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Dedication

We dedicate this paper to Professor Thomas Kailath on the occasion of his 70th

birthday. We have been greatly influenced by his way of attacking engineering prob-

lems by exploiting their inherent mathematical structure. This paper is an example of

this research paradigm, where nineteenth century mathematics is used to significantly

improve the performance of 21st century wireless infrastructure.

Abstract. We present a novel full-rate full-diversity orthogonal space-time block code for QPSK

modulation and 4 transmit antennas based on quaternionic algebra. The code does not result in

constellation expansion unlike other full-rate full-diversity codes in the literature. The quaternionic

structure of the code is exploited to reduce the complexity of maximum likelihood (ML) coherent

decoding from a size-256 search to a size-16 search. Furthermore, we show how to modify this low-

complexity coherent ML decoding rule to derive a non-coherent differential ML decoding rule. Due

to the orthogonality of the code, ML differential decoding results in the minimum SNR loss of 3 dB

from coherent ML decoding. Finally, extensive simulation results in a WiMAX 802.16 broadband

wireless access environment demonstrate that the proposed code increases the cell coverage area by

1.5 and 2.6 folds compared to single-antenna transmission at 10−3 bit error rate when combined with

1 and 2 receive antenna(s), respectively.

1. Introduction. WiMAX is an emerging wireless technology that promises to

deliver broadband connectivity with a data rate up to 75 Mbps over a 20 MHz band-

width and a coverage radius up to 6 miles. To achieve such a range and high data

rate, the IEEE 802.16-2004 standard supports multiple-antenna techniques including

space-time coding (STC). The information-theoretic analyses in [1, 2] showed that

multiple antennas at the transmitter and receiver enable very high-data-rate reliable

wireless communications. STC introduced in [3], improve the reliability of commu-

nication over fading channels by correlation of signals across the different transmit

antennas. A characterization of the design criteria of such codes was given in [3, 4].

One class of STC are space-time block codes (STBC) introduced in [6, 5] which are

the technical focus of this paper.

Orthogonal designs [5] are a class of STBC that achieve maximal diversity at a

linear (in constellation size) decoding complexity. However, the only full-rate complex
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orthogonal design is the 2 × 2 Alamouti code [6], and as the number of transmit an-

tennas increases, the available rate becomes unattractive. For example, for 4 transmit

antennas (which is the case of interest in this paper), orthogonal STBC designs with

rates of 1
2 and 3

4 were presented in [5]. This rate limitation of orthogonal designs

caused a recent shift of research focus to non-orthogonal code design. These include a

quasi-orthogonal design for 4 transmit antennas [13] that has rate 1 but achieves only

diversity of two (for one receive antenna). Full diversity can be achieved by including

signal rotations which expand the constellation (see e.g. [15]). Another approach is

the design of non-orthogonal but linear codes [7, 8, 9, 11], for which decoding [10] is

efficient (using the sphere decoding algorithm [21]) though the decoding complexity

depends on the channel realization. Some of these constructions also involve rotation

of signal constellations and result in significant constellation expansion. In this pa-

per, we revisit the problem of designing orthogonal STBC for 4 transmit antennas.

Another reason for our interest in orthogonal designs is that they limit the SNR loss

incurred by differential decoding to its minimum of 3 dB from coherent decoding.

The main contribution of this paper is the design and analysis of a novel full-rate

full-diversity orthogonal STBC for 4 transmit antennas. This code is constructed by

means of a 2 × 2 array over the quaternions, thus resulting in a 4 × 4 array over the

complex field C . The code is orthogonal over C , but is not linear. The structure of

the code is a generalization of the 2×2 Alamouti code [6], and reduces to it if the 2×2

quaternions in the code are replaced by complex numbers. For QPSK modulation, the

code has no constellation expansion and enjoys a simple maximum likelihood decoding

algorithm. We also develop a differential encoding and decoding algorithm for this

code.

After presenting this work at the DIMACS workshop [18], we became aware of

the work in [19] in which the authors independently present the same code and show

by simulation that it achieves full diversity and no constellation expansion for QPSK.

This work is distinct from [19] in the following aspects. We establish rigorously

the connection of our code design to the theory of quaternions. This enables us to

prove analytically the full-diversity result for a general M -PSK constellation (not only

for QPSK). Moreover, the connection to quaternions leads to new examples, to an

efficient ML decoding algorithm for 1 receive antenna, and to extensions to multiple

receive antennas. We also develop a differential version of the code and investigate

its performance for the WiMAX application.

This paper is organized as follows. In Section 2, we start with the data model

and some background on quaternions. In Section 3, we introduce the 4 × 4 STBC

and prove that it achieves maximum diversity order. In Section 4, we develop a low-

complexity coherent decoding algorithm that utilizes the quaternionic structure of the

non-linear orthogonal STBC. Section 5 develops a differential encoding and decoding

algorithm for the code. Simulation results are presented in Section 6 and the paper
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is concluded in Section 7.

2. Preliminaries.

2.1. Data Model. Our focus in this paper is on the quasi-static flat–fading

channel where we transmit information coded over Mt = 4 transmit antennas and

employ Mr antennas at the receiver. We assume that the transmitter has no channel

state information (CSI), whereas the receiver is able to perfectly track the channel

(a common assumption, see [3]).1 The code is designed over a coherence time of

T = Mt = 4 transmission symbols and the received signal after demodulation and

sampling can be written as

(1) R = HX + Z,

where R = [r(0), . . . , r(T − 1)] ∈ CMr×T is the received signal matrix, H ∈ CMr×Mt

is the quasi-static channel matrix, X = [x(0), . . . ,x(T − 1)] ∈ CMt×T is the space-

time-coded transmitted signal matrix with transmit power constraint P , and Z =

[z(0), . . . , z(T − 1)] ∈ CMr×T is additive white Gaussian noise with variance σ2.

