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FIXED POINTS AND STABILITY OF DENSITY EVOLUTION∗
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Abstract. Density evolution is a dynamic system in a space of probability distributions repre-

senting the progress of iterative decoders in the infinite block length limit. In this paper we establish

some basic results concering this process. In particular we show that the decoding threshold is

equivalent to to appearance of non-trivial fixed point solutions to the density evolution equations.

In the case of LDPC codes we prove the sufficiency of the previously published stability condition

for stability of the δ∞ fixed point and slightly strengthen the necessity result.
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1. Introduction. It is now well-known that turbo codes and low-density parity-
check (LDPC) codes perform exceptionally well under message-passing decoding [1,
2, 3]. Density evolution studies the distribution of the messages exchanged in such
decoders for the limiting case of infinitely long codes [4]. So far, with the exception
of the binary erasure channel (BEC), density evolution for belief propagation has
largely resisted analysis and one has to be content with numerical investigations. In
this paper we present some analysis of density evolution for belief propagation for
(irregular) LDPC codes which reduces the gap between our understanding of the
BEC and the general case.

The first result shows that the decoding threshold [4] of the coding system can be
characterized by the existence or non-existence of non-trivial fixed-point solutions to
the density evolution equations. One fixed point always exists. This is the one that
we call the delta-function-at-infinity and denote by δ∞ that corresponds to perfect
information. We show that the decoding threshold of the coding system is precisely
the point at which other fixed point solutions come into existence. Furthermore, all
fixed points correspond to channels that are strictly better than that associated to
the received distribution: The latter is always physically degraded with respect to that
associated to the fixed point. This is in complete agreement with the BEC where fixed
point probabilities of erasure are always strictly smaller than the channel probability
of erasure.

In general, we would like to be able to analyze the fixed point solutions, in the
hope of being able to show that irregular LDPC codes can approach channel capacity
on channels other than the BEC. Our ability to analyze these fixed points, however,
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has so far been quite limited. The fixed point δ∞ is an exception. This brings us
to the second and main result. When the evolution of the densities has reached a
point where the indicated probability of error is sufficiently small, it might be ex-
pected that the density will actually converge to δ∞ but it is not guaranteed and may
in fact not occur. As we will show, there is a precise analytic condition, the stabil-
ity condition, that differentiates the two possibilities. In many cases of interest the
stability condition turns out to have stronger than expected implications, sometimes
determining the decoding threshold.1 Examples where this occurs include specific
turbo codes for the BEC, several low complexity (non-belief-propagation) decoders
applied to LDPC codes [5], and, as we show in Section 6, circuit codes under belief
propagation decoding.

2. Density Evolution and the Stability Condition. Consider an irregular
LDPC degree distribution pair (λ, ρ) (see [6] for definitions), together with a one pa-
rameter family of channels ordered by physical degradation. Let σ denote the channel
parameter with increasing σ indicating noisier (lower capacity) channels. A typical
example is BPSK signaling over the AWGNC with noise variance σ2. Our main result
shows that there exists a stability threshold σstab such that if σ < σstab, then the fixed
point δ∞ is asymptotically stable and, if σ > σstab, then the fixed point is unstable.
If, under density evolution, the probability of error reaches a sufficiently small value
and δ∞ is stable, then the probability of error is guaranteed to converge to zero.
(Convergence to zero error probability is equivalent to convergence of the message
density to δ∞.) If δ∞ is unstable then, under the same conditions, the probability of
error will be bounded away from zero and will diverge to a positive limiting value for
initial message densities with sufficiently small probability of error.

Density evolution is an iterative process on message densities defined by an update
equation.

P�(Q) = Rλ(ρ(P�−1(Q))) and P0(Q) = Q,

where multiplication under ρ is a certain convolution operation and multiplication
under λ and by R is convolution over R, see [6]. Usually it is used to study decoding
and is initialized with the message density Q = δ0, indicating complete absence of
information. In this paper we will often consider other initializations. We will refer to
the case initialized with δ0 as decoding initiated density evolution. Under decoding
initiated density evolution the probability of error associated to the message density is
monotonically decreasing so the stability threshold is an upper bound on the decoding
threshold, which we denote by σ∗. We recall that the decoding threshold σ∗ is defined
as the largest value such that σ < σ∗ implies that the probability of error tends to
zero under decoding initiated density evolution.

