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Abstract. In order to enhance dexterity in execution of robot tasks, a redundant number of

degrees-of-freedom (DOF) is adopted for design of robotic mechanisms like robot arms and multi-

fingered robot hands. Associated with such redundancy in DOFs relative to the number of physical

variables necessary and sufficient for description of a given task, an extra performance index is in-

troduced for controlling such a redundant robot in order to avoid arising of ill-posedness of inverse

kinematics from the task space to the joint space. This paper shows that such an ill-posedness prob-

lem of DOF redundancy can be resolved in a natural way on the basis of construction of sensory

feedback signals from the task space and a novel concept named “stability on a manifold”. To show

this, two illustrative robot tasks are analyzed in details, which are 1) posture control of an object

via rolling contact by a redundant multi-DOF finger and 2) stable pinching and object manipulation

by a pair of multi-DOF robot fingers.

Keywords: Redundancy Resolution, Robot Task, Redundant Robot, Stability on a Manifold,

Constraint Manifold

1. Introduction. If a robot is designed so as to mimic human limb then its
mechanism must be kinematically redundant, that is, its total degrees of freedom
is larger than the number of independent physical variables required for description
of a given motion task. This kinematic redundancy contributes to enhancement of
dexterity and versatility in execution of robot tasks as discussed in a variety of lit-
eratures and books [1]-[7]. However, such redundancy of DOFs usually increases the
complexity of robot dynamics and therefore makes control problems for execution
of given tasks more difficult. It is emphasized in particular that in such a case the
inverse kinematics from the operational space (task-description space) to the robot
joint space becomes ill-posed. In order to avoid this ill-posedness, many methods
have been proposed, most of which are based on an idea of introducing some extra
performance criterion for determining uniquely an appropriate joint space trajectory
by minimizing the criterion. This paper proposes a novel method for resolving such
an ill-posedness problem related to redundancy of DOFs by a natural way without
introducing any extra performance criterion. Instead, a novel concept named “stabil-
ity on a manifold” is introduced [8]-[10] and it is shown that there exists a sensory
feedback based on measurements of physical variables of task description so that it
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enables the state of the overall system naturally and coordinately to converge to a
lower-dimensional constraint manifold corresponding to a set of states fulfilling a tar-
get given task. The original idea of “stability on a manifold” was first introduced
in control of multi-fingered hands for stable grasping and object-manipulation [8]-
[10]. If an objective system under constraint is not redundant in DOF, then the
concept of stability on a manifold is reduced to the conventional meaning (in the
sense of Lyapunov) of stability for descriptor systems or mechanical systems under
constraints, which was treated by Müller [11] [12] and Bajić [13]. However in the
case of redundant mechanical dynamic systems under constraints as treated in this
paper, the set of all still states corresponding to necessary and sufficient description
of objective tasks is not a single state of zero-dimension but constitutes a non-zero
dimensional manifold. In this paper, two typical robotic tasks are analyzed, which
are 1) posture control of an object via rolling contact by a multi-DOF finger and 2)
stable pinching and object manipulation by a pair of multi-DOF robot fingers. It
is shown that in both cases proposed feedback control signals are of a simpler form
than those obtained by conventional methods of using extra performance criteria and
render in a natural way solution trajectories of the closed-loop dynamics convergent
to each lower-dimensional manifold corresponding to target tasks without solving the
problem of inverse kinematics. That is, seeking for some inverse kinematics is not
indispensable in principle.

2. Dynamics of Control of a Pivoted Object by a Robot Finger with
Redundant DOFs. Consider a problem of posture control of a pivoted object by
means of a redundant multi-DOF robot finger as shown in Fig. 1. The object with a
flat surface is pivoted at the fixed point Om(xm, ym) and hence only rotational motion
around Om in the xy-plane is permitted. The problem is to control the rotational
angle θ toward the desired value θd by a 3-DOF planar robot finger. Hence the overall
motion of both the robot and the object is confined to the xy-plane and the gravity
force can be ignored. Then, the kinetic energy of the system can be expressed as

K =
1
2
q̇TH(q)q̇ +

1
2
Iθ̇2,(1)

where q = (q1, q2, q3)T, H(q) and I denote the inertia matrix of the finger and the
inertia moment of the object around Om. Since the finger-end hemisphere contacts
with the surface of the object, the following constraint equation follows:

Q = −(r + l) + (xm − x0) cos θ − (ym − y0) sin θ = 0.(2)

On the other hand, the rolling contact without slipping induces the constraint that
two speeds of the contact point O1(x1, y1) relative to φr and Y must be coincident,
that is,

d
dt

(φr) = − d
dt

Y,(3)
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where {
Y = (x0 − xm) sin θ + (y0 − ym) cos θ

φ = π + θ − q1 − q2 − q3 = π + θ − qTe
(4)

with e = (1, 1, 1)T. Since eq.(3) can be easily integrated in such a way that

R = −c0 + Y + φr = 0,(5)

where c0 is an integral constant, it is possible to write the Lagrangian by introduc-
ing Lagrange multipliers f and λ correspondingly to the quantities Q and R in the
following way:

