−1∑

t=1

|wt+1|r + c,

where c is a suitable constant.

Note now that
∑N−1

t=1 |wt+1|r = O(N) a.s.. Moreover, in view of Lemma 2, for any

r ≥ 2 we have:
∑N−1

t=1,t6∈TN
|pt|r = o(

∑N
t=1 |xt|r) a.s.. By substituting these estimates

in (7) we obtain

1

N

N∑

t=1

|xt|r = o

(

1

N

N∑

t=1

|xt|r
)

+ O(1) a.s., ∀r ≥ 2,
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from which the conclusion is immediately drawn that

lim sup
N→∞

1

N

N∑

t=1

|xt|r < ∞ a.s., ∀r ≥ 2.

Result lim supN→∞
1
N

∑N
t=1 |ut|r < ∞ a.s., ∀r ≥ 2 also follows by noting that

|ut| ≤ sup[a b]∈Θ |K(a, b)||xt|. In conclusion,

lim sup
N→∞

1

N

N∑

t=1

[|xt|r + |ut|r] < ∞ a.s., ∀r ≥ 2.

Finally, we observe that the boundedness result for r ≥ 2 obviously implies that

a similar result holds true for any r, so that the stability result remains proven for

any r. �

The next lemma gives an upper bound for µt such that condition i) in Theorem

1 is satisfied. This result used in conjunction with Lemma 1 provides us with the

conditions such that the BOB-principle can be successfully used.

Lemma 3. Let µt = logs∑t−1
k=1 x2

k for some s < 2 and set ut = K(amin
t , bmin

t )xt,

where [ amin
t bmin

t ] := argmin[ a b ]∈Ut
J ⋆

[ a b ]. Then

lim sup
N→∞

1

N

N∑

t=1

[qx2
t + u2

t ] = lim sup
N→∞

1

N

N∑

t=1

J ⋆
(at,bt)

a.s.

Proof. For notational simplicity, throughout we write at and bt for amin
t and bmin

t .

Let Ft := σ(w1, w2, . . . , wt).

The dynamic programming equation for model xt+1 = atxt + btut + wt+1 writes

(Bertsekas (1987))

J ⋆
(at,bt)

+ p(at, bt)x
2
t

= qx2
t + u2

t + E[p(at, bt)(atxt + btut + wt+1)
2 | Ft]

= qx2
t + u2

t + E[p(at, bt)x
2
t+1 | Ft] + p(at, bt)

{
(atxt + btut)

2 − (a◦xt + b◦ut)
2
}

,

from which

1

N

N∑

t=1

J ⋆
(at,bt)

+
1

N

N∑

t=1

{
p(at, bt)x

2
t − E[p(at+1, bt+1)x

2
t+1 | Ft]

}

︸ ︷︷ ︸

A

=
1

N

N∑

t=1

[qx2
t + u2

t ] +
1

N

N∑

t=1

E[(p(at, bt) − p(at+1, bt+1))x
2
t+1 | Ft]

︸ ︷︷ ︸

B

+
1

N

N∑

t=1

p(at, bt)
{
(atxt + btut)

2 − (a◦xt + b◦ut)
2
}

︸ ︷︷ ︸

C

.(8)
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Let us study separately the different terms appearing in this equation.

A) Term (A) can be rewritten as

1

N
p(a1, b1)x

2
1 −

1

N
p(aN+1, bN+1)x

2
N+1

+
1

N

N∑

t=1

{
p(at+1, bt+1)x

2
t+1 − E[p(at+1, bt+1)x

2
t+1 | Ft]

}
.

The first term obviously tends to zero. As for the second term, note that if we

assume that it does not tend to zero, then there exists a time sequence tk and a real

number α > 0 such that |xtk
|2 > αtk, ∀k. From this, lim supN→∞

1
N

∑N
t=1 |xt|4 ≥

lim supk→∞
1
tk

|xtk
|4 > lim supk→∞

1
tk

α2t2k = ∞. This contradicts Theorem 2 and, so,

the second term tends to zero as well. In the third term, αt+1 := p(at+1, bt+1)x
2
t+1 −

E[p(at+1, bt+1)x
2
t+1 | Ft] is a martingale difference. Therefore, 1

N

∑N
t=1 αt+1 → 0,

provided that
∑∞

t=1 t−2E[α2
t+1 | Ft] < ∞ (see Hall and Heyde (1980), Theorem 2.18).