The coding scheme is limited to one quasi-static transmission block. Similar

arguments can be made if we are allowed to code across only a finite number of

quasi-static transmission blocks [3]. This allows us to view the channel in (1) as a

non-ergodic channel since the performance is determined by a single randomly-chosen

channel fading matrix H. In this context we define the notion of diversity order [3]

as follows.

Definition 2.1. A coding scheme with an average error probability P̄e(SNR) as

a function of SNR that behaves as

(2) lim
SNR→∞

log(P̄e(SNR))

log(SNR)
= −d

is said to have a diversity order of d.

In words, a scheme with diversity order d has an error probability at high SNR

behaving as P̄e(SNR) ≈ SNR−d.

2.2. Code Design Criteria. For codes designed for a finite (and fixed) rate,

one can bound the error probability by using pairwise error probability (PEP) be-

tween two candidate codewords. This leads to the rank criterion for determin-

ing the diversity order of a space-time code [3, 4]. Consider a codeword sequence

X = [xT (0), . . . ,xT (T −1)] as defined in (1), where x(k) = [x1(k), . . . ,xMt
(k)]T . The

PEP between two codewords x and y can be determined by the codeword difference

1We investigate the effect of relaxing this assumption on performance in Section 6. See also the

work in [14].
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matrix B(x,y) [3, 4], where

B(x,y) =







x1(0) − y1(0) . . . x1(T − 1) − y1(T − 1)
...

...
...

xMt
(0) − yMt

(0) . . . xMt
(T − 1) − yMt

(T − 1)







.

For fixed-rate codebook C, the PEP between two distinct codewords x and y can be

expressed as2 [3]

(3) Pe(SNR,x −→ y)
·
= SNR−Mrrank(B(x,y)).

Since we are dealing with a fixed-rate codebook, by using the simple union-bound

argument, it can be shown that the diversity order d is given by [3]

(4) d = Mr min
x6=y∈C

rank(B(x,y)) .

The error probability is determined by both the coding gain and the diversity order.

Hence, the code design criterion prescribed in [3] is to design the codebook C so

that the minimal rank of the codeword difference matrix corresponds to the required

diversity order and the minimal determinant gives the corresponding coding gain. In

this paper the focus is on the diversity order only.

2.3. Quaternions. We may view quaternions as a 4×4 matrix algebra over the

real numbers RI , where right multiplication by the quaternion q
def
= q0+q1i+q2j+q3k

is described by

x0 + x1i + x2j + x3k ≡
[

x0 x1 x2 x3

]

(5)

→
[

x0 x1 x2 x3

]









q0 q1 q2 q3

−q1 q0 −q3 q2

−q2 q3 q0 −q1

−q3 −q2 q1 q0









,

the conjugate quaternion q̄ is given by q̄
def
= q0 − q1i − q2j − q3k and we have

(6) qq̄ = ‖q‖2 = q2
0 + q2

1 + q2
2 + q2

3 .

We may also view quaternions as pairs of complex numbers, where the product of

quaternions (v, w) and (v
′

, w
′

) is given by

(7) (v, w)(v
′

, w
′

) = (vv
′

− w̄
′

w, vw
′

+ v̄
′

w).

2We use the notation
·
= to denote exponential equality, i.e., g(SNR)

·
= SNRa means that

lim
SNR→∞

log g(SNR)

log SNR
= a. Moreover, if g(SNR)

·
= f(SNR), it means that, lim

SNR→∞

log g(SNR)

log SNR
=

lim
SNR→∞

log f(SNR)

log SNR
.
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These are Hamilton’s Biquaternions (see [16]), and right multiplication by the bi-

quaternion (v, w) is described by

(8) x0 + x1i + y0j + y1k ≡
[

x y
]

→
[

x y
]
[

v w

−w̄ v̄

]

.

The matrices
[

1 0

0 1

]

;

[

i 0

0 −i

]

;

[

0 1

−1 0

]

;

[

0 i

i 0

]

describe right multiplication by 1, i, j, and k, respectively. The matrix representing

right multiplication by the biquaternion (v, w) is the 2 × 2 STBC introduced by

Alamouti [6]. The columns of this matrix represent different time slots, the rows

represent different antennas, and the entries are the symbols to be transmitted. Note

that the rows and columns are orthogonal with respect to the standard inner product

(9)
[

x y
]

.
[

x
′

y
′

]

= xx̄
′

+ yȳ
′

.

There is a classical correspondence between unit quaternions and rotations in RI 3

given by

q −→ Tq : p −→ q̄pq

where we have identified vectors in RI 4 with quaternions p = p0 + p1i + p2j + p3k

[22]. The transformation Tq fixes the real part ℜ(p) of the quaternion p, and if

q = q0 + q1i+ q2j + q3k, then Tq describes rotation about the axis (q1, q2, q3) through

an angle 2θ where cos(θ) = q0 and sin(θ) =
√

q2
1 + q2

2 + q2
3 .

Example. The 16 quaternions q = (±1 ± i ± j ± k)/2 determine 8 symmetries

of the unit cube with vertices (±1,±1,±1)/2. The transformations Tq divide into

4 sets (±q,±q̄), each associated with an axis connecting opposite vertices. The two

transformations Tq in each set describe 120o rotation about this axis.

