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MULTIDIMENSIONAL SCHUR COEFFICIENTS AND BIBO

STABILITY∗

I. SERBAN† , F. TURCU†, Y. STITOU†, AND M. NAJIM†

Abstract. In the framework of BIBO stability tests for one-dimensional (1-D) linear systems,

the Schur-Cohn stability test has the appealing property of being a recursive algorithm. This is a

consequence of the simultaneously algebric and analytic aspect of the Schur coefficients, which can be

also regarded as reflection coefficients. In the multidimensional setting, this dual aspect gives rise

to two extension of the Schur coefficients that are no longer equivalent. This paper presents the two

extensions of the Schur-Cohn stability test that derive from these extended Schur coefficients. The

reflection-coefficient approach was recently proposed in the 2-D case as a necessary but non sufficient

condition of stability. The Schur-type multidimensional approach provides a stronger condition of

stability, which is necessary and sufficient condition of stability for multidimensional linear system.

This extension is based on so-called slice function associated to n-variable analytic functions. Several

examples are given to illustrate this approach.

1. Introduction. This paper presents some recent advances in the problem of

the BIBO stability of multidimensional linear systems. The extension to the mul-

tidimensional case of the one-dimensional BIBO stability theory encounters several

major difficulties, of both algebraic and analytic nature. One such difficulty is the

lack, in several dimensions, of a canonical analogous of the Schur coefficients, which

are crucial in characterizing the one-dimensional BIBO stability.

The remarkable fact about the Schur coefficients in the one-dimensional setting is

that they have simultaneously an algebraic and an analytic content. As explained in

[11], the algebraic feature of the Schur coefficients appears through their occurrence in

the Levinson algorithm as reflection coefficients, in solving the Yule-Walker equations

for an AR model, while the analytic feature comes directly from the original Schur

algorithm, which characterizes bounded analytic functions in the unit disk. Among

many applications that take benefits from this double aspect of the Schur coefficients,

the BIBO stability of a one-dimensional linear system with rational transfer function

can be tested through a finite iterative –thus ”computable” - algorithm, known as the

Schur-Cohn stability test.

Unfortunately, when trying to extend the theory to the multidimensional case,

it seems that the algebraic aspect and the analytic aspect are no longer sides of the

same object. Two very natural extensions, on one side of the reflection coefficients,

and on the other side of the Schur coefficients, become different notions, with different

impact on BIBO stability.

The aim of the paper is to present two extensions of the Schur Cohn criterion that
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derive from these two viewpoints. On one side, a reflection coefficient-type extension,

based on the prediction-theoretical setting for causal quarter-plane AR models, yields

a necessary stability condition, which is ”computable”, but not sufficient. On the

other side, a Schur coefficient-type extension, based on slice functions [16], produces a

necessary and sufficient condition, but which is not algebraically. However, these latter

coefficients were proved to have a continuity property that makes them computable

by approximations.

An n-dimensional linear system with analytic transfer function H : Dn → C,

H(z) =
∑

α∈Nn

cαzα is called BIBO-stable if the Taylor coefficients of H belong to

l1(Nn), i.e.
∑

α∈Nn

|cα| < ∞. If the transfer function H is rational, so H(z) = B(z)
A(z) for

two mutually prime polynomials, then the BIBO stability is implied by the fact that

the denominator A has no zeroes in the closed unit polydisk D̄n[8]. The converse is

not true in general, since H might have removable singularities on Tn and still being

stable, as shown in [8]. However, as long as H has no such removable singularities,

the BIBO stability is equivalent to non-canceling of the denominator A in D̄n. This

happens in particular for autoregressive filters, for which the transfer function has the

special form H(z) = 1
A(z) . Therefore checking the BIBO stability is reduced for these

systems to a zero localization problem that we will consider in the following.

2. BIBO stability conditions for 2-D AR models. This sections presents

the first approach announced, i.e. the multidimensional Schur-Cohn type extension

based on the lattice representation.

This work has been mainly inspired by the work performed with T. Kailath and

his co-workers ([12],[13],[15],[20]). They raised the nice properties of the lattice repre-

sentation and its impact in many areas from communications to speech analysis and

processing.

In such a way one of the co-authors has extended various adaptive algorithms

from 1 to 2-D case deriving lattice representation for 2-D random field and proposing

recursive estimation of the 2-D reflection [4][14][21] [22]. Then arise naturally the idea

to use these parameters to extend the Schur Cohn stability test to the 2-D case.