Since p(at+1, bt+1) is bounded, it is easily seen that this last condition is implied by
∑∞

t=1 t−2[|xt|4 + |ut|4] < ∞. Again, this conclusion can be drawn by contradiction

from Theorem 2. In fact, if this conclusion were false, sequence t−1/2[|xt|4 + |ut|4]
would be unbounded, and therefore there would exist a sequence of instant points tk

such that [|xtk
|4 + |utk

|4] > t
1/2
k , ∀k. From this, lim supN→∞

1
N

∑N
t=1[|xt|4 + |ut|4]4 ≥

lim supN→∞
1
tk

[|xtk
|4 + |utk

|4]4 > lim supk→∞
1
tk

t2k = ∞ and this is in contradiction

with Theorem 2.

In conclusion, A → 0 a.s..

B) Notice first that, by Schwarz inequality,

∣
∣
∣
∣
∣

1

N

N∑

t=1

(p(at, bt) − p(at+1, bt+1))x
2
t+1

∣
∣
∣
∣
∣

≤ 1

N

N∑

t=1

|(p(at, bt) − p(at+1, bt+1))|x2
t+1

≤
(

1

N

N∑

t=1

(p(at, bt) − p(at+1, bt+1))
2

)1/2(

1

N

N∑

t=1

x4
t+1

)1/2

.

In this last expression, the second term remains bounded by Theorem 2, while the

first term tends to zero (see Appendix B for the proof of this fact). Thus,

(9) lim
N→∞

1

N

N∑

t=1

(p(at, bt) − p(at+1, bt+1))x
2
t+1 = 0 a.s.
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Finally, conclusion

lim
N→∞

1

N

N∑

t=1

E[(p(at, bt) − p(at+1, bt+1))x
2
t+1 | Ft] a.s.

is drawn from (9) by observing that

βt+1 := (p(at, bt) − p(at+1, bt+1))x
2
t+1 − E[(p(at, bt) − p(at+1, bt+1))x

2
t+1 | Ft]

is a martingale difference for which, by calculations resembling those developed in

point (A) for αt, we have 1
N

∑N
t=1 βt+1 → 0.

C) By Schwarz inequality,
∣
∣
∣
∣
∣

1

N

N∑

t=1

p(at, bt)
{
(atxt + btut)

2 − (a◦xt + b◦ut)
2
}

∣
∣
∣
∣
∣

≤ sup
[a b]∈Θ

p(a, b)

(

1

N

N∑

t=1

((atxt + btut) − (a◦xt + b◦ut))
2

)1/2

×
(

1

N

N∑

t=1

((atxt + btut) + (a◦xt + b◦ut))
2

)1/2

Since 1/N
∑N

t=1((atxt + btut)+ (a◦xt + b◦ut))
2 remains bounded (see Theorem 2), to

show that C → 0 it suffices to prove that 1/N
∑N

t=1((atxt+btut)−(a◦xt+b◦ut))
2 → 0.

From Lemma 2 we have

1

N

N∑

t=1

((atxt + btut) − (a◦xt + b◦ut))
2

= o

(

1

N

N∑

t=1

x2
t

)

+
1

N

∑

t∈TN

((atxt + btut) − (a◦xt + b◦ut))
2.