1It can also be used to support efficient approximations to density evolution.
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2.1. Distributions and Densities. The primary objects of interest in the anal-
ysis of decoding LDPC codes are probability distributions of log-likelihood ratios, and
symmetric distributions (see the next section) in particular. The space of these distri-
butions and its basic properties were presented in [6]. We recall the basic definitions
here for sake of completeness.

Let F denote the space of right continuous, non-decreasing functions F defined on
R satisfying limx→−∞ F (x) = 0 and limx→∞ F (x) ≤ 1. To each F ∈ F we associate
a random variable z over (−∞, +∞]. The random variable z has law or distribution
F, i.e., Pr{z ∈ (−∞, x]} = F (x). The reason we allow limx→∞ F (x) ≤ 1 rather
than limx→∞ F (x) = 1 is to permit z to have some probability mass at +∞, indeed
Pr{z = +∞} = 1− limx→∞ F (x). A random variable z over (−∞, +∞] is completely
specified by its distribution Fz ∈ F .

We will work with “densities” over (−∞, +∞] which, formally, can be treated as
(Radon-Nikodyn) derivatives of elements of F . Certain densities appear often in the
analysis. The density δ0 represents the derivative of the distribution F = 1x≥0 and
corresponds to a channel that erases with probability 1. The density δ∞ represents
the derivative of the distribution F = 0 and corresponds to a channel that delivers
bits perfectly.

We say that a sequence of densities f1, f2, . . . converges to the limit f if F1(x),
F2(x), . . . converges to F (x) at all points of continuity of F. We will be most interested
in convergence of densities to δ∞ or, equivalently, convergence of distributions to 0. A
sequence of densities converges to δ∞ if and only if their associated probability of error
(see below for a definition) converges to 0. Thus, stability of δ∞ can be understood
in terms of convergence of probability of error to 0.

The main properties of F we use in this paper are sequential compactness, that
any sequence of densities has a convergent subsequence, and monotonicity under phys-
ical degradation, that any sequence of densities ordered by physical degradation con-
verges to a limit density. For a discussion of physical degradation in this context see
[6].

2.2. Symmetry. To facilitate the analysis we make the standard assumption
that the all ‘1’ codeword was transmitted (we assume BPSK ±1 signaling), this is
done without loss of generality: For channels of interest the density of a received
log-likelihood value R satisfies a certain condition referred to in [6] as the symmetry
condition R(−x) = e−xR(x). Here, and in general, messages and received values are
conditional log-likelihoods on an associated bit (assumed to have been transmitted
as a ‘1’). When the channel satisfies the symmetry condition all message densities
determined by density evolution are symmetric [6]. To any symmetric density P one
can associate a memoryless binary input real output symmetric channel p(·|·) defined
by p(y|x = 1) = P(y) and p(y|x = −1) = P(−y). This association plays a central role
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in our analysis. If R and Q are symmetric, then P�(Q) is symmetric for each � [6].
Given two symmetric densitys Q and P we say P is physically degraded with

respect to Q if the symmetric channel p(· | ·) determined by p(y | x = 1) = P(y) is
physically degraded with respect to the symmetric channel determined by p(y | x =
1) = Q(y). Equivalently, we will say that Q is physically upgraded with respect to P.

2.3. Stability. Let f be any density (not necessarily a probability density, we
extend the definition to distributions whose left limit may be positive and whose right
limit may be larger than 1). Two important functionals that appear in our analysis
are the following:

B(f) :=
∫ ∞

−∞
f(x) e−x/2 dx

P(f) :=
∫ 0−

−∞
f(x) dx +

1
2

∫ 0+

0−
f(x) dx .

If f is the density associated to a symmetric binary channel, then B(f) is the Bhat-
tacharyya constant associated to the channel and P(f) is the hard decision bit error
rate of the channel. Furthermore, we have the inequalities [6]

(1) 2P(f) ≤ B(f) ≤ 2
√
P(f)(1 − P(f)) .

In [6] the following theorem concerning the stability condition for irregular LDPC
codes under belief propagation was stated, although in somewhat different form.

Theorem 1. If

B(R)λ′(0)ρ′(1) > 1,

then the probability of error under density evolution is bounded away from zero. More
generally, there exists a constant γ > 0 such that for any symmetric Q �= δ∞, we have

lim inf
�→∞

P(P�(Q)) ≥ γ.