We consider a two-dimensional random field {y(m, n)} satisfying a causal quarter-

plane AR model of order (M, N). This model is described by the difference equation

y(i, j) = −

M∑

m=0

N∑

n=0

(m, n) 6= (0, 0)

amny(i − m, j − n) + e(i, j)(2.1)

where {am,n} are the transversal AR parameter coefficients.

The considered AR process can be regarded as the output of a 2-D synthesis filter,

with the transfer function
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(2.2) H (z1,z2) =
1

A (z1, z2)

with

(2.3) A (z1, z2) = 1 +

M∑

m=0

N∑

n=0

am,nzm
1 zm

2 .

In this case, the BIBO stability conditions of the synthesis filter is that [19]

(2.4) A (z1, z2) 6= 0, |z1| ≤ 1 and |z2| ≤ 1.

The idea of the Levinson-type extension, that the authors recently proposed in [2],

is based on a lexicographic image scanning and geometrical linear prediction approach.

This method uses the two-dimensional lattice representation of the considered AR

process which can be expressed as follows for 1 ≤ m ≤ M [14]

(2.5)

{

Ef
m (s) = E

f
m−1 (s − 1) − Eb

m−1 (s − 1)Kf
m (s) ,

Eb
m (s) = Eb

m−1 (s − 1) − E
f
m−1 (s)Kb

m (s)

where s is the lexicographic scanning index, Ef
m (s), Eb

m−1 (s) are respectively the

forward and backward prediction errors , and Kf
m and Kb

m are the reflection coeffi-

cient matrices, as the natural extension of the 1-D case. Based on this 2-D lattice

representation, the following recursions relations for the errors correlations matrices

are obtained:

(2.6)

{

Ef
m = E

f
m−1 − Eb

m−1K
f
m,

Eb
m = Eb

m−1 − E
f
m−1K

b
m.

According to the recursion relations in (29), it is shown in [2] that the BIBO stability

of 2-D synthesis filter associated to the 2-D QP AR model implies the two following

conditions:

The matrices Kf
mKb

m, m = 1, . . . , M have eigenvalues strictly less than 1.

The one variable polynomial As (z) satisfies the condition As (z) 6= 0 for |z| < 1,

where

(2.7) As (z) = 1 −

N∑

µ=1

k
f,0
µ,N+1 (s) zµ

and k
f,0
µ,j , are the elements of the reflection coefficient matrix K

f
0 .

The first condition expressed in terms of the reflection coefficients matrices can

be interpreted as an extension of the 1-D Schur–Cohn test, .i.e. Kb
m ≡ Kb

m ≡ km,
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which is performed based on the magnitude of the reflection coefficients. In fact, the

1-D AR filters is stable if and only if all these reflection coefficients are of magnitudes

strictly less than unity.

This approach provides some advantage for 2-D signal analysis. Indeed, checking

the BIBO stability conditions becomes a one variable stability problem and classical

numerical matrix computation can be used. However, this 2-D stability conditions

is necessary but not sufficient. The reason is that the 1-D Schur (i.e. reflection)

coefficients have a natural non-linear behavior that cannot be entirely reproduced,

in several variables, by essentially linear objects such as the reflection coefficients

matrices. In order to capture this non-linearity, one needs extensions of the Schur

coefficients that carry more information. Such an extension is presented in the next

section, yielding necessary and sufficient conditions of stability.

3. Functional Schur coefficients and stability. In this section we show how

one can use slice functions in order to define the notion of Schur coefficient in several

variables.

We denote by D the open unit disk and by T = ∂D̄ the closed unit circle in the

complex plane C. The notation H∞(D) stands for the Banach algebra of all bounded

analytic functions in D. We also denote by S the closed unit ball of H∞(D).

We recall the main object of the (1-D) Schur algorithm, i.e. the mappingΦ : S →

S defined by

(3.1) [Φ(f)](z) =

{
f(z)−f(0)

z(1−f(0)f(z))

f ′(0)(1 − |f(0)|2)−1

z 6= 0

z = 0.

If f is not a unimodular constant function, and Φ(f) = 0 otherwise (see [3]). For any

function f in the Schur class we call the Schur iterates of f the sequence of functions

(3.2) fn
d
=Φ(n)(f) = Φ ◦ Φ ◦ · · · ◦ Φ

︸ ︷︷ ︸

n

(f) (n ≥ 0),

and we call the numbers γn
d
= fn(0) the Schur parameters of f .