The first term in the right hand side tends to zero because of the stability The-

orem 2. As for the second term, by recalling that |TN | ≤ 2, it is easy to prove

that it tends to zero by arguments similar to those used in point (A) to show that
1
N p(aN+1, bN+1)x

2
N+1 → 0.

By inserting all the partial results in equation (8) the thesis is obtained. �

By selecting the unfalsified set at time t as given in definition (5) with the bounds

on µt as suggested by Lemma 1 and 3, the BOB procedure writes

Adaptive control method

At time t, do the following:
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1. determine Ut as in definition (5) with µt = logs∑t−1
k=1 x2

k, s ∈ (1, 2);

2. compute [ amin
t bmin

t ] as the minimizer of J ⋆
(a,b) in Ut:

[ amin
t bmin

t ] := arg min[a b]∈Ut
J ⋆

(a,b);

3. compute ut by applying the optimal control law for [ amin
t bmin

t ]:

ut = K(amin
t , bmin

t )xt.

�

The effectiveness of this adaptive control method is guaranteed by Theorem 1 due

to that conditions i) and ii) follow from Lemma 1 and Lemma 3, so delivering the

following optimality theorem.

Theorem 3. With the control law chosen according to the adaptive control

method, we achieve the ideal objective, i.e.

lim sup
N→∞

1/N

N∑

t=1

[qx2
t + u2

t ] = J ⋆
(a◦,b◦) a.s., ∀[ a◦ b◦ ] ∈ Θ.

Appendix A

Define

vt := [ (a◦ − at) (b◦ − bt) ].

Since [ at bt ] ∈ Θ, sequence vt is bounded. Denote by v̄ an upper bound for ‖vt‖:
‖vt‖ ≤ v̄, ∀t.

We start by proving that (remember that φt = [ xt ut ]):

(10)

N−1∑

t=1

|φtv
T
N |r = o

(
N−1∑

t=1

|xt|r
)

a.s. ∀r ≥ 2.

To this purpose, note first that

(11)

N−1∑

t=1

x2
t = O

(
N−1∑

t=1

|xt|r
)

a.s.

Indeed,

N−1∑

t=1

x2
t = N





(

1

N

N−1∑

t=1

x2
t

)r/2




2/r

≤ N

[

1

N

N−1∑

t=1

|xt|r
]2/r

(using Jensen′s inequality)

=

N−1∑

t=1

|xt|r
[

N
∑N−1

t=1 |xt|r

]1− 2
r

,
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and lim supN→∞ N/
∑N−1

t=1 |xt|r < ∞ a.s. since process xt is affected by the noise

process wt. Secondly, by observing that [ aN bN ] ∈ UN and [ a◦ b◦ ] ∈ UN too for

N large enough (see Lemma 1),

(12)

N−1∑

t=1

(φtv
T
N )2 = o

(

log2
N−1∑

t=1

x2
t

)

a.s.

Equation (10) is easily derived from (11) and (12) as follows:

N−1∑

t=1

|φtv
T
N |r ≤

∣
∣
∣
∣
∣

N−1∑

t=1

(φtv
T
N )2)

∣
∣
∣
∣
∣

r/2

= o

(

logr
N−1∑

t=1

x2
t

)

(using (12))

= o

(
N−1∑

t=1

x2
t

)

= o

(
N−1∑

t=1

|xt|r
)

. (using (11))

Fix now a real number ǫ > 0 and an integer N .

Define a sequence of subspaces St, t = 1, 2, . . . , N + 1 of R2 by the following

backward recursive procedure:

for t = N + 1, set St = ∅;
for t = N, N −1, . . . , 1, set (the symbol vt,S stands for the projection of vector vt onto

subspace S)

(13) St =

{

St+1, if ‖vt,S⊥

t+1
‖ ≤ ǫ

St+1 ⊕ span{vt}, otherwise.

Denote by TN the set of instant points at which subspace St expands: if t ∈ TN ,

then St ⊃ St+1 strictly. These instant pints are obviously at most two. Let denote

them by t1 and t2 (t1 > t2). Moreover, let i(t) := max{i : ti ≥ t}. Since ‖vt‖ ≤ v̄, ∀t,

the angle between vt1 and vt2 may tend to zero only if ǫ → 0. Then, there exists a

constant c(ǫ) dependent on ǫ, but independent of N , such that

‖φt,St
‖r ≤ c(ǫ)

i(t)
∑

i=1

|φtv
T
ti
|r.

