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DECENTRALIZED CONTROL OF LARGE-SCALE UNCERTAIN

NONLINEAR SYSTEMS BY LINEAR OUTPUT FEEDBACK∗

MICHAEL T. FRYE† , CHUNJIANG QIAN†, AND RICHARD COLGREN‡

Abstract. This paper studies the problem of global decentralized control by output feedback for

large-scale uncertain systems whose subsystems are interconnected not only by their outputs but also

by their unmeasurable states. We show that under a linear growth condition, there is a decentralized

output feedback controller rendering the closed-loop system globally exponentially stable. This is

accomplished by extending an output feedback domination design that requires only limited infor-

mation about the nonlinear system. We will apply our design to lower, upper, and non-triangular

nonlinear systems. The significance of our results is that we do not need to have prior information

about the nonlinearities of the system. Furthermore, we need to only employ a linear observer in

combination with a linear controller to stabilize the system. A time-varying output feedback con-

troller is also constructed for use with large-scale systems that have unknown parameters.

1. Introduction. Decentralized control of interconnected systems has been an
area of considerable research due to its obvious practical application to current prob-
lems in the field of controls. Large-scale systems have very complex dynamic models
due to the uncertain environment, the varying system parameters, and the intercon-
nected structure of the system. Also it is inevitable that nonlinearities are prevalent
throughout the dynamics of the interconnected systems. All these issues make the
stabilization of such large-scale systems a difficult control problem. Though quite
challenging, the research of large-scale systems are relevant to such areas as commu-
nication networks, satellite constellations, and the formation control of autonomous
vehicles.

The research of large-scale nonlinear systems began in the late 1960’s and early
1970’s. One of the earliest investigations into the nonlinear issues of large-scale sys-
tems centered around time-varying stabilization [2]. The early research in [7] demon-
strated a method of using high-gain state feedback to stabilize the nonlinearities of
the large-scale systems. The research in the early 1980’s focused on the use of state
feedback to globally stabilize large-scale nonlinear systems. Adaptive control was ap-
plied in [3] to stabilize a class of large-scale nonlinear systems with success. Output
feedback had also been applied to linear large-scale system in such papers as [1], [15],
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and [11] during the same time. The use of output feedback has certain apparent ad-
vantages because of the fact that not all of the state variables of a large-scale system
can be measured. An interesting paper [18], which applied static output feedback to
nonlinear large-scale systems, used a linear quadratic method to develop a sufficient
condition for stability of the large-scale system on a closed connected set. The use of
adaptive control and output feedback was applied in [5] and [4]. [6] discussed output
feedback and disturbance rejection for large-scale systems with disturbances while the
issue of robustness of output feedback was studied in [10].

Most of the existing decentralized output feedback results are developed for large-
scale systems interconnected only by the outputs. There are very few results dealing
with large-scale systems interconnected by unmeasurable states. One existing result
is the work [18] which dealt with nonlinear functions that can depend on unbounded
unmeasurable states, however the result is not a global one. In fact, due to the use of
a quadratic method, the static output controller proposed in [18] could only stabilize
the system on a closed connected set. Currently, the problem of global decentralized
control of large-scale systems interconnected by unbounded unmeasurable states is
quite open. The major difficulty in implementing an output feedback controller for
highly interconnected large-scale systems is due to the fact that for each subsystem,
the presence of unmeasurable states of the other subsystems makes the design of the
decentralized output feedback controller very complicated. In other words, it is very
challenging to design a global stabilizer for one subsystem only using its output while
this subsystem is also driven by the unmeasurable states of the other subsystems.

When the nonlinear functions are not Lipschitz in unmeasurable states or have
uncertainties associated with unmeasurable states, the paper [13] was able to provide a
method of constructing a linear output feedback stabilizer using a feedback domination
design method under a linear growth condition. In this paper, we extend the results
from [13] and apply them to m subsystems that are highly interconnected through all
the unmeasurable states. Under a linear growth condition imposed on the uncertain
nonlinear vector fields, we will design a linear controller for each subsystem using only
its own output. As shown in [13], this output feedback controller needs no information
of the uncertain nonlinearities. The new structure of the observer and controller
will enable us to overcome the difficulty in dealing with the output feedback control
problem in the presence of unmeasurable states in each subsystem. A combination of
the observers and controllers constructed for each subsystem will globally stabilize the
whole large-scale system. Our design method will be implemented for lower-triangular,
upper-triangular, and non-triangular uncertain nonlinear systems.

This paper is organized as follows: Section 2 introduces the Problem Statement,
where we will present our assumption that utilizes a growth condition for bounding
the nonlinearities of m subsystems. In Section 3, we will present our main result
for lower-triangular systems and demonstrate that a linear observer coupled with its
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output feedback controller can globally stabilize a large-scale system comprised of
m subsystems. Section 4 extends our design method to upper-triangular nonlinear
systems. In Section 5, we extend the results to systems with non-triangular structures
and when the growth rate is unknown. Finally we summary our results in Section 6.