Conversely, if

B(R)λ′(0)ρ′(1) < 1,

then the probability of error converges to zero once it becomes sufficiently small. More
generally, there exists ε > 0 such that if P(Q) < ε then

lim
�→∞

P(P�(Q)) = 0.

In [6] the necessity of the condition (the first part of the theorem) was proved
with the slightly weaker result

lim inf
�→∞

P(P�(Q)) > 0.
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In this paper we present the first proof of the sufficiency of the condition. We now
present a brief outline of this part.

The density P�(Q) can be interpreted as follows. Consider a random support tree
associated to (λ, ρ) (see [6], and Section 3) with variable node root and variable node
leaves. The tree has � + 1 levels of variable nodes and � levels of constraint nodes;
we say the tree has height 2�. Let the received density associated to the leaves be Q

and let the received density associated to the interior nodes be R. Then P�(Q) is the
posterior density of the log-likelihood of the bit associated to the root node of the
tree, averaged over the randomization inherent in the choice of the tree. (Usually,
one is interested in P�(δ0), the density associated to decoding for � iterations with the
channel modeled by R.)

The goal is to prove that if B(R)λ′(0)ρ′(1) < 1, then lim�→∞ P(P�(Q)) = 0
whenever P(Q) ≤ ε for some sufficiently small ε > 0. The method of proof is to
consider sub-optimal alternative decodings for the tree. A hard decision based on the
root node’s posterior distribution minimizes probability of error, so the probability of
error associated to any other decoding provides an upper bound.

We first consider optimal sequence decoding for the tree. In this decoding we
find the most likely codeword and extract the root bit. Next, maintaining the as-
sumption that the all-1 codeword was transmitted we show that the probability of
error associated to this decoding is bounded above by the probability of error associ-
ated to the decoding of a certain non-linear sub-code. The sub-code consists of the
all-1 codeword and those codewords with −1 in the root that are, in a well-defined
sense, minimal. The performance of the decoding of this non-linear sub-code satisfies
a simple recursion in the height of the tree which, when analyzed, yields the desired
result.

3. Codes and Decoding on Trees . A (λ, ρ)-random (support) tree is defined
as follows. Start with one edge and choose the degree of the attached variable node
randomly according to λ. This node is the root node of the tree. For each of the other
edges emanating from the root node, choose the degree of the attached constraint node
randomly according to ρ. For each of the new edges emanating from the constraint
nodes choose the degree of the attached variable node randomly according to λ. If we
stop at this point we have a (λ, ρ)-randomly chosen tree of height 2, see Fig. 1 for
an example of height 4. The variable nodes added to the tree in the last step are the
leaves of the tree.

Let T be a height 2� tree. The codewords of the tree C(T ) are the {+1,−1} bit
assignments to the variable nodes such that the parity of the bits associated to the
variable nodes neighboring a constraint node is even (the bits multiplied together give
+1.) Note that C(T ) is a linear code: If w, v ∈ C(T ) then wv ∈ C(T ).
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Fig. 1. A (Tanner) graphical representation of an LDPC tree code of height 4.

3.1. The Tree Code. Let v denote a variable node in T and let w ∈ C(T ) be a
codeword associated to T. Let wv ∈ {±1} denote the value of the bit in w associated
to the variable node v in T. We will often refer to the value of a variable node meaning
the value of the associated bit.

We shall be interested in a certain non-linear sub-code of C(T ) which we shall
call the set of primitive codewords of T. These codewords were identified by Wiberg
[7]. A codeword w ∈ C(T ) is a primitive codeword if and only if each constraint node
has at most one variable node child that takes the value −1. Note that if a constraint
node has one variable node child v with wv = −1, then the parent of that constraint
node v′ has wv′ = −1. See Fig. 2 for an example. It follows that the only primitive
codeword with a 1 in the root is the all-1 codeword. Let C−1

prim(T ) denote the set of
primitive codewords with a −1 at the root.

Note that if w is a primitive codeword then the set of nodes taking the value −1
in w comprises a sub-tree of T. Let Ψ(T ) denote the set of primitive sub-trees of T

defined by t ∈ Ψ(T ) if and only if {v ∈ t} = {v ∈ T : wv = −1} for some primitive
codeword w ∈ C−1

prim(T ).