The 8 transformation Tq are listed below together with their effect on i, j, and k

1. ) q = ±(1 + i + j + k)/2 ; Tq =









1 0 0 0

0 0 0 1

0 1 0 0

0 0 1 0









;

i → k

j → i

k → j

2. ) q = ±(1 − i − j − k)/2 ; Tq =









1 0 0 0

0 0 1 0

0 0 0 1

0 1 0 0









;

i → j

j → k

k → i

3. ) q = ±(1 + i − j − k)/2 ; Tq =









1 0 0 0

0 0 0 −1

0 −1 0 0

0 0 1 0









;

i → −k

j → −i

k → j
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4. ) q = ±(1 − i + j + k)/2 ; Tq =









1 0 0 0

0 0 −1 0

0 0 0 1

0 −1 0 0









;

i → −j

j → k

k → −i

5. ) q = ±(1 − i + j − k)/2 ; Tq =









1 0 0 0

0 0 0 1

0 −1 0 0

0 0 −1 0









;

i → k

j → −i

k → −j

6. ) q = ±(1 + i − j + k)/2 ; Tq =









1 0 0 0

0 0 −1 0

0 0 0 −1

0 1 0 0









;

i → −j

j → −k

k → i

7. ) q = ±(1 − i − j + k)/2 ; Tq =









1 0 0 0

0 0 0 −1

0 1 0 0

0 0 −1 0









;

i → −k

j → i

k → −j

8. ) q = ±(1 + i + j − k)/2 ; Tq =









1 0 0 0

0 0 1 0

0 0 0 −1

0 −1 0 0









;

i → j

j → −k

k → −i

Note that the odd-numbered transformations Tq map i → ±k ; k → ±j ; j → ±i

while the even-numbered ones map i → ±j ; j → ±k ; k → ±i. In both cases,

the product of the signs is equal to 1. See Appendix A for more information on the

transformation Tq.

2.4. Correspondence Between Quaternions and Matrices. There is an

isomorphism between the quaterions q and 4 × 4 real matrices or 2 × 2 complex

matrices in the following way

q ∼=









q0 q1 q2 q3

−q1 q0 −q3 q2

−q2 q3 q0 −q1

−q3 −q2 q1 q0









∼=

[

qc(0) qc(1)

−q̄c(1) q̄c(0)

]

= Q(10)

where qc(0), qc(1) ∈ C , and qc(0) = q0 + iq1, qc(1) = q2 + iq3. Therefore, we can

interchangeably use the matrix representation for the quaternions in order to demon-

strate properties. We will represent the 2 × 2 complex version of q by Q. We will

define norms as

(11) ||Q||2 = ||q||2 = q2
0 + q2

1 + q2
2 + q2

3 = |qc(0)|2 + |qc(1)|2.
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3. A New Quaternionic Space-Time Block Code. We consider the space-

time block code

[

p q

−q̄
q̄p̄q

‖q‖2

]

where the entries are quaternions. We may replace the quaternions p and q by the

corresponding Alamouti 2 × 2 blocks to obtain a 4 × 4 STBC with complex entries.

(12)




P Q

−Q̄
¯Q ¯PQ
‖Q‖2








P̄ −Q

Q̄
¯QPQ
‖Q‖2



 = (‖p‖2 + ‖q‖2)I .

Observe that the rows of this code are orthogonal with respect to the standard inner

product operation. Since multiplication of quaternions is not commutative, it is not

possible to have a 2 × 2 linear code over the quaternions with orthogonal rows and

orthogonal columns [5]. We have abstracted the concept of a 2×2 code with orthogonal

rows from the complex numbers to the quaternions. Note that if p and q were complex

numbers rather than quaternions, then this code would collapse to the Alamouti

STBC. In Appendix B, we prove that this code achieves maximum diversity order.

Example. QPSK signaling corresponds to choosing the quaternions p and q from

the set (±1± i± j±k)/2. In this case, there is no constellation expansion because
(q̄p̄q)
‖q‖2 is always a quaternion of this same form.

4. Coherent Decoding.

4.1. Maximum Likelihood Decoding. We can represent the model in (1) by

quaternionic algebra. For simplicity, let us consider Mr = 1; all arguments can be

easily generalized to Mr > 1. Consider the 2 × 2 complex matrices formed as

R1 =

[

r(0) r(1)

−r̄(1) r̄(0)

]

; R2 =

[

r(2) r(3)

−r̄(3) r̄(2)

]

,(13)

H1 =

[

H(1, 1) H(1, 2)

−H̄(1, 2) H̄(1, 1)

]

; H2 =

[

H(1, 3) H(1, 4)

−H̄(1, 4) H̄(1, 3)

]

where H(u, v) is the (u, v)th component of the channel matrix H. Then we can re-

write (1) for our code as

[

R1 R2

]

=
[

H1 H2

]
[

P Q

−Q̄
¯Q ¯PQ
‖Q‖2

]

+
[

Z1 Z2

]

(14)

where the noise vectors are also replaced by corresponding quaternionic matrices of

the forms given in (13).
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From (14), the ML decoding rule is given by3

{P̂, Q̂} = arg min
P,Q

‖
[

R1 R2

]

−
[

H1 H2

]
[

P Q

−Q̄
¯Q ¯PQ
‖Q‖2

]

‖2

= arg max
P,Q

ℜ

{

trace(
[

R1 R2

]
[

P̄ −Q

Q̄
¯QPQ
‖Q‖2

][

H̄1

H̄2

]

)

}

.(15)

4.2. Utilizing The Code Structure. We can write (14) in quaternionic alge-

bra as follows

[

r1 r2

]

=
[

h1 h2

]
[

p q

−q̄
q̄p̄q
‖q‖2

]

+
[

z1 z2

]

,(16)

where we have defined h1, h2 as the quaternions corresponding to the matrices H1,H2

given in (14). Consider the linear combining operation

r̃1
def
= h1r̄1 + r2h̄2 = h1p̄h̄1 + h2(

q̄p̄q

‖q‖2
)h̄2 + h1z̄1 + z2h̄2

︸ ︷︷ ︸

z̃0

so that

(17) ℜ(r̃1) = ℜ(h1r̄1 + r2h̄2) = (‖h1‖
2 + ‖h2‖

2)p0 + ℜ(z̃0)

which can be used to calculate p0 by applying a hard slicer to the left hand side of