2. Problem Statement. In this paper, we consider the following class of large-
scale uncertain nonlinear systems comprised of m subsystems,

Subsystem 1:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ẋ11 = x12 + f11(x, d(t))
ẋ12 = x13 + f12(x, d(t))

...
ẋ1n = u1 + f1n(x, d(t))

y1 = x11

...

Subsystem i:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ẋi1 = xi2 + fi1(x, d(t))
ẋi2 = xi3 + fi2(x, d(t))

...
ẋin = ui + fin(x, d(t))

yi = xi1

(2.1)

...

Subsystem m:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ẋm1 = xm2 + fm1(x, d(t))
ẋm2 = xm3 + fm2(x, d(t))

...
ẋmn = um + fmn(x, d(t))

ym = xm1

where xi = (xi1, · · · , xin), i = 1, · · · ,m, x = (x1, · · · , xm), is the state, yi is the
output, ui is the control input, d(t) is a bounded unknown disturbance, and fij is a
function satisfying the following condition.

Assumption 2.1. For i = 1, · · · , m and j = 1, · · · , n, there is a constant c ≥ 0
such that

|fij(x, d(t))| ≤ c(|x11| + · · · + |x1j | + |x21| + · · ·
+|x2j | + · · · + |xm1| + · · · + |xmj |).(2.2)

The objective of this paper is to design a dynamic compensator and controller of the
form

ξ̇i = Mξi + Nyi, M ∈ IRn×n, N ∈ IRn

ui = Kξi, K ∈ IR1×n, i = 1, · · · , m(2.3)
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such that the closed-loop system (2.1) and (2.3) is globally exponentially stable (GES)
at the equilibrium (x, ξ) = (0, 0).

Remark 2.2. System (2.1) under Assumption 2.1 represents a class of large-
scale systems whose subsystems are interconnected not only by their outputs but also
by their unmeasurable states. Moreover, those unmeasurable states in (2.1) will not
disappear in the bounding functions in (2.2). For example, in the following system

Subsystem 1

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ẋ11 = x12

ẋ12 = u1 + d(t)x12 + d(t)x22,

y1 = x11,

where d(t) ∈ [1, 2]

Subsystem 2

⎧⎪⎨
⎪⎩

ẋ21 = x22

ẋ22 = u2 + ln(1 + x2
12) + x22 sin(x22)

y2 = x21.

Subsystem 1 and Subsystem 2 are interconnected through the unmeasurable state
x12 and x22 that cannot be eliminated even in the bounding functions. Due to this
reason, the problem of global decentralized control of Subsystem 1 and Subsystem 2
by output feedback is challenging.

This paper will show how a linear output feedback controller of the form (2.3) can
be recursively constructed to globally stabilize system (2.1) under Assumption 2.1.
An advantage of our design method is that the precise knowledge of the nonlinearities
or uncertainties of the systems does not need to be known. What is really needed is
the growth rate c of the bounding function of the uncertain nonlinearities as shown
in Assumption 2.1. This feature makes it possible to stabilize m uncertain intercon-
nected subsystems using very limited information even though the subsystems are
interconnected through unmeasurable states.

3. Output Feedback Domination with High Gain. In this section, we prove
that under Assumption 2.1 there exists a globally stabilizing output feedback con-
troller for system (2.1). This is done by using a new output feedback domination
design which explicitly constructs a linear output feedback control law without re-
quiring the precise knowledge of the nonlinearities in system (2.1).

Theorem 3.1. Under Assumption 2.1, there exists a linear output feedback con-
troller (2.3) that renders the large-scale interconnected system (2.1) globally exponen-
tially stable.

Proof. In order to prove Theorem 3.1, we utilize the output feedback domination
design first proposed in [13] to design a linear observer and controller for each indi-
vidual subsystem. With these m observers and controllers, it can be shown that the
closed-loop system is globally exponentially stable after a large enough gain has been
carefully chosen.
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A. LINEAR OBSERVER DESIGN

We begin by designing the following linear observer for subsystem i

˙̂xi1 = x̂i2 + La1(xi1 − x̂i1)
...

˙̂xi(n−1) = x̂in + L(n−1)an−1(xi1 − x̂i1)

˙̂xin = ui + Lnan(xi1 − x̂i1)(3.1)

where L ≥ 1 is a gain parameter to be determined later, and aj > 0, j = 1, · · · , n,

are coefficients of the Hurwitz polynomial p(s) = sn + a1s
(n−1) + · · · + an−1s + an.

Define the following error term eij = xij − x̂ij , j = 1, · · · , n. A simple calculation
using the error term yields the following error dynamics:

ėi1 = ei2 − La1ei1 + fi1(x, d(t))
...

ėi(n−1) = ein − Ln−1an−1ei1 + fi(n−1)(x, d(t))

ėin = −Lnanei1 + fin(x, d(t)).

Next, we introduce the following change of coordinates ξij = eij

Lj−1 , j = 1, · · · , n to
obtain a new error dynamic

ξ̇i = LAξi +

⎡
⎢⎢⎢⎢⎣

fi1(x, d(t))
fi2(x,d(t))

L
...