3.2. The Tree Channel. The following construction is conceptually very useful.
We refer to it as the (λ, ρ) �−tree channel. Let (λ, ρ) be a degree distribution pair.
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Fig. 2. A non-primitive codeword and a primitive codeword. Note that the primitive codeword

determines a primitive sub-tree.

Consider the following binary channel. The channel takes the transmitted bit and
generates a (λ, ρ)- random tree of height 2�. A tree codeword is chosen uniformly
at random from those codewords whose root bit matches the transmitted bit. The
receiver is provided with a complete description of the tree and the observation of
each bit in the codeword after passing it through some channel. Bits associated to
leaf nodes (including the root if the tree has height 1) are passed through a symmetric
channel with associated density Q and bits associated to internal nodes are passed
through a symmetric channel with associated density R. The posterior log-likelihood
of the transmitted bit can be obtained by performing belief propagation in the tree.
It follows that the (log-likelihood symmetric) density associated to this channel is
precisely P�(Q).

Lemma 1. If, for some k > 0, Pk(Q) is physically degraded (upgraded) with respect
to Q, then P�(Q) converges to a fixed point F of density evolution that is physically
degraded (upgraded) with respect to Q.

Proof. Assume Pk(Q) is physically degraded (upgraded) with respect to Q. Con-
sider the (λ, ρ) �-tree channel with density R on interior nodes and density S on leaf
nodes. The channel density is Pk(Q) if S = Q and the channel density is P2k(Q) if
S = Pk(Q).

Assume Pk(Q) is physically degraded with respect to Q and set S = Q. We can
degrade the tree channel to set S = Pk(Q). It follows that P2k(Q) is degraded with
respect to Pk(Q).

Assume Pk(Q) is physically upgraded with respect to Q and set S = Pk(Q). We
can degrade the tree channel to set S = Q. It follows that Pk(Q) is degraded with
respect to P2k(Q).

Proceeding inductively in each case we see that Pjk(Q), j = 1, 2, ... is a sequence
of densities monotonic with respect to physical degradation and hence converges to
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a limit density, which is physically degraded (upgraded) with respect to Q. We can
conclude that P�(Q), � = 1, 2, ... converges because density evolution is continuous in
the space of distributions.

3.3. Decoding the root of a tree. Consider again the (λ, ρ) tree channel. If
we decode the root bit using the sum-product, or belief propagation algorithm, then,
since the graph is a tree, the decoding of the root bit is actually a MAP decoding and
the up-going message from the root represents the conditional distribution of the root
bit conditioned on all observations associated to the tree. A hard decision for the bit
based on this message has minimum probability of error over all possible decodings.

A sub-optimal alternative decoding is to decode the root bit by performing se-
quence decoding (find for the most likely codeword in the tree-code) and extracting
the root bit. We will bound the probability of error of this decoding by relating it to
the performance of the code consisting of all primitive codewords.

For each v in a tree T let Lv denote a random variable distributed according to
the channel density associated to v. More formally, if b denotes the bit associated to
v and pv denotes the associated channel, then

Lv = log
pv(y|b = 1)

pv(y|b = −1)

where y has density to pv(y|b = 1). (In the above scenarios this density is either R or
Q.) From the receiver’s perspective, the conditional log-likelihood that the root bit is
1, conditioned on all observations from the tree is given by

1
2

log

∑
w∈C1(T ) exp(

∑
v wvLv)∑

w∈C−1(T ) exp(
∑

v wvLv)
,

where C−1(T ) denotes the set of codewords with a −1 at the root and C1(T ) denotes
the set of codewords with a 1 at the root. Under belief propagation, assuming log-
likelihood representations, this quantity is the up-going message from the root node
of T. Let pbp(T ) denote the associated probability of error.

Under maximum likelihood sequence decoding we find the most likely codeword
w ∈ C(T ), i.e., the codeword wseq define by

wseq := arg maxw∈C(T )

∑
v∈T

wvLv ,

and extract the root bit, i.e., decode the root as wseq
root. If wseq

root is not uniquely deter-
mined, i.e., there is a tie for most likely codeword with at least one having a 1 at the
root and at least one having a −1 at the root, then the decoder picks ±1 each with
probability 1/2.