(17). Now, from the first column of (16), we can write

r1i = h1pi − h2q̄i + z1i

⇒ h1ir̄1 = h1(ip̄)h̄1 − h1iqh̄2 + h1iz̄1 .(18)

Next, consider the second column of (16). We have

r2(iTq) = r2(
q̄iq

‖q‖2
) = h1iq + h2

q̄p̄iq

‖q‖2
+ z2

q̄iq

‖q‖2

⇒ r2(iTq)h̄2 = h1iqh̄2 + h2
q̄p̄iq

‖q‖2
h̄2 + z2(iTq)h̄2 .(19)

Adding (18) and (19) and taking the real part, we get

ℜ(r̃2)
def
= ℜ(h1ir̄1 + r2(iTq)h̄2) = ℜ(h1(ip̄)h̄1 + h2

q̄p̄iq

‖q‖2
h̄2 + h1iz̄1 + z2(iTq)h̄2

︸ ︷︷ ︸

z̃1

)

= (‖h1‖
2 + ‖h2‖

2)p1 + ℜ(z̃1) .(20)

Similarly, we can show that

ℜ(r̃3)
def
= ℜ(h1jr̄1 + r2(jTq)h̄2)

= ℜ(h1(jp̄)h̄1 + h2
q̄p̄jq

‖q‖2
h̄2 + h1jz̄1 + z2(jTq)h̄2

︸ ︷︷ ︸

z̃2

)

= (‖h1‖
2 + ‖h2‖

2)p2 + ℜ(z̃2)(21)

3Assuming that ‖P‖ and ‖Q‖ are constant.
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and

ℜ(r̃4)
def
= ℜ(h1kr̄1 + r2(kTq)h̄2)

= ℜ(h1(kp̄)h̄1 + h2
q̄p̄kq

‖q‖2
h̄2 + h1kz̄1 + z2(kTq)h̄2

︸ ︷︷ ︸

z̃3

)

= (‖h1‖
2 + ‖h2‖

2)p3 + ℜ(z̃3) .(22)

Decoding proceeds as follows. First p0 is calculated by applying a hard slicer to the

left hand side of (17). Next, as shown in Section 2.3, there are 8 choices for the

transformation Tq where each can be used to calculate a candidate for the triplet

(p1, p2, p3) by applying a hard slicer to the left hand sides of Equations (20)-(22). For

each choice of Tq, there are 2 choices of q (sign ambiguity). Finally, the 16 candidates

for (p, q) are compared using the ML metric in (15) to obtain the decoded QPSK

information symbols. We show in Appendix C that the statistics ℜ(r̃1) through ℜ(r̃4)

are sufficient for ML decoding. In addition, we emphasize that there is no loss of

optimality in applying the hard QPSK slicer operation to (17), (20)-(22) since the

noise samples are zero-mean uncorrelated Gaussian.

We conclude this section with the following two remarks. First, we can think of

the linear-combining operations in (17) and (20)-(22) as the generalization of standard

Alamouti STBC decoding to our 4 × 4 quaternionic STBC. Second, with 2 receive

antennas, ML decoding proceeds by applying the combining operations in (17) and

(20)-(22) to each receive antenna and then adding the respective signals to generate 4

signals which are used to decode (p, q) as in the single-antennas case described above.

5. Differential Encoding and Decoding. In some circumstances, it is de-

sirable to forgo the channel estimation module to keep the receiver complexity low.

Under such circumstances, differential decoding algorithms become attractive despite

their SNR loss from coherent decoding. In this section, we develop the differential

encoding and decoding algorithm for our quaternionic code.

Our starting point is the input-output relationship in (16) which can be written

in compact matrix notation as follows

(23) r(k) = hC(k) + z(k) .

Consider the following differential encoding rule

(24) C(k) = C(k−1)U(k)

where the information matrix U(k) =

[

P Q

−Q̄
¯Q ¯PQ
‖q‖2

]

. Therefore, we have

(25) r(k) = hC(k−1)U(k) + z(k)
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from which we can write

r(k) = (r(k−1) − z(k−1))U(k) + z(k)

= r(k−1)U(k) + z(k) − z(k−1)U(k)

︸ ︷︷ ︸

z̃(k)

.(26)

This equation has identical form to the received signal equation in the coherent case

except for 2 main differences

• The previous output vector r(k−1) in (26) plays the role of the channel coef-

ficient vector and is known at the receiver.

• Since U(k) is a Unitary matrix by construction, the equivalent noise vector

z̃(k) will also be zero-mean white Gaussian (like z(k) and z(k−1)) but with

twice the variance.

Hence, the same efficient ML coherent decoding algorithm applies in the differential

case as well but at an additional 3 dB performance penalty at high SNR.

6. Simulation Results. In this section, we present simulation results on the

performance of our proposed STBC with the efficient ML decoding algorithm. We

assume QPSK modulation, a single antenna at the receiver (unless otherwise states),

and no channel state information (CSI) at the transmitter.

We start by investigating the resulting performance degradation when the as-

sumption of perfect CSI at the receiver is not satisfied. We consider two scenarios.

In the first scenario, no CSI is available at the receiver and the differential encod-

ing/decoding scheme of Section 5 is used. Figure 5 shows the SNR penalty from

coherent decoding (with perfect CSI) is 3 dB at high SNR. In the second scenario, the

coherent ML decoder uses estimated CSI acquired by transmitting a pilot codeword

of the same quaternionic structure and using a simple matched filter operation at the

receiver to calculate the CSI vector. Figure 6 shows that the performance loss due to

channel estimation is about 2-3 dB which is comparable to the differential technique.