1
Ln−1 fin(x, d(t))

⎤
⎥⎥⎥⎥⎦(3.2)

where

ξi =

⎡
⎢⎢⎢⎢⎣

ξi1

ξi2

...
ξin

⎤
⎥⎥⎥⎥⎦ , A =

⎡
⎢⎢⎢⎢⎣

−a1 1 · · · 0
...

...
. . .

...
−an−1 0 · · · 1
−an 0 · · · 0

⎤
⎥⎥⎥⎥⎦ .

A is a Hurwitz matrix. Therefore, there is a positive definite matrix P = PT > 0
such that

AT P + PA = −I.
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Consider the Lyapunov function Vξi = ξT
i Pξi. The derivative of Vξi along (3.2) is,

V̇ξi = −L‖ξi‖2 + 2ξT
i P

⎡
⎢⎢⎢⎢⎣

fi1(x, d(t))
fi2(x,d(t))

L
...

fin(x,d(t))
Ln−1

⎤
⎥⎥⎥⎥⎦

≤ −L‖ξi‖2 + 2‖P‖‖ξi‖
(
|fi1| + 1

L
|fi2| + · · · + 1

Ln−1
|fin|

)
.

By Assumption 2.1,

|fi1(x, d(t))| ≤ c(|x11| + · · · + |xm1|)
|fi2(x, d(t))|

L
≤ c

L
(|x11| + · · · + |xm1| + |x12| + · · · + |xm2|)

...
|fin(x, d(t))|

Ln−1
≤ c

Ln−1
(|x11| + · · · + |xm1| + |x12| + · · ·

+|xm2| + · · · + |x1n| + · · · + |xmn|).

Therefore, letting c1 = 2‖P‖c, we have

V̇ξi ≤ −L‖ξi‖2 + c1‖ξi‖[(1 +
1
L

+ · · · + 1
Ln−1

)|x11| + (
1
L

+ · · · + 1
Ln−1

)|x12|

+ · · ·+ 1
Ln−1

|x1n| + (1 +
1
L

+ · · · + 1
Ln−1

)|x21| + (
1
L

+ · · · + 1
Ln−1

)|x22|

+ · · ·+ 1
Ln−1

|x2n| + · · · + (1 +
1
L

+ · · · + 1
Ln−1

)|xm1|

+(
1
L

+ · · · + 1
Ln−1

)|xm2| + · · · + 1
Ln−1

|xmn|]

≤ −L‖ξi‖2 + c1‖ξi‖([n|x11| + 1
Ln−1

|x12| + · · · + 1
Ln−1

|x1n| + n|x21|

+
n− 1

L
|x22| + · · · + 1

Ln−1
|x2n| + · · · + n|xm1| + · · · + 1

Ln−1
|xmn|])

≤ −L‖ξi‖2 + c2‖ξi‖[(|x11| + · · · + |xm1|) +
1
L

(|x12| + · · · + |xm2|) + · · ·

+
1

Ln−1
(|x1n| + · · · + |xmn|)],

for a constant c2 > 0. Define zij = x̂ij

Lj−1 , j = 1, · · · , n. This, together with the fact
that xij = x̂ij + Lj−1ξij , implies∣∣∣∣ 1

Lj−1
xij

∣∣∣∣ ≤
∣∣∣∣ 1
Lj−1

x̂ij

∣∣∣∣ + |ξij | = |zij | + |ξij |, j = 1, · · · , n.

With this in mind, it is not difficult to deduce that

V̇ξi ≤ −L‖ξi‖2 +
√

nc2‖ξi‖ (‖z1‖ + · · · + ‖zm‖ + ‖ξ1‖ + · · · + ‖ξm‖)
≤ −L‖ξi‖2 + c3‖z1‖2 + c3‖z2‖2 + · · ·

+c3‖zm‖2 + c3‖ξ1‖2 + c3‖ξ2‖2 + · · · + c3‖ξm‖2(3.3)
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for a constant c3 > 0.
B. CONTROLLER DESIGN
Under the new coordinates zij = x̂ij

Lj−1 , j = 1, · · · , n, system (3.1) becomes

żi1 = Lzi2 + La1ξi1

...

żi(n−1) = Lzin + Lan−1ξi1

żin =
1

Ln−1
ui + Lanξi1.(3.4)

Construct ui = −Ln[k1zi1 + k2zi2 + · · ·+ knzin], where k1, · · · , kn are the coefficients
of the Hurwitz polynomial sn + knsn−1 + · · · + k2s + k1 = 0. Under this controller,
system (3.4) can be written in the following compact form,

żi = LBzi + LDξi1(3.5)

where

zi =

⎡
⎢⎢⎢⎢⎣

zi1

zi2

...
zin

⎤
⎥⎥⎥⎥⎦ , D =

⎡
⎢⎢⎢⎢⎣

a1

a2

...
an

⎤
⎥⎥⎥⎥⎦ , B =

⎡
⎢⎢⎢⎢⎣

0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

−k1 −k2 · · · −kn

⎤
⎥⎥⎥⎥⎦ .