L = K + fQ + λR.(6)

Thus, by applying Hamilton’s principle to the Lagrangian it is possible to obtain
Lagrange’s equation of motion for this system, which is described as follows:{

H(q)
d
dt

+
1
2
Ḣ(q) + S(q, q̇)

}
q̇ −

(
∂Q

∂q

)T

f −
(

∂R

∂q

)T

λ = u,(7)

Iθ̈ − ∂Q

∂θ
f − ∂R

∂θ
λ = 0.(8)

More in details, Jacobian vectors in eqs.(7) and (8) can be calculated as⎧⎪⎪⎨
⎪⎪⎩

∂Q/∂q = −(cos θ, − sin θ)J0(q)

∂R/∂q = (sin θ, cos θ)J0(q) − reT

∂Q/∂θ = Y, ∂R/∂θ = −l,

(9)

where J0(q) = ∂(x0, y0)T/∂(q1, q2, q3), the Jacobian matrix of (x0, y0)T (the carte-
sian coordinates of the center of curvature O0 of the finger-end hemisphere) with
respect to the joint coordinates (q1, q2, q3). Hence, the equation of motion of the
object can be written in details as follows:

Iθ̈ − Y f + lλ = 0.(10)

Now, consider the control problem of maneuvering the object toward a specified
rotational angle θd with a desired pushing force fd. If a vision sensor can detect the
rotation angle θ(t) of the object, it is possible to define a control signal described as

u = −Cq̇ −
(

∂Q

∂q

)T

fd − fdY e −
(

∂R

∂q

)T

(β∆θ + αθ̇),(11)

where ∆θ = θ − θd. Substituting this control into eq.(7) yields the closed-loop dy-
namics {

H(q)
d
dt

+
1
2
Ḣ(q) + S(q, q̇) + C

}
q̇

−
(

∂Q

∂q

)T

∆f −
(

∂R

∂q

)T

(λ − β∆θ − αθ̇) + Y fde = 0.(12)



4 S. ARIMOTO ET AL.

Although the object dynamics expressed by eq.(10) do not change because they do
not have any direct control input, but it is convenient to rewrite them in the following
way:

Iθ̈ − Y ∆f + l(λ − β∆θ − αlθ̇) − Y fd + βl∆θ + αlθ̇ = 0.(13)

Taking inner product between q̇ and eq.(12), multiplying eq.(13) with θ̇, and summing
these resultant quantities, we obtain⎧⎪⎨

⎪⎩
d
dt

V = −q̇TCq̇ − αlθ̇2

V =
1
2

{
q̇TH(q)q̇ + Iθ̇2 + βl∆θ2 +

fd

r
Y 2

}
.

(14)

The scalar quantity V is not positive definite in the eight-dimensional state space
(q, θ, q̇, θ̇) but positive definite in the four-dimensional constraint manifold

M4 =
{

(qT, θ, q̇T, θ̇)T : Q = 0, R = 0, Q̇ = 0, Ṙ = 0
}

(15)

because V includes quadratic terms of two positional variables ∆θ and Y . Hence, the
well-known theorem of LaSalle can be applied to eq.(14). However, in the case that
the control objective is only to stop motion of the object by using a feedback signal

u = −Cq̇ −
(

∂Q

∂q

)T

fd − fdY e,(16)

the scalar function V becomes of the form

V0 =
1
2

{
q̇TH(q)q̇ + Iθ̇2 +

fd

r
Y 2

}
.(17)

This quantity is no more positive definite in the constraint manifold M4 defined by
eq.(15).

To simplify the terminologies in the following sections, we use symbols x =
(qT, θ)T and ẋ = (q̇T, θ̇)T and introduce a one-dimensional manifold M1 defined
as

M1 = {(x, ẋ = 0) : ẋ = 0, Q = 0, R = 0, Y = 0} .(18)

It is further convenient to introduce a neighborhood N8(r) with radius r of a given
still state x0 on M1 in such a manner that

N8(r) =
{

(x, ẋ) :
1
2
q̇TH(q)q̇ +

I

2
θ̇2 +

1
2
∆qTH(q)∆q +

I

2
(θ − θ0)2 ≤ r2

}
,(19)

where ∆q = q − q0 and x0 = (q0, θ0, q̇ = 0, θ̇ = 0). Further, we assume that for the
given still state x0 on M1 there exists a positive number r0 such that at any state
(x, ẋ) in N8(r0) the 2 × 4 matrix