Next, we compare the performance of both scheme in a time-varying channel. The

pilot-based channel estimation scheme will suffer performance degradation since the

channel estimate will be outdated due to the Doppler effect. To mitigate this effect,

we need to increase the frequency of pilot codeword insertion as the Doppler frequency

increases which in turn increases the training overhead. We assume a fixed pilot in-

sertion rate of one every 20 codewords; i.e. a training overhead of only 5%. Similarly,

the differential scheme will also suffer performance degradation since the assumption

of a constant channel over 2 consecutive codewords (i.e. 8 symbol intervals) is no

longer valid. Figure 7 shows that for high mobile speeds (high Doppler), an error

floor occurs for both schemes. Both schemes achieve comparable performance for low

(pedestrian) speeds but the pilot-based scheme performs better at moderate to high

speeds at the expense of a more complex receiver (to perform channel estimation) and

the pilot transmission overhead.
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Figure 8 depicts the significant additional performance improvement achievable

by adding a second receive antenna (resulting in 8-th order diversity) and using the

receiver combining rules described in Section 4.2. Figure 9 shows that the proposed

code achieves a lower bit error rate than the full-rate quasi-orthogonal design [13] at

high SNR since it achieves a diversity order for 2.

Next, we compare the performance of our proposed quaternionic code with the

following rate- 1
2 and rate- 3

4 orthogonal designs [5]

(27) G1 =

266666666666664
x1 x2 x3 x4

−x2 x1 −x4 x3

−x3 x4 x1 −x2

−x4 −x3 x2 x1

x̄1 x̄2 x̄3 x̄4

−x̄2 x̄1 −x̄4 x̄3

−x̄3 x̄4 x̄1 −x̄2

−x̄4 −x̄3 x̄2 x̄1

377777777777775 ; G2 =

26664 x1 x2 x3 0

−x̄2 x̄1 0 x3

x̄3 0 −x̄1 x2

0 x̄3 −x̄2 −x1

37775 .

In order to make a fair comparison, all codes are normalized to unit transmit

energy. Figure 10 shows that our proposed STBC with QPSK modulation achieves

lower frame error rate (FER) than the rate- 1
2 orthogonal design with 16-QAM mod-

ulation at the same transmission spectral efficiency of 2 bits per channel use (PCU).

We cannot find any signal constellation for the rate- 3
4 orthogonal design (Octonion)

that would make its spectral efficiency equal to that of the proposed STBC. Therefore,

we compare both codes in Figure 11 based on the Effective Throughput η defined as

η = (1−FER)∗R∗ log2 M , where R is the rate of the code and M is the constellation

size. We assume a frame to be in error if any information bit in the frame is decoded

incorrectly. A frame in error is not considered for retransmission and is simply dis-

carded from the queue. We assume QPSK modulation for both coding schemes and

240 information bits per frame. The figure shows that at high SNR (FER near zero),

our proposed code achieves a throughput level of 2 bits PCU whereas the achievable

throughput for the Octonion is 1.5 bits PCU. We can observe a cross-over point at

13 dB which is attributed to the fact that the constant transmit energy is distributed

equally over 4 symbols for our STBC and only over 3 symbols in the Octonion. By

concatenating both STBC’s with an outer RS(15, 11) code, the cross-over point shifts

to around 8 dB, as depicted in Figure 12. The RS code overhead is included in the

calculated throughput.

Finally, we investigate the performance of our proposed code in a frequency-

selective fading channel. As an example, we consider the broadband wireless access

application as in the IEEE 802.16 standard (WiMAX). We assume the widely-used

Stanford University Interim (SUI) channel models [20] where each of the three-tap

SUI channel models is defined for a particular terrain type with varying degree of

Ricean fading K factors and Doppler frequency. We combine our quaternionic STBC
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with Orthogonal Frequency Division Multiplexing (OFDM) transmission where each

codeword is now transmitted over four consecutive OFDM symbol durations (for each

subcarrier). In our simulations, we use 256 sub-carriers and a cyclic prefix length of

64 samples. We simultaneously transmit 256 codewords from four transmit antennas

over four OFDM symbols and assume that the channel remains fixed over that period.

We also use a RS(255, 163) outer code and frequency-interleave the coded data before

transmitting through the channel. Figure 13 illustrates the significant performance

gains achieved by our proposed 4-TX STBC in the 802.16 environment as compared

to SISO transmission. To put these SNR gains in perspective, at BER=10−3, these

SNR gains translate to a 50% increase in the cell coverage area assuming 1 receive

Antenna. By adding a second receive antenna , the percentage increase becomes

166% 4.

7. Conclusions. We used the mathematical theory of quaternions to design and

analyze a novel Rate-1, full-diversity, orthogonal STBC for 4 transmit antennas and

complex signal constellations. Establishing the connection to quaternions allowed to

derive several key results analytically including full diversity for any M -PSK con-

stelation, no constellation expansion for QPSK, and a low-complexity ML coherent

decoding algorithm. We generalized our results to the case of multiple receive anten-

nas and to differential decoding. A detailed investigation on the application of our

proposed STBC to the WiMAX application demonstrated a 50% and 166% increase

in the cell coverage area when combined with 1 and 2 receive antenna(s) respectively,

at BER=10−3 compared with the single-transmit-antenna case.

Appendix A. Finite Groups of Rotations in RI 3 and Unit Quaternions.