For Hurwitz matrix B, there is a positive definite matrix Q = QT > 0 such that

BT Q + QB = −I.

Consider the following Lyapunov function Vzi = zT
i Qzi. By the necessary substitution

we are arrive at the following equations,

V̇zi = −L‖zi‖2 + 2zT
i LQDξi1

≤ −L‖zi‖2 + Lc4‖zi‖‖ξi‖, c4 = 2‖QD‖,
≤ −1

2
L‖zi‖2 + Lc5‖ξi‖2, c5 =

c2
4

2
.(3.6)

Construct the following Lyapunov function

Wi = (1/2 + c5)Vξi + Vzi .

Using equations (3.3) and (3.6), one has

Ẇi = (1/2 + c5) ˙Vξi + ˙Vzi

≤ −L(1/2 + c5)‖ξi‖2 + c6‖z1‖2 + c6‖z2‖2 + · · · + c6‖zm‖2

+c6‖ξ1‖2 + c6‖ξ2‖2 + · · · + c6‖ξm‖2 − 1
2
L‖zi‖2 + Lc5‖ξi‖2

= −1
2
L‖ξi‖2 − 1

2
L‖zi‖2 + c6‖z1‖2 + · · · + c6‖zm‖2

+c6‖ξ1‖2 + · · · + c6‖ξm‖2,(3.7)



198 MICHAEL T. FRYE, CHUNJIANG QIAN, AND RICHARD COLGREN

where c6 = (1/2 + c5)c3. Consequently, for m subsystems we have

m∑
i=1

Ẇi ≤ −
(

1
2
L − mc6

) m∑
i=1

‖ξi‖2 −
(

1
2
L − mc6

) m∑
i=1

‖zi‖2.(3.8)

If the gain L is made large enough, the right hand side of (3.8) will be negative definite.
Hence, the closed-loop system will be globally exponentially stable (GES).

Remark 3.2. In contrast to the common observer design that typically uses a
copy of the nonlinear system, we design only a linear observer for each subsystem in
the large-scale system (2.1). Such a construction has enabled us to deal with difficult
issues caused by the uncertainties or nonlinearities of the systems in the single system
case [13]. In this paper, this new construction of the observer and controller also lets us
avoid dealing with the nonlinear functions of the interconnected unmeasurable states.
Consequently, this feedback domination design leads to a solution to the problem of
decentralized output feedback control of system (2.1).

Remark 3.3. It is worthwhile pointing out that the observer and controller for
each system have the same structure. Hence, after we construct one output feedback
controller for one of the subsystems, we can duplicate the controller for the other
m − 1 subsystems. This property will reduce the design time and implementation
cost for the control design of system (2.1).

Remark 3.4. Note that in system (2.1) all the subsystems have the same
dimension (i.e. n). However, if the dimensions of m subsystems are different, we are
still able to achieve similar stabilization result under Assumption 2.1 with different
dimensional variables. The only difference is that the dimension of the observer will
be consistent with the dimension of the corresponding subsystem.

In what follows, a two-system model will be simulated based on the design pro-
cedures developed for output feedback domination with high gain.

Example 3.5. Consider the following interconnected nonlinear system,

x1 = x2

ẋ2 = u + y2 sinx2

xoutput = x1

ẏ1 = y2

ẏ2 = v + d(t) ln(1 + y2
2) + d(t)x2

youtput = y1

(3.9)

where d(t) is a disturbance bounded by a known constant. As (3.9) shows, the x-
system and y-system are coupled through the unmeasurable states (x2, y2). Moreover,
the unmeasurable states are associated with unknown disturbances. Therefore, most
of the existing output feedback control design procedures will fail to be applicable to
(3.9). On the other hand, it is easy to verify that Assumption 2.1 holds for (3.9). By
Theorem 3.1, we are able to design an output feedback controller for (3.9).
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Fig. 1. (x1(0), x2(0)) = (.2, 3) (x̂1(0), x̂2(0)) = (0, 0) (y1(0), y2(0)) = (−.2,−3) (ŷ1(0), ŷ2(0)) =

(0, 0).

Specifically, we construct the observer as follows,

˙̂x1 = x̂2 + 0.42L(x1 − x̂1)

˙̂x2 = u + 4.2L2(x1 − x̂1)

˙̂y1 = ŷ2 + 0.42L(y1 − ŷ1)

˙̂y2 = v + 4.2L2(y1 − ŷ1).(3.10)

The control laws to be implemented are

u = −28.6L2x̂1 − 25.7Lx̂2

v = −28.6L2ŷ1 − 25.7Lŷ2,(3.11)

where the gain L was calculated to be 20. Figure 1 illustrates the response of the
closed-loop system (3.9)-(3.10)-(3.11).