Given a tree T and a channel assignment to the nodes let pseq(T ) denote the
probability of error associated to this decoding method. For any tree T we have

pbp(T ) ≤ pseq(T ) .
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Let us also consider consider the maximum likelihood sequence decoder for the
code consisting only of primitive codewords. Let pprim(T ) denote the probability of
error for this decoder under the assumption that the all-1 codeword was transmitted.

Proposition 1. For any tree T we have

pseq(T ) ≤ pprim(T ) .

Proof. Assume the all-1 codeword is transmitted. Assume wseq
root is uniquely

determined as −1. An optimal codeword wseq (there may be a tie) can always be
written as wseq = w′ ·w′′ where w′ is a primitive codeword, w′′ ∈ C1(T ) is a codeword
with a 1 in the root, and

{v ∈ T : w′
v = −1} ∩ {v ∈ T : w′′

v = −1} = ∅ .

Since wseq
root = −1 we have w′

root = −1. Let t be the primitive sub-tree of T

associated with w′. Since wseq is a most likely codeword and wroot = −1 for all most
likely codewords, it follows that w′ · w′′ is strictly more likely than w′′. This can be
written as

∑
v∈T

wseq
v Lv =

∑
v∈T

w′
vw

′′
vLv >

∑
v∈T

w′′
vLv

which implies

−2
∑
v∈t

w′′
vLv =

∑
v∈T

(w′
v − 1)w′′

vLv > 0 .

For v ∈ t we have w′′
v = 1, hence we obtain

∑
v∈t

Lv < 0,

which implies
∑
v∈T

w′
vLv >

∑
v∈T

Lv,

and therefore w′ is more likely than the all-1 codeword.
In the event that wseq

root is not uniquely determined, i.e., there is a tie among
codewords with different root bits, then the above argument gives

∑
v∈T

w′
vLv ≥

∑
v∈T

Lv,

so, at best, there is an ambiguous tie among primitive codewords.
The above proposition gives us the bound

pseq(T ) ≤ Pr
{∑

v∈T

Lv ≤ max
w∈C−1

prim(T )

∑
v∈T

wvLv

}
+

1
2
Pr

{∑
v∈T

Lv = max
w∈C−1

prim(T )

∑
v∈T

wvLv

}

= Pr
{

min
t∈Ψ(T )

∑
v∈t

Lv < 0
}

+
1
2
Pr

{
min

t∈Ψ(T )

∑
v∈t

Lv = 0
}

,
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+=

Fig. 3. A 1-codeword decomposed as a sub-primitive codeword and a 0-codeword.

so we now have

(2) pbp(T ) ≤ Pr
{

min
t∈Ψ(T )

∑
v∈t

Lv < 0
}

+
1
2
Pr

{
min

t∈Ψ(T )

∑
v∈t

Lv = 0
}

.

4. Fixed points of Density Evolution. In [4] it was shown that density evo-
lution for belief propagation always converges to a fixed point. The decoding threshold
is defined as the (parameter determining) the worst channel below which this fixed
point is δ∞. A priori, it is possible that even below threshold other fixed point solu-
tions to density evolution might exist but that the iterative process does not converge
to them. This is in fact not possible. We will show in this section that σ is below σ∗

if and only if density evolution has no fixed point solution other than δ∞.

First, however, we will show that any fixed point is physically upgraded with
respect to R.

Theorem 2. Let R be the received density for a symmetric channel and let (λ, ρ)
be a degree distribution pair. If Q is a fixed point of the associated density evolution
for belief propagation, then R is physically degraded with respect to Q.

Proof. Consider the (λ, ρ) 1-tree channel with leaf density Q, a fixed point of
density evolution, and internal density R. The symmetric density associated to this
channel is Q itself, since it is a fixed point of density evolution. We can degrade
this channel by erasing the information provided by the leaf nodes. For the degraded
channel the associated density is R. Hence, R is physically degraded with respect to
Q.