Thus, for each t ∈ [1, N ] we have

|φtv
T
t |r ≤ k|φt,S⊥

t

vT
t,S⊥

t

|r + k|φt,St
vT

t,St
|r

≤ kǫr‖φt‖r + kv̄rc(ǫ)

i(t)
∑

i=1

|φtv
T
ti
|r,
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where k is a suitable constant depending on r.

So,

N∑

t=1,t6∈TN

|φtv
T
t |r ≤ kǫr

N∑

t=1

‖φt‖r + kv̄rc(ǫ)

N∑

t=1,t6∈TN

i(t)
∑

i=1

|φtv
T
ti
|r

≤ kǫr
N∑

t=1

‖φt‖r + kv̄rc(ǫ)

i(t)
∑

i=1

ti−1∑

t=1

|φtv
T
ti
|r

≤ kǫr
N∑

t=1

‖φt‖r + kv̄rc(ǫ)2o

(
N−1∑

t=1

|xt|r
)

. (using (10))

Since ‖φt‖r ≤ c|xt|r, where c is a suitable constant, from this last inequality we

conclude that

lim sup
N→∞

∑N
t=1,t6∈TN

|φtv
T
t |r

∑N
t=1 |xt|r

≤ kǫrc.

Due to the arbitrariness of ǫ, this completes the proof of the lemma. �

Appendix B

Note first that

(14) µt+1 − µt → 0 a.s.

Indeed,

µt+1 − µt = logs
t∑

k=1

x2
k − logs

t−1∑

k=1

x2
k

≤ log2
t∑

k=1

x2
k − log2

t−1∑

k=1

x2
k (when log2

t−1∑

k=1

x2
k > 1, since s < 2)

= log

∑t
k=1 x2

k
∑t−1

k=1 x2
k

(

log

t∑

k=1

x2
k + log

t−1∑

k=1

x2
k

)

≤ x2
t

∑t−1
k=1 x2

k

2 log

t∑

k=1

x2
k. (using relation log(1 + x) ≤ x)(15)

In this last expression,
∑t

k=1 x2
k grows linearly (in fact,

∑t
k=1 x2

k does not grow less

than linearly because of the presence of noise wt affecting the system equation (3) and

does not grow faster than linearly because of the stability Theorem 2). Moreover, by

similar arguments as those used in point (A) of the proof of Lemma 3, x2
t = o(t1/2).

Using these estimates in (15) we obtain

µt+1 − µt ≤ o

(
log t

t1/2

)

a.s.,
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which implies (14).

Consider now definition (5) of set Ut. In the light of equations (14) and also

considering that kernel Vt is increasing and that ‖[ aLS
t bLS

t ]− [ aLS
t+1 bLS

t+1 ]‖ → 0 a.s.,

we can conclude that any parameter [a b] ∈ Ut+1−Ut has a distance from Ut that tends

to zero as t → ∞, namely sup[ab]∈Ut+1−Ut
inf [a′b′]∈Ut

‖[a b]−[a′ b′]‖ → 0, t → ∞. Since

J ⋆
(·,·) = p(·, ·) is a continuous function in Θ we then have that there exist a vanishing

function ǫt (ǫt → 0) such that

p(at, bt) − p(at+1, bt+1) = J ⋆
(at,bt)

− J ⋆
(at+1,bt+1)

≤ ǫt.

Finally, letting N+ denote the set of instant points t ∈ [1, N ] such that p(at, bt)−
p(at+1, bt+1) ≥ 0,

N∑

t=1

|p(at, bt) − p(at+1, bt+1)|

≤ sup
[a b]∈Θ

p(a, b) + 2
∑

t∈N+

(p(at, bt) − p(at+1, bt+1))

≤ sup
[a b]∈Θ

p(a, b) + 2
∑

t∈N+

ǫt

= o(N) a.s.,

so concluding the proof. �
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