For any polynomial P (z) = a0 + a1z + . . . + anzn of degree n with complex

coefficients, define the transpose polynomial PT (z) = ān+ān−1z+. . .+ā0z
n. The well

known Schur-Cohn criterion [10] can be stated in the following equivalent form: the

polynomial P has no zeroes in the closed unit disk if and only if the Schur parameters

γk(k ≥ 0) of the function f = P T

P
satisfy |γk| < 1 for k = 0, 1, . . . , n − 1.

The connection between the Schur parameters γk defined above and the Hermitian

Schur-Cohn matrix of the polynomial P is the that the values 1−|γk| (0 ≤ k ≤ p−1)

are exactly the determinants of the principal minors in the Schur-Cohn matrix of P .

Consider now the case of an n-variable polynomial P for which we want to check

if it has zeroes in the closed unit polydisk D̄n. Of course a “brutal” method would be
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to check all the points of D̄n, which would take a very long time (and, fortunately, is

not necessary). One would prefer instead to look for zeroes in subsets Σ ⊂ D
n

that

are as small as possible. Then raises the following question: are there subsets Σ ⊂ D
n

which contain at least one zero for any polynomial P that has zeroes in D̄n?

How small are they?

It follows from a general result on the homotopy structure of Tn (Rudin [16],

Theorem 4.7.2.), that such a set is the “diagonal set” of D̄n:

Σ = {(z1, . . . , zn) ∈ D
n

: |z1| = |z2| = . . . = |zn|}

which is shown [16] to contain at least one zero not only for any polynomial P that

has zeroes in D̄n, but also for any function f which is analytic in Dn and continuous

on D̄n (called a disk algebra function) that has zeroes in D̄n.

To have an idea about the “size” of Σ, observe that Σ can be parameterized

via a set of n parameters λ, w1, . . . , wn−1 with λ ∈ D andw1, . . . wn−1 ∈ T, by the

transform

(z1, . . . , zn) = (λw1, . . . λwn−1, λ),

so Σ has (real) dimension n+1 compared to D̄n which has (real) dimension 2n.

One can see that for any fixed vector w = (w1, . . . wn−1) ∈ Tn−1, the set

Dw ={(λw1, . . . λwn−1, λ) : λ ∈ D} is a one (complex) dimensional disk in D̄n that

“slices” D̄n through the origin and the point (w1, . . . wn−1, 1) ∈ Tn. Two such disks

have only the origin in common and the union of all these disks is Σ.

Now let f : Dn → C be an n-variable analytic function and fix w = (w1, . . . , wn−1)

∈ Tn−1. The restriction of f to the disk Dw can be regarded as the one complex

variable analytic function fw : D → C defined by:

(3.3) fw(λ) = f(λw1, . . . , λwn−1, λ) (λ ∈ D),

called [16] the (diagonal) slice of f through w.

Consequently an algebra disk function f has no zeroes in D̄n if and only if none

of the slices fw has zeroes in D. Since these slices belong to the Schur class provided

that f is in the closed unit ball of H∞(Dn), it is natural to consider the sequences of

their Schur coefficients

γk(w) = Φ(k)(fw)(0) (k ≥ 0, w ∈ Tn−1)

as functions of w = (w1, . . . , wn−1) defined on Tn−1. We called these functions the

functional Schur coefficients of the function f .

It is shown in [18] that the properties of these coefficients can be used to derive a

Schur algorithm in several variables. More precisely, it is shown that a rational inner

function belongs to the polydisk algebra if and only if its functional Schur coefficients
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are all continuous, if and only if its denominator has no zeroes in the closed unit

polydisk.

The proof relies upon two facts. The first one is the weak continuity of the map

that carries a point w on the polytorus into the slice fw of fthrough w, and the

continuity of the mapping Φ that defines the Schur coefficients. The second is a

homotopic-type relationship between slice functions and the so called determinig sets

[16], i.e. subsets of the polytorus that are “large enough” for not being zero sets for

any non-zero polynomial.

One consequence is the following natural extension of the Schur-Cohn criterion:

Theorem 1. Multivariable Schur-Cohn test.

Let P be a polynomial in n variables of degree p. For each w = (w1, . . . wn−1) ∈

Tn−1, let γk(w) the functional Schur coefficients of (Pw)T

Pw

. The following are equiva-

lent:

a) The polynomial P has no zeroes in D̄n;

b) sup
w∈Tn−1

|γk(w)| < 1for k = 0, . . . , p − 1.