Lemma 2. If Q �= δ∞ is a fixed point of density evolution for (λ, ρ) with channel
parameter σ, then σ ≥ σ∗(λ, ρ).
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Proof. Let Q be any symmetric density not δ∞. Assume σ < σ∗, consider the
associated density evolution, and let � be large enough so that P(P�(δ0)) < P(Q).
Consider the (λ, ρ) �-tree channel with leaf density Q. The probability of error as-
sociated to this channel is P(P�(Q)). We can degrade this channel by erasing the
information at the leaf nodes. For this degraded channel the associated probability of
error is P(P�(δ0)). Since P(P�(Q)) ≤ P(P�(δ0)) < P(Q) it follows that Q cannot be a
fixed point of density evolution for (λ, ρ) with channel parameter σ.

We remark that this theorem applies to density evolution for belief propagation
decoding of turbo codes.

5. Stability. In this section we prove Theorem 1. We shall prove the second
part of the theorem (sufficiency) first.

For a given tree T let XT denote the random variable defined by

XT := min
t∈Ψ(T )

∑
v∈t

Lv,

where Lv denotes the posterior log-likelihood, i.e., a random variable distributed ac-
cording to R for interior variable nodes and Q for leaf (variable) nodes. Let X� denote
the average of XT over the distribution of trees of height 2� determined by (λ, ρ). Let
G� denote the cumulative distribution of X�,

G�(x) := Pr{X� ≤ x} .

We will now develop a recursion relating G�+1 to G�.

Let vroot denote the root node of a tree of height 2(�+1) and assume it has degree
droot. Let c1, ..., cdroot−1 denote the children of vroot and let d1, ..., ddroot−1 denote their
degrees. Note that from each grandchild of vroot a (λ, ρ)-random tree of depth 2� is
extended.

For a node v in the tree let xv denote the minimum value of the sum of log-
likelihoods over primitive sub-trees rooted at v. For a node u in the tree let p(u)
denote the parent of u in the tree. It is easy to see that

xv = Lv +
∑

c:p(c)=v

min{xv′ : p(v′) = c},

where Lv is the received value associated to v. It is clear if p(p(v′)) = vroot then xv′

has cumulative distribution G� so it follows that if p(c) = vroot then the quantity
min{xv′ : p(v′) = c} has cumulative distribution 1 − (1 − G�)dc−1. If we temporarily
assume that d1 = ... = ddroot−1 = dc then xvroot has distribution R ⊗ ((dc − 1)(1 −
G�)dc−2g�)⊗(droot−1) where ⊗ denotes convolution and we have introduced the notation
g�(x) := d

dxG�(x). In general, where droot is distributed according to λ and dc is
distributed according to ρ, we have,

(3) g�+1 = R ⊗ λ(ρ′(1 − G�)g�), g0 = Q,
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where multiplication under λ is convolution and multiplication under ρ is point-wise.
Our aim is to show that if B(R)λ′(0)ρ′(1) < 1 and P(Q) is sufficiently small then

g� will converge to δ∞. Let us define a new sequence of densities g̃� by the recursion

g̃�+1 = R ⊗ λ(ρ′(1)g̃�), g̃0 = Q.

Noting g̃0 = g0, it is easy to see that g̃� ≥ g� point-wise for each l by induction since
λ and ρ are polynomials with positive coefficients. We remark that g̃� will normally
not be a probability density, i.e., it will not integrate to 1.

We then have

B(g̃�+1) = B(R)λ(ρ′(1)B(g̃�)), B(g̃0) = B(Q).

Lemma 3. Assume B(R)λ′(0)ρ′(1) < 1. Then there exists η > 0 such that if
B(Q) < η then B(g̃�) → 0 as l → ∞.

Proof. The proof proceeds by induction. The inductive hypothesis consists of the
following two inequalities.

A.ξ� := B(R)
(
λ2 + (1 − λ2) ρ′(1)B(g̃�)

)
ρ′(1) < 1,

B.ρ′(1)B(g̃�) < 1.

Note that since B(R)λ′(0)ρ′(1) < 1 there exists η > 0 such that B(R)
(
λ2 + (1 −

λ2) ρ′(1)η
)
ρ′(1) < 1 and ρ′(1) η < 1. Thus, if B(Q) < η then A and B hold for � = 0.

Now, assume A and B hold for some �. Since B holds and λ(1) = 1 it follows that

λ(ρ′(1)B(g̃�)) ≤
(
λ2 + (1 − λ2) ρ′(1)B(g̃�)

)
ρ′(1)B(g̃�).