Remark 3.6. As shown in [13], the output feedback domination design has the
universal property that enables us to use a single output feedback controller to stabilize
a family of nonlinear systems satisfying the same growth condition. This property is
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Z X Y

Fig. 2. Three Vehicles Linked by Dampers.

also valid in the decentralized case. For example, the same output feedback controller
(3.10)-(3.11) for (3.9) will also stabilize the following system,

x1 = x2

ẋ2 = u + d(t)
√|x2y2|

xoutput = x1

ẏ1 = y2

ẏ2 = v + d(t)(1 − e−|y2|) + x2 sin x2

youtput = y1.

(3.12)

Example 3.7.

Figure 2 illustrates a practical application of the high gain technique for intercon-
nected systems that was discussed in this section. Figure 2 has three vehicles that are
interconnected by dampers and can be modeled by the following system of equations,

ẋ1 = x2

ẋ2 = u + f(t)(y2 − 2x2 + z2)
xoutput = x1

ẏ1 = y2

ẏ2 = v + f(t)(x2 − y2)
youtput = y1

ż1 = z2

ż2 = w + f(t)(x2 − z2)
zoutput = z1

(3.13)

where f(t) ∈ [−1, +1] is an uncertain damping function, and x1, y1, and z1 are the
positions for each vehicle respectively. A typical control objective for system (3.13)
is as a reference or tracking problem where the connected vehicles are required to
follow a particular trajectory. Closely examining system (3.13), it is apparent that
the linear growth condition of Assumption 2.1 is met and therefore an output feedback
controller can be designed based on Theorem 3.1.
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4. Output Feedback Domination with Low Gain. We now extend our re-
sults from the previous section to examine the global stabilization of upper-triangular
systems. The decentralized control of a nonlinear upper-triangular system which has
subsystems that are interconnected not only by their measured states but also by their
unmeasurable states is a challenging problem due to the many practical applications
that can be characterized as being in an upper-triangular form. The control of many
mechanically underactuated systems can be modeled as an upper-triangular [16] sys-
tem. One such decentralized control problem is the formation control of a group of
carts with inverted pendulums. Another interconnected upper-triangular stabiliza-
tion problem is the vertical landing of an autonomous aircraft onto the pitching deck
of a ship. The issue of stabilization of upper-triangular nonlinear systems is of im-
mense practical importance due to the many technical applications that exist in this
area. Unfortunately, this area is not well studied and little research has been done in
either state feedback or output feedback stabilization methods for upper-triangular
nonlinear systems.

In this section we implement a linear output feedback controller to stabilize a
nonlinear interconnected system under the following upper-triangular growth condi-
tion.

Assumption 4.1. For i = 1, · · · , m and j = 1, · · · , n − 1, there is a constant
c ≥ 0 such that

|fij(x, u(t))| ≤ c(|x1(j+2)| + · · · + |x1(n+1)| + |x2(j+2)| + · · · + |x2(n+1)| + · · ·
+|xm(j+2)| + · · · + |xm(n+1)|)

|fin(x, u(t))| = 0, ∀ x, u, t

where xi(n+1) = ui.

Theorem 4.2. Under Assumption 4.1, there exists a linear output feedback con-
troller (2.3) that renders an upper-triangular interconnected system of the form of
system (2.1) globally exponentially stable.

Proof. In order to prove Theorem 4.2, we follow a proof similar in structure to
the previous section on lower-triangular systems but with the difference being that a
small gain needs to be carefully chosen in order to prove that the closed loop system
is globally exponentially stable.
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A. LINEAR OBSERVER DESIGN

We begin by designing the following linear observer for subsystem i

˙̂xi1 = x̂i2 + εa1(xi1 − x̂i1)

˙̂xi2 = x̂i3 + ε2a2(xi1 − x̂i1)
...

˙̂xi(n−1) = x̂in + ε(n−1)an−1(xi1 − x̂i1)

˙̂xin = ui + εnan(xi1 − x̂i1)(4.1)

where 0 < ε < 1 is a gain parameter to be determined later, and aj > 0, j = 1, · · · , n,

are coefficients of the Hurwitz polynomial p(s) = sn + a1s
(n−1) + · · · + an−1s + an.

Similar to the previous section, by defining the error term eij = xij − x̂ij , j =
1, · · · , n, and the change of coordinates ξij = eij

εj−1 , j = 1, · · · , n, we have the
following error dynamics

ξ̇i = εAξi +

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

fi1(x, u(t), d(t))
fi2(x,u(t),d(t))

ε
...

fin−2(x,u(t),d(t))
εn−3

fi(n−1)(x,u(t),d(t))

εn−2

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.2)

with

ξi =

⎡
⎢⎢⎢⎢⎣

ξi1

ξi2

...
ξin

⎤
⎥⎥⎥⎥⎦ , A =

⎡
⎢⎢⎢⎢⎣

−a1 1 · · · 0
...

...
. . .

...
−an−1 0 · · · 1
−an 0 · · · 0

⎤
⎥⎥⎥⎥⎦ .

Consider the Lyapunov function Vξi = ξT
i Pξi, where P is a positive definite matrix

P = PT > 0 such that

AT P + PA = −I.