If q = a + bi + cj + dk is a quaternion, then the matrices

(28) qL =









a −b −c −d

b a −d c

c d a −b

d −c b a









; qR =









a −b −c −d

b a d −c

c −d a b

d c −b a









describe left and right multiplication by q. The 2:1 correspondence between unit

quaternions
(
a2 + b2 + c2 + d2 = 1

)
and rotations in RI

3 is given by q −→ Tq = q̄LqR

where q̄ = a − bi − cj − dk. The next theorem classifies finite groups of rotations in

RI
3 (a proof can be found in Chapter 5 of [23]).

Theorem A.1. Every finite subgroup of rotations in RI 3 is one of the following:

1. the cyclic group Ck of rotations by multiples of 2π
k

about a line;

4These calculations assumes a path loss exponent of 4 which is recommended for the SUI-3

channel model with a Base Station height of 50 meters [20].
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2. the dihedral group Dk of symmetries of a regular k-gon;

3. the tetrahedral group T (isomorphic to the alternating group A4);

4. the octahedral group O (isomorphic to the symmetric group S4);

5. the icosahedral group I (isomorphic to A5)

We denote the inverse images of these groups under the 2:1 correspondence by

2Ck, 2Dk, 2T , 2O, and 2I respectively. These are the finite groups of quaternions

containing ±1 (Chapters 1, 2 and 3 of [22] contain more information about these

groups).

We focus on the octahedral group O which is the symmetry group of the unit

cube with vertices (±1,±1,±1) as shown in Figure 1.

(- + +)

(- + -)

(+ - -)

(+ - +)

(- - +)

(- - -)

(+ + +)

(+ + -)

Fig. 1. The unit cube.

We label the body diagonals of the unit cube as follows:(1)(+++,−−−); (2)(−+

+, +−−); (3)(−−+, + +−); and (4)(+−+,−+−). These diagonals are permuted

by the octahedral group, and this representation provides the isomorphism with the

symmetric group S4. Table 1 connects conjugacy classes in S4 with unit quaternions

q and a geometric description of corresponding rotation Tq.

The 4 × 4 space-time code is given by
[

p q

−q̄ q̄p̄q

]

where each unit quaternion entry is realized as a 2×2 Alamouti matrix with complex

entries. If p, q ∈ 2O, then these complex entries are drawn from the constellation

shown in Figure 2.

This algebraic framework enables the construction of new codes. For example,

Table 2 shows how to select unit quaternions p and q to construct a rate 9
4 code for
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Fig. 2. Inventory of possible complex entries for the space-time code.

Table 1

Symmetries of the unit cube organized by conjugacy class.

8−PSK (the inner constellation) with full-diversity.

Appendix B. Full Diversity Proof.

In this paper, we define a QPSK symbol to be of the form xl = 1√
2
ej π

4 (2k+1) for

k = 0, 1, 2, 3.

We need to verify that given two different space-time codewords, say Cp,q and

Cp′,q′ , the difference Cp,q − Cp′,q′ is nonsingular. Now

(29) Cp,q − Cp′,q′ =

[

p − p′ q − q′

−(q̄ − q̄′) q̄p̄q
‖q‖2 − q̄′p̄′q′

‖q′‖2

]
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Table 2

Codewords in a rate- 9
4

space-time code for 8PSK. The 9 input bits choose one of 32 unit

quaternions q and one of 16 unit quaternions p

and by applying a similarity transformation

[
l̄

‖l‖ 0

0 m̄
‖m‖

]

(Cp,q − Cp′,q′)

[
l

‖l‖ 0

0 m
‖m‖

]

,

we may replace p, p′, q, and q′ by l̄pl
‖l‖2 , l̄p′l

‖l‖2 , l̄qm
‖l‖‖m‖ , and l̄q′m

‖l‖‖m‖ , respectively.

We apply an elementary row operation to (29) to obtain

[

p − p′ q − q′

0 ‖q−q′‖2

‖p−p′‖2

(q̄−q̄′)(p̄−p̄′)(q−q′)
‖q−q′‖2 + q̄p̄q

‖q‖2 − q̄′p̄′q′

‖q′‖2

]

.

We now take l = 1, m = q̄ − q̄′, so that q − q′ is real. This means that the rotations

determined by q and q′ share the same axis and that

(q̄ − q̄′)(p̄ − p̄′)(q − q′)

‖q − q′‖2
= p̄ − p̄′.

We need to show that if p 6= p′ then

‖q − q′‖2

‖p− p′‖2
(p̄ − p̄′) +

q̄p̄q

‖q‖2
−

q̄′p̄′q′

‖q′‖2
6= 0.

This turns out to be true when ‖p‖ = ‖p′‖ = ‖q‖ = ‖q′‖.

Theorem B.1. If ‖p‖ = ‖p′‖ = ‖q‖ = ‖q′‖, then the quaternionic space-time

code has full diversity.

We suppose that

(30)
‖q − q′‖2

‖p− p′‖2
(p̄ − p̄′) +

q̄p̄q

‖q‖2
−

q̄′p̄′q′

‖q′‖2
= 0.

If xℜ is the real part of a quaternion x, then (30) implies

(31)
‖q − q′‖2

‖p− p′‖2
(p̄ − p̄′)ℜ + (p̄ − p̄′)ℜ = 0.

It follows that (p̄ − p̄′)ℜ = 0, so that (p − p′) is pure imaginary.
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β=α

α π−α

π−β=π−α

p
v

 v

p
v

v

p-p

p-p

p

p-p

p

p-p

Fig. 3. The geometry of projections p̄V and p̄′
V

.

 

q p q
    v q p q

    v

1α  + 2θ

 12π−α  −2θ

α  + 2θ1 2π−α  −2θ 1

 

p-p p-p

   qq   p   v
  2

|| q  ||

p-p

 v    qq   p  

p-p

|| q ||

    

   2
  2

   2

|| q ||

|| q  || 

Fig. 4. The geometry of the rotated projections.