Noting B(g̃�+1) = B(R)λ(ρ′(1)B(g̃�)) we now have B(g̃�+1) ≤ ξ�B(g̃�). Since ξ� < 1 we
easily conclude that A and B hold for � + 1. It follows that B(g̃�) ≤ (ξ0)�B(Q).

Let us assume that B(R)λ′(0)ρ′(1) < 1. Let η be the constant from Lemma 3. By
(1) we have B(R) ≤ 2

√P(Q) (1 − P(Q)). Thus, there exists ε > 0 such that P(Q) < ε

implies B(R) < η. It then follows from Lemma 3 that B(g̃�) → 0 as l → ∞. But since
B(g̃�) ≥ B(g�) ≥ P(g�) ≥ P(P�(Q)), we have P(P�(Q)) → 0 completing the sufficiency
part of the Theorem 1.

The necessity part of the proof follows closely that in [6] so we will be brief.
Consider the density ηδ0 + (1 − η)δ∞ for η ∈ (0, 1). This is the BEC with erasure
probability η. It is fairly easy to see that

P�(ηδ0 + (1 − η)δ∞) = η(λ2ρ
′(1))�R⊗� + O(η2),

where R⊗� denotes R convolved with itself (over R) � times. Let Q satisfy P(Q) = η/2.

Then Q is physically degraded with respect to ηδ0 +(1−η)δ∞ [6]. For large �, P(R⊗�)
behaves like B(R)�, in particular one can show [8]

P(R⊗�) ≥ B(R)�

(
1

1 + e2B(R)
4(�+1)

)(
e

3π

√
B(R)
� + 1

)
.
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Thus,

P(P�(ηδ0 + (1 − η)δ∞)) ≥ cη(λ2ρ
′(1)B(R))� + O(η2)

for some constant c independent of �. Assume λ2ρ
′(1)B(R) > 1, then we can find k

large enough so that c(λ2ρ
′(1)B(R))k > 1. Thus there exists a constant γ > 0 such

that if η ≤ γ then

P(Pk(ηδ0 + (1 − η)δ∞)) ≥ η .

It follows now that Pk(ηδ0 +(1− η)δ∞) is physically degraded with respect to 2ηδ0 +
(1−2η)δ∞ (which is physically degraded with respect to ηδ0 +(1−η)δ∞). By Lemma
1 and induction we conclude that P�(ηδ0 + (1 − η)δ∞) converges to a limit density
that is physically degraded with respect to 2γδ0 + (1− 2γ)δ∞. Hence, for any density
Q with P(Q) ≤ γ we have

lim inf
�→∞

P(P�(Q)) ≥ γ ,

and the same clearly holds for any Q �= δ∞. This completes the proof of Theorem 1.

6. Circuit Codes. In this section we prove that the stability condition deter-
mines the threshold for circuit codes. This was proved for the binary symmetric
channel in [9] where it is also proved that the same threshold applies to maximum
likelihood decoding. Circuit codes, as we consider them, are identical to regular LDPC
codes with left degree two, i.e., λ(x) = x. As usual, we are interested in the asymptotic
loop-free limit.

Thus, consider an LDPC degree distribution (λ, ρ) with λ2 = 1. For any (λ, ρ)
random tree T of height 2�, the number of primitive codewords in C−1

prim(T ) equals the
number of leaves. The expected number of leaves is ρ′(1)�.

Let M = M(T ) denote the number of leaves in a (λ, ρ) random tree T. The
probability that an element of C−1

prim(T ) is preferred to the all-1 codeword is less than
or equal to (union bound) M(T ) times P(R⊗(�+1)). By Proposition 1 this provides a
bound on the probability of error for T.

For large �, P(R⊗(�+1)) behaves like B(R)�+1, in particular we have

P(R⊗(�+1)) ≤ B(R⊗(�+1)) = B(R)�+1.

Now,

E(M(T )B(R)�+1) = ρ′(1)�+1B(R)�+1 .

If B(R)ρ′(1) < 1 then the probability of error converges to zero as � → ∞. Thus, in
this case, the stability threshold and the decoding threshold coincide.
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7. Conclusions. The main result of the paper is the proof of Theorem 1. It
has also been shown that the decoding threshold of an iterative coding system coin-
cides with the appearance of non-trivial fixed point solutions to the density evolution
equations. Both of these results are relatively easy to prove once the concept of tree
channel has been developed and its performance analyzed.
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