The derivative of Vξi along (4.2) is,

V̇ξi = εξi
T (AT P + PA)ξi + 2ξi

T P

[
fi1(x, d(t)), . . . ,

fi(n−1)(x, u(t), d(t))
εn−2

, 0
]T

≤ −ε‖ξi‖2 + c0‖ξi‖
(
|fi1| + 1

ε
|fi2| + · · · + 1

εn−2
|fi(n−1)| + 0

)
,(4.3)

c0 = 2‖P‖.
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Based on Assumption4.1,

|fi1(x, d(t))| ≤ c(|x13| + · · · + |x1(n+1)| + · · · + |xi3| + · · ·
+|xi(n+1)| + · · · + |xm3| + · · · + |xm(n+1)|)

|fi2(x, d(t))|
ε

≤ 1
ε
c(|x14| + · · · + |x1(n+1)| + · · · + |xi4| + · · ·

+|xi(n+1)| + · · · + |xm4| + · · · + |xm(n+1)|)
...

|fi(n−2)(x, d(t))|
εn−3

≤ 1
εn−3

c(|x1n| + |x1(n+1)| + · · · + |xin|
+|xi(n+1)| + · · · + |xmn| + |xm(n+1)|)

|fi(n−1)(x, d(t))|
εn−2

≤ 1
εn−2

c(|u1| + · · · + |um|).

Therefore,

c0

(
|fi1| + 1

ε
|fi2| + · · · + 1

εn−2
|fi(n−1)|

)

≤ c1(|x13| + (1 +
1
ε
)|x14| + (1 +

1
ε

+
1
ε2

)|x15| + · · ·

+(1 +
1
ε

+
1
ε2

+ · · · + 1
εn−3

)|x1n| + (1 +
1
ε

+
1
ε2

+ · · · + 1
εn−2

)|u1|

+ · · ·+ |xm3| + (1 +
1
ε
)|xm4| + (1 +

1
ε

+
1
ε2

)|xm5| + · · ·

+(1 +
1
ε

+
1
ε2

+ · · · + 1
εn−3

)|xmn| + (1 +
1
ε

+
1
ε2

+ · · · + 1
εn−2

)|um|)

where c1 = c × c0. Assuming that ε is a small gain, we have the following condition,

(1 +
1
ε

+ · · · + 1
εi−1

) ≤ 1
εi−1

(i) ≤ 1
εi−1

(n − 1),

where i ≤ (n − 1). Therefore we can develop the following equation,

c0(|fi1| + 1
ε
|fi2| + · · · + 1

εn−2
|fi(n−1)|)

≤ c2

(
|x13| + 1

ε
|x14| + 1

ε2
|x15| + · · · + 1

εn−3
|x1n| +

1
εn−2

|u1|

+ · · ·+ |xm3| + 1
ε
|xm4| +

1
ε2

|xm5| + · · · + 1
εn−3

|xmn| + 1
εn−2

|um|
)

,

for a constant c2 = (n − 1)c1. With this in mind, Equation (4.4) becomes,

V̇ξi ≤ −ε‖ξi‖2 + c2‖ξi‖[(|x13| + |x23| + · · · + |xm3|) +
1
ε
(|x14| + |x24| + · · · + |xm4|)

+
1
ε2

(|x15| + |x25| + · · · + |xm5|) + · · · + 1
εn−3

(|x1n| + |x2n| + · · · + |xmn|)

+
1

εn−2
(|u1| + · · · + |um|)].(4.4)
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Define zij = x̂ij

εj−1 , j = 1, · · · , n. This, together with the fact that xij = x̂ij +εj−1ξij ,
implies

∣∣∣∣ 1
εj−1

xij

∣∣∣∣ ≤ |zij | + |ξij |, j = 1, · · · , n.

B. CONTROLLER DESIGN

We now construct the controller as follows,

ui = −εnk1x̂i1 − εn−1k2x̂i2 − · · · − ε2kn−1x̂i(n−1) − εknx̂in

= εn[−k1,−k2, · · · ,−kn]

⎡
⎢⎢⎢⎢⎣

zi1

zi2

...
zin

⎤
⎥⎥⎥⎥⎦ ,(4.5)

where k1, · · · , kn are the coefficients of the Hurwitz polynomial sn + knsn−1 + · · · +
k2s + k1 = 0. Clearly |ui|

εn−2 ≤ ε2c̄2‖zi‖, for a constant c̄2 > 0.

Using the relationship from Equation (4.4),

V̇ξi ≤ −ε‖ξi‖2 + c2‖ξi‖ε2[|z13| + |z23| + · · · + |zm3|
+|z14| + |z24| + · · · + |zm4| + · · · + |z1n| + |z2n| + · · · + |zmn|]
+|ξ13| + |ξ23| + · · · + |ξm3| + |ξ14| + |ξ24| + · · · + |ξm4|
+ · · · + |ξmn| + c̄2(‖z1‖ + · · · + ‖zm‖)]

≤ −ε‖ξi‖2 + c3ε
2‖z1‖2 + c3ε

2‖z2‖2 + · · ·
+c3ε

2‖zm‖2 + c3ε
2‖ξ1‖2 + c3ε

2‖ξ2‖2 + · · · + c3ε
2‖ξm‖2,(4.6)

for a constant c3 > 0. Using the new coordinates zij = x̂ij

εj−1 and the controller (4.5),
system (4.1) can be written in the following compact form,

żi = εBzi + εDξi1(4.7)

with

zi =

⎡
⎢⎢⎢⎢⎣

zi1

zi2

...
zin

⎤
⎥⎥⎥⎥⎦ , D =

⎡
⎢⎢⎢⎢⎣

a1

a2

...
an

⎤
⎥⎥⎥⎥⎦ , B =

⎡
⎢⎢⎢⎢⎣

0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

−k1 −k2 · · · −kn

⎤
⎥⎥⎥⎥⎦ .