Next we project each term in (30) onto the common axis A of the rotations

determined by q and q′ to obtain

(32)
‖q − q′‖2

‖p − p′‖2
(p̄ − p̄′)A + p̄A − p̄′A = 0.

It follows that (p̄ − p̄′)A = 0, so that (p̄ − p̄′) lies in the 2-dimensional real space

V = 〈(1000), A〉⊥ We scale the axis A so that it has norm 1, and we write q and q′ in

the form

q = ‖q‖cosθ + (‖q‖sinθ)A,

q′ = ‖q′‖cosφ + (‖q′‖sinφ)A

where 0 ≤ θ, φ < π. Since ‖q‖ = ‖q′‖, and since (q − q′) is real, we have θ = φ or

θ = π − φ.
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If θ = φ then q = q′ and it is clear that (29) is nonsingular. Therefore, we may

suppose θ = π − φ, so that

q = ‖q‖cosθ + (‖q‖sinθ)A,

q′ = −‖q‖cosθ + (‖q‖sinθ)A.(33)

The quaternion q determines rotations through 2θ about the axis A, and the quater-

nion q′ determines rotation through −2θ about the same axis.

If p 6= p′ then we may take (p̄− p̄′) to be a coordinate axis in the plane V . Let xV

be the projection of the quaternion x onto the plane V . Since ‖p‖ = ‖p′‖, we have

‖pV ‖2 = ‖p‖2 − ‖pℜ‖
2 − ‖pA‖

2 = −‖p′‖2 − ‖p′ℜ‖
2 − ‖p′A‖

2 = ‖p′V ‖2

and we consider the two geometries shown in Figure 3.

In either case,

‖p̄ − p̄′‖ = 2‖pV ‖sinα

and it follows from (33) that

(34)
‖q − q′‖2

‖p − p′‖2
‖p̄− p̄′‖ =

4‖q‖2cos2θ

2‖pV ‖sinα
.

Since p̄ℜ = p̄′ℜ and since p̄A = p̄′A, we have

(35)
q̄p̄q

‖q‖2
−

q̄′p̄′q′

‖q′‖2
=

q̄p̄V q

‖q‖2
−

q̄′p̄′V q′

‖q′‖2
.

It follows from (30) that the right hand side of (35) is a positive multiple of p − p′.

Setting α1 = α or π−α according to the geometry in Figure 3, we need only consider

the two geometries shown in Figure 4. Note that in either case sin(α1 + 2θ) < 0.

We observe that the angle between the two projections is 4π − 2α1 − 4θ (equiva-

lently 2α1 + 4θ − 2π), so that

‖
q̄p̄V q

‖q‖2
−

q̄′p̄′V q′

‖q′‖2
‖ = 2|sin(α1 + 2θ)|‖pV ‖.

Since sin(α1 + 2θ) < 0, we have sin(α1 + 2θ − π) > 0 and (30) implies

4‖q‖2cos2θ − 4sinα1sin(α1 − π + 2θ)‖pV ‖2 = 0

4‖q‖2cos2θ − 4sin(π − α1)sin(α1 − π + 2θ)‖pV ‖2 = 0

4‖q‖2cos2θ − 2(cos2θ − cos2(α1 − π + θ))‖pV ‖2 = 0

4(‖q‖2 − ‖pV ‖2)cos2θ + 2(1 + cos2(α1 − π + θ))‖pV ‖2 = 0.

This is a contradiction since both terms are non-negative.
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Appendix C. ML Optimality of the Reduced-Complexity Decoder.

In this section we will prove the ML optimality of the proposed reduced-complexity

decoding algorithm presented in Section 4. We will start by showing that there is a

unique correspondence between the 2 sets of variables {r̃i} and {ri} for i = 1, · · · , 4.

We will also show that only the real part of {r̃i} contains relevant information for

the decoder. The one-to-one mapping between {r̃i} and {ri} and the information

sufficiency in the real part of {r̃i} guarantee that the proposed reduced-complexity

decoding scheme is ML optimum and there is no loss of information in the proposed

pre-processing stage.

We start with Equations (17) and (20)-(22) for r̃i where i = 1, · · · , 4. To simplify

notation, we omit the additive noise term for the remaining part of this appendix and

get

r̃1 = h1r̄1 + r2h̄2,

r̃2 = h1ir̄1 + r2(q̄iq)h̄2,

r̃3 = h1jr̄1 + r2(q̄jq)h̄2,

r̃4 = h1kr̄1 + r2(q̄kq)h̄2.

The above set of equations, after left multuplication by h̄1, −ih̄1, −jh̄1, and −kh̄1,

respectively, are expressed as

h̄1r̃1 = r̄1 + h̄1r2h̄2,

−ih̄1r̃2 = r̄1 − ih̄1r2(q̄iq)h̄2,

−jh̄1r̃3 = r̄1 − jh̄1r2(q̄jq)h̄2,

−kh̄1r̃4 = r̄1 − kh̄1r2(q̄kq)h̄2.

Next, we assume that there exist r′1 and r′2, in addition to r1 and r2, which can

result in the same r̃i for i = 1, · · · , 4 and check if we reach a contradiction. Let us

define

d1 = r1 − r′1,

d2 = r2 − r′2.

We can rewrite the expressions for r̃1 and r̃2 in terms of d1 and d2 as follows 5

d̄1 + h̄1d2h̄2 = 0,(36)

d̄1 − ih̄1d2q̄iqh̄2 = 0.(37)

5We chose to work with r̃1 and r̃2; however, any two of them can be used.