The continuity of the functional Schur coefficients, which are rational functions

in w, allows the numerical computation of the supremum (in fact a maximum) in b).

Here is a computed example to illustrate the test:

Example 1. Consider the following test polynomial:

P (z1, z2) = 1 + 0.5z1 + 0.5z2 + 0.25z1z2 + 0.25z2
1 + 0.25z2

2

taken from [10]. The slices of P are:

Pw(λ) = P (λw, λ) = 1 + 0.5(w + 1)λ + 0.25(1 + w + w2)λ2, (w ∈ T)

so

fw(λ) =
PT

w (λ)

Pw(λ)
=

0.25(1 + w + w2) + 0.5(w + 1)λ + λ2

1 + 0.5(w + 1)λ + 0.25(1 + w + w2)λ2
(w ∈ T).

Since P has degree 2, we are interested by the first two functional Schur coefficients

of f , which are, by (3.1) and (3.2)

γ0(w) = 0.25(1 + w + w2)

and

γ1(w) =
0.25(1 + w) − 0.125(w + w2)

0.8125− 0.0625(w2 + w2) − 0.125(w + w)
, (w ∈ T)

with absolute values

∣
∣γ0(e

it)
∣
∣
2

= 0.625[(1 + cos t + cos 2t)2 − (sin t + sin 2t)2] (t ∈ [0, 2π))

∣
∣γ1(e

it)
∣
∣
2

=
8(1 + cos 2t)

(cos 2t + 0.5 cos t + 1)2 + (sin 2t + 5 sin t)2
(t ∈ [0, 2π)).
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Therefore we find sup
t∈[0,2π)

∣
∣γ0(e

it)
∣
∣ = 0.75 < 1 and sup

t∈[0,2π)

∣
∣γ1(e

it)
∣
∣ ≈ 0.55735 < 1,

so P is stable. Here are the graphs of the absolute values of the functional Schur

coefficients:

∣
∣γ0(e

it1 , eit2)
∣
∣

∣
∣γ1(e

it1 , eit2)
∣
∣

Fig. 1. The absolute values of the functional Schur coefficients for Example 1.

Example 2. P (z1, z2) = 1− 1.5z1 + 0.6z2
1 − 1.2z2 + 1.8z1z2 − 0.72z2

1z2 + 0.3z2
2 −

0.75z1z
2
2 + 0.29z2

1z
2
2 (in [10], ex. 3)

∣
∣γ0(e

it1 , eit2)
∣
∣

∣
∣γ1(e

it1 , eit2)
∣
∣
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∣
∣γ2(e

it1 , eit2)
∣
∣

∣
∣γ3(e

it1 , eit2)
∣
∣

Fig. 2. The absolute values of the functional Schur coefficients for Example 2.

We see that |γ3| exceeds 1, so P is an unstable polynomial.

The next examples illustrate the test for 3 variable polynomials. The graphs

represent the absolute values of the functional Schur coefficients γk(eit1 , eit2), t1, t2 ∈

[0, 2π].

Example 3. P (z1, z2, z3) = 4.5 + z1z3 − z2
2 + 2z2z3 + z1z

2
2 , of degree 3.

The polynomial is unstable because |γ3| exceeds 1 (see fig. 3).

Example 4. P (z1, z2, z3) = 5 + z2 + z1z
3
3 − z1z2z3 + z2z3, also of degree 3.

Since
∣
∣γk(eit1 , eit2)

∣
∣ ≤ 0.5 < 1 for k = 0, 1, 2 it follows that P is stable (see fig.

4).

4. Conclusion. This paper focuses on the Bounded-Input Bounded-Output

(BIBO) stability problem of multidimensional linear systems. The necessary and

sufficient criterion is based on the concept of slice functions and yields a full char-

acterization of BIBO stability, in which the role of the Schur coefficients from one

variable is played by the functional Schur coefficients that we have introduced. We

have showed that a multidimensional linear system is BIBO stable if and only if the

absolute values of the functional Schur coefficients of the denominator of its transfer

function are less than unity.

The fact that the two approaches are not equivalent, as they are in one dimension,

shows how complex the zero-localization and the BIBO stability problems are in

several variables.
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∣
∣γ0(e

it1 , eit2)
∣
∣

∣
∣γ1(e

it1 , eit2)
∣
∣

∣
∣γ2(e

it1 , eit2)
∣
∣

Fig. 3. The absolute values of the functional Schur coefficients for Example 3.
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