Consider the following Lyapunov function Vzi = zT
i Qzi where P is a positive definite

matrix Q = QT > 0 such that

BT Q + QB = −I.
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By the necessary substitution we arrive at the following equations,

V̇zi ≤ −ε‖zi‖2 + ε2zT
i QDξi1

≤ −ε‖zi‖2 + εc4‖zi‖‖ξi‖, c4 = 2‖QD‖.

By applying the following inequality,

‖zi‖c4‖ξi‖ ≤ ‖zi‖2

2
+

c4
2

2
‖ξi‖2,

the following equation is constructed,

V̇zi ≤ −1
2
ε‖zi‖2 + εc5‖ξi‖2, c5 =

c2
4

2
.(4.8)

Construct the following Lyapunov function

Wi = (1/2 + c5)Vεi + Vzi .

Using equations (4.6) and (4.8), the following Lyapunov function is developed,

Ẇi = (1/2 + c5)V̇ξi + V̇zi

≤ −ε(1/2 + c5)‖ξi‖2 + c6ε
2‖z1‖2 + c6ε

2‖z2‖2

+ · · · + c6ε
2‖zm‖2 + c6ε

2‖ξ1‖2 + c6ε
2‖ξ2‖2

+ · · · + c6ε
2‖ξm‖2 − 1

2
ε‖zi‖2 + εc5‖ξi‖2

= −1
2
ε‖ξi‖2 − 1

2
ε‖zi‖2 + c6ε

2‖z1‖2

+ · · · + c6ε
2‖zm‖2 + c6ε

2‖ξ1‖2 + · · · + c6ε
2‖ξm‖2,(4.9)

c6 = (1/2 + c5)c3.

Consequently, for m subsystems we have

m∑
i=1

Ẇi ≤ −1
2
ε

m∑
i=1

‖ξi‖2 − 1
2
ε

m∑
i=1

‖zi‖2 + c6m‖z1‖2

+ · · · + c6m‖zm‖2 + c6m‖ξ1‖2 + · · · + c6m‖ξm‖2

= −
(

1
2
ε − mc6ε

2

) m∑
i=1

‖ξi‖2 −
(

1
2
ε − mc6ε

2

) m∑
i=1

‖zi‖2.(4.10)

If the gain ε is made small enough, the right hand side of Equation (4.10) will be
negative definite. Hence, the closed-loop system will be GES.

Remark 4.3. In the preceding section, the gain L that was calculated had to
be chosen in such a way that if large enough, the lower-triangular system was GES.
Conversely, when dealing with the output feedback stabilization problem for an upper-
triangle system in the form of system (2.1), the gain ε must be made small enough to
guarantee GES. Furthermore, the gain ε provides a lower bound for stability and is
therefore a quite conservative value.
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We conclude this section with the following example.
Example 4.4. Consider the following nonlinear upper-triangular interconnected

system,

ẋ1 = x2 + x3 sin(y3)d(t) + u
1
3 v

2
3

ẋ2 = x3

ẋ3 = u

xoutput = x1

ẏ1 = y2 + ln(1 + x2
3)d(t)

ẏ2 = y3

ẏ3 = v

youtput = y1

(4.11)

where d(t) is a disturbance bounded by a known constant. As shown in system (4.11),
the x-system and y-system are coupled or interconnected through the unmeasurable
states (x3, y3). Moreover, the unmeasurable states are associated with unknown dis-
turbances. Therefore, most of the existing output feedback control design procedures
will fail to be applicable to system (4.11). On the other hand, it is easy to verify that
Assumption 4.1 holds for system (4.11). By Theorem 4.2, we are able to design an
output feedback controller for system (4.11).

5. Extensions. In this section we will extend our results to deal with non-
triangular systems that have a linear growth condition. Furthermore, we will ex-
amine the case when the growth rate c is unknown for a system and show that by
implementing a time-varying gain our previous results can still be employed.

5.1. Non-triangular Systems. We have proved the output feedback stabiliza-
tion of large-scale systems with both lower-triangular and upper-triangular bounding
functions. In the case when the system does not have a triangular bounding func-
tion, we can still develop a design procedure similar to the previous sections when the
non-triangular system satisfies the following assumption.