A NEW QUATERNIONIC SPACE-TIME CODE 115

From (36) and (37), we have

h̄1d2h̄2 = −ih̄1d2q̄iqh̄2

=⇒ h̄1d2h̄2h2 = −ih̄1d2q̄iqh̄2h2

=⇒ h̄1d2q̄ = −ih̄1d2q̄iqq̄

=⇒ (h̄1d2q̄)i = i(h̄1d2q̄).

Both i and h̄1d2q̄ are members of the non-commutative quaternionic group. This

commutative property between i and h̄1d2q̄ can hold only if h̄1d2q̄ is a scalar constant

which is a clear contradiction to our assumption that the information symbol q is

randomly drawn from a set of 2× 2 arrays of complex symbols, (a.k.a. quaternions).

Therefore, the above equality can hold only if

h̄1d2q̄ = 0.

The intrinsic non-zero condition on h̄1 and q̄ leads to

d2 = 0

=⇒ r2 = r′2.

Therefore, we conclude that the mapping between the two set {r̃i} and {ri} for i =

1, · · · , 4 is one-to-one. To complete the proof, we need to show that processing only

the real part of {r̃i} does not cause any loss of information. As an example, we will

show next that ℜ(r̃2) = ℜ(h1ir̄1 + r2(q̄iq)h̄2) contains sufficient information for the

ML detection of p1.

From (20),

r̃2 = h1(ip̄)h̄1 + h2
q̄p̄iq

‖q‖2
h̄2

where h1, h2, p and q are quaternions, and h1 and h2 comprise the channel realizations

for antennas (1, 2) and (3, 4), respectively.

First Term :

h1(ip̄)h̄1 = (h1,0 + h1,1i + h1,2j + h1,3k)i(p0 − p1i − p2j − p3k)(h1,0 − h1,1i − h1,2j − h1,3k)

= (h1,0 + h1,1i + h1,2j + h1,3k)(p1 + p0i + p3j − p2k)(h1,0 − h1,1i − h1,2j − h1,3k)

= [(h1,0p1 − h1,1p0 − h1,2p3 + h1,3p2)| {z }
c1

+ (h1,0p0 + h1,1p1 − h1,2p2 − h1,3p3)| {z }
c2

i +

(h1,0p3 + h1,1p2 + h1,2p1 + h1,3p0)| {z }
c3

j + (−h1,0p2 + h1,1p3 − h1,2p0 + h1,3p1)| {z }
c4

k]

(h1,0 − h1,1i − h1,2j − h1,3k)

= (c1h1,0 + c2h1,1 + c3h1,2 + c4h1,3) + (−c1h1,1 + c2h1,0 − c3h1,3 + c4h1,2)i +

(−c1h1,2 + c2h1,3 + c3h1,0 − c4h1,1)j + (−c1h1,3 − c2h1,2 + c3h1,1 + c4h1,0)k.
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Therefore, the real part of this first term is given by

ℜ(h1(ip̄)h̄1) = c1h1,0 + c2h1,1 + c3h1,2 + c4h1,3

= h1,0p1h1,0 − h1,1p0h1,0 − h1,2p3h1,0 + h1,3p2h1,0 + h1,0p0h1,1 + h1,1p1h1,1

−h1,2p2h1,1 − h1,3p3h1,1 + h1,0p3h1,2 + h1,1p2h1,2 + h1,2p1h1,2 + h1,3p0h1,2

−h1,0p2h1,3 + h1,1p3h1,3 − h1,2p0h1,3 + h1,3p1h1,3

= (h2
1,0 + h

2
1,1 + h

2
1,2 + h

2
1,3)p1

= ‖h1‖
2
p1.

Similarly, by expanding the i, j and k parts of this first term, it can be easily verified

that they do not contain any information about p1 and hence are irrelevant for its

ML detection.

Second Term :

h2

q̄p̄iq

‖q‖2
h̄2 = [(h2,0 + h2,1i + h2,2j + h2,3k)(q0 − q1i − q2j − q3k)(p0 − p1i − p2j − p3k)i

(q0 + q1i + q2j + q3k)(h2,0 − h2,1i − h2,2j − h2,3k)]
1

‖q‖2
.

The expansion of the second term also involves a similar approach with quaternionic

multiplication. Due to space limitation, we are not providing the detailed calculation

for the second term. It is straightforward (but tedious!) to show that the real part

of this second term is equal to ‖h2‖
2p1 and its i, j and k parts will not provide any

information about p1 and hence are irrelevant for its ML detection.

Therefore, we can claim that

ℜ(r̃2) = ℜ(h1(ip̄)h̄1 + h2
q̄p̄iq

‖q‖2
h̄2)

contains sufficient information for ML detection of p1 without any loss of information.

Following the same approach, we can also show that ℜ(r̃1), ℜ(r̃3), and ℜ(r̃4) are

sufficient statistics for the ML detection of p0, p2 and p3, respectively.
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Fig. 5. Performance comparison between coherent and differential decoding in quasi-static fading.
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Fig. 6. Performance comparison between perfect CSI and estimated CSI in quasi-static fading.
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Fig. 7. Performance comparison between differential and pilot-based decoding schemes in time-

varying channel.
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Fig. 8. Performance improvement by adding a second receive antenna.
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Fig. 9. Performance comparison between the proposed code and the rate-1 quasi-orthogonal

design.
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Fig. 10. Frame error rate comparison between proposed code and rate- 1
2

orthogonal design at

2 bits PCU.
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Fig. 11. Effective throughput comparison between proposed code and octonion code.
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Fig. 12. Effective throughput comparison between proposed code and octonion code. Both are

combined with an outer RS(15,11) code.
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Fig. 13. Performance comparison between our proposed code (with 1 and 2 receive antennas)

and SISO transmission. Both are combined with OFDM in an 802.16 scenario.