Assumption 5.1. For i = 1, · · · , m and j = 1, · · · , n, there is a constant c ≥ 0
such that

|fij(x, d(t))|
Lj−1

≤ c[|x11| + · · · + |xm1| + 1
L

(|x2| + · · · + |xm2|)

+ · · · + 1
Ln−1

(|x1n| + · · · + |xmn|)].(5.1)

Theorem 5.2. Under Assumption 5.1, there exists a linear output feedback con-
troller (2.3) that renders the large-scale interconnected system (2.1) globally exponen-
tially stable.

Proof. The proof is parallel to Theorem 3.1 and is omitted here for brevity.
Example 5.3. It can be shown that by applying Assumption 5.1, we can develop

a controller (2.3) to such non-triangular systems as,

ẋ1 = x2

ẋ2 = x3 + |x3| 12 ln(1 + x2
1)

ẋ3 = u

xoutput = x1

ẏ1 = y2

ẏ2 = y3

ẏ3 = v

youtput = y1.

(5.2)
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In system (5.2), the function ẋ2 = x3 + |x3| 12 ln(1+x2
1) is not bounded by a lower

-triangular function, therefore, Theorem 3.1 is not applicable. However recognizing
that

|x3| 12 ln(1 + x2
1)

L
≤ ln2(1 + x2

1) +
|x3|
L2

≤ |x1| + |x3|
L2

,

a linear growth condition exists for Assumption 5.1. As a consequence, we can con-
struct a controller by Theorem 5.2 such that the closed-loop system is globally expo-
nentially stable.

5.2. Large-scale Systems with Unknown Growth Rate. For the inter-
connected system (2.1), there might be circumstances when the growth rate c in
Assumption 2.1 is unknown. In this section, we show that using the time-varying ob-
server developed in [14], a decentralized output feedback controller with time-varying
gain L(t) can be designed to globally regulate system (2.1) whose nonlinear function
fi,j(x, d(t)) linearly grows at an unknown rate.

Theorem 5.4. Suppose system (2.1) satisfies Assumption 2.1 with unknown
growth rate c. Then, there exists an output feedback controller of the form,

ξ̇i = M(t)ξi + N(t)yi, M(t) ∈ IRn×n, N(t) ∈ IRn

ui = K(t)ξi, K(t) ∈ IR1×n, i = 1, · · · , m,(5.3)

such that all the states of (2.1) and (5.3) are ultimately bounded. Moreover,

lim
t→+∞(x(t), ξ(t)) = 0.

Proof. Theorem 5.4 can be easily proved by combining the time-varying observer
and controller proposed in [14] with the design procedure for Theorem 3.1. The linear
structure of the observer will avoid the difficulties in dealing with the uncertain non-
linear functions while the time-varying gain will suppress the effects of the unknown
growth rate. The proof is parallel to Theorem 3.1 and is omitted here for brevity.

Example 5.5. We apply our time-varying result to system (4.11) to globally
regulate by output feedback when d(t) is bounded by an unknown constant c. By
Theorem 5.4, the following observer is developed using the varying gain L(t),

˙̂x1 = x̂2 + L(t)(x1 − x̂1)

˙̂x2 = u + L2(t)(x1 − x̂1)

˙̂y1 = ŷ2 + L(t)(y1 − ŷ1)

˙̂y2 = v + L2(t)(y1 − ŷ1).(5.4)

The control laws to be implemented are found to be

u = −L2(t)x̂1 − L(t)x̂2

v = −L2(t)ŷ1 − L(t)ŷ2.(5.5)
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Fig. 3. (x1(0), x2(0)) = (1,−1) (x̂1(0), x̂2(0)) = (0, 2) (y1(0), y2(0)) = (−1, 0) (ŷ1(0), ŷ2(0)) =

(5,−1).

Figure 3 illustrates the result due to an implementation of the varying gain L(t) = t+1.

Remark 5.6. Using a similar argument proposed in [14], we can prove that
(x, y, x̂, ŷ) tend to zero exponentially. As a consequence, the observers and controllers
are ultimately bounded even though L(t) is not bounded. In fact, as shown in Figure
3 the states of the system (4.11) and observers (5.4) tend to zero very quickly. In an
actual application of using an increasing L(t) gain, to avoid the issue of an unbounded
L(t) we can saturate the gain after a sufficient amount of time has passed. To employ
a saturation technique, a practical method would be to measure the error between
the reference set point and the current output and after the error has become and
remains acceptably small, the current value of the gain L(t) can be made to no longer
increase.

6. Conclusion. We have presented in this paper, a method of using output
feedback to globally stabilize large-scale nonlinear systems whose m subsystems are
highly interconnected by unmeasurable states. Under the linear growth condition, we
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explicitly construct m sets of linear observers and controllers by only using the output
feedback information of each subsystem. It is shown that global output feedback
stabilization is achieved for the closed-loop system. This design method was applied
to lower-triangular, upper-triangular, and non-triangular nonlinear systems. Also,
observers and controllers using time-varying gain are developed to control large-scale
systems with unknown growth rates. The universal feature of our feedback domination
design enables us to design one output feedback controller and apply it to any system
which satisfies the same growth condition.
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