J =

((
∂R

∂x

)T

,

(
∂Q

∂x

)T
)T

(20)

is of full rank (non-degenerated).
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3. Stability on a Manifold and Natural Redundancy Resolution. In the
case of control for stopping the rotational movement of the object in Fig. 1, a target
state can be fully described by specifying ẋ = 0 and Y = 0, which means that the
target state must lie on M1 but the values for other variables θ and qi (i = 1, 2, 3)
need not be specified unless contact between the finger end and the object is broken
and the whole state (x(t), ẋ(t)) for any t > 0 remains in N8(r0) where the Jacobian
matrix J(x) is non-degenerated. Usually, since the inverse kinematics from the task
description (ẋ = 0, Q = 0, R = 0, Y = 0) to the joint coordinates is ill-posed because
there are many states (x, ẋ) satisfying the task which are lying on M1, the previous
researches [1]-[7] proposed a variety of methods for resolving this ill-posedness of
joint redundancy by introducing some appropriate extra performance index so that
optimization of the index leads to unique determination of the inverse joint state.
However, in this paper, it is shown that such an ill-posedness problem of inverse
kinematics can be resolved in a natural way by introducing a concept of “Stability on
a Manifold” as shown in the case of control problems for grasp and object manipulation
of multi-fingered hands [8]-[10]. To do this, it is necessary to define another concept of
neighborhoods of the reference still state x0 ∈ M1 on the manifold M4 in the following
way:

N4(ε) =
{
(x, ẋ) : Q = 0, R = 0, Q̇ = 0, Ṙ = 0, V0 ≤ ε2

}
.(21)

We are now in a position to introduce the definitions of stability on a manifold and
asymptotic transferability to a manifold as follows:

Definition. (Stability on a manifold) If for any ε > 0 there exist δ(ε) > 0
depending on ε > 0 and another constant r1 > 0 being less than r0 and independent
of ε such that any solution to eqs.(12) and (13) with β = 0 and α = 0 starting from
an arbitrary initial state lying on N4(δ(ε)) ∩ N8(r1) remains in N4(ε) ∩ N8(r0) for
any t > 0, then the reference still state (x0, ẋ = 0) is said to be stable on a manifold
(see Fig. 2).

Definition. (Asymptotic transferability to a manifold) If there exist posi-
tive values δ1 > 0 and r1 > 0 (less than r0) such that any solution starting from
an arbitrary initial state in N4(δ1) ∩ N8(r1) remains in M4 ∩ N8(r0) and converges
asymptotically to some state in the set M1∩N8(r0) as t → ∞, then the neighborhood
N4(δ1)∩N8(r1) together with the reference state (x0, 0) is asymptotically transferable
to M1 ∩ N8(r0) (see Fig. 3).

The principal purpose of the paper is to show that a reference still state (x0, 0)
of the closed-loop equations of eqs.(12) and (13) with β = 0 and α = 0 is stable on
a manifold under the condition that in a neighborhood of the reference state (x0, 0)
the following 3 × 4 matrix A is of full-rank (non-degenerated)

A =

((
∂R

∂x

)T

,

(
∂Q

∂x

)T

,−e

)T

(22)
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where e = (eT, −1)T = (1, 1, 1,−1)T. The necessity of this condition can be easily
understood since the closed-loop dynamics of eqs.(12) and (13) with β = 0 and α = 0
when the feedback signal of eq.(16) is used can be expressed as

H̄(q)ẍ +
{

1
2

˙̄H(q) + S̄(q, q̇) + C̄

}
ẋ − ATλ = 0(23)

where ⎧⎪⎪⎨
⎪⎪⎩

λ = (∆f, λ, fdY )

H̄(q) =

(
H(q) 0

0 I

)
, S̄ =

(
S(q, q̇) 0

0 0

)
, C̄ =

(
C 0
0 0

)
.

(24)

It is evident from eq.(23) that if ẋ and ẍ tend to zero as t → ∞ then the non-
degenerated property of A implies λ → 0 as t → ∞. Since control of the object
can be started from ordinary initial position as shown in Fig. 1, it is reasonable to
assume that R1) π/4 < q1 < π, −π/2 ≤ q2, q3 ≤ π/2, |θ| ≤ π/4, R2) (x0(q) −
xm)2 + (y0(q) − ym)2 < (r + l)2 + r2, R3) l3 +

√
(r + l)2 + r2 < xm, ym, and R4)

(l1 + l2 + l3) >
√

x2
m + y2

m +
√

(r + l)2 + r2. Under this condition it is possible to
show that the matrix A is non-degenerated. The proof is given in Appendix A. Before
stating the main theorem of this paper, we emphasize that the objective system is a
physical model of centimeter world, whose link lengths, radius of finger-end sphere,
and object width are of order of centimeter as shown in Table 1. Then, inertia
moments of finger links and the object are of O(10−5) to O(10−6) [kgm2] in MKS units.
Under this physical circumstances, we firstly choose fd > 0 appropriately (around 0.1
∼ 5 [N]) and then choose the angular velocity feedback gain c (= c1 = c2 = c3) that
plays a role of damping factor of the overall system in such a way that

c

2fdr
= 0.1 ∼ 0.3(25)

where r denotes the radius of finger-end hemisphere. This guidance of damping
gain tuning was proposed in the previous paper [14] suggested from Hill’s model
of force/velocity characteristics of muscle shortening observed in muscle physiology
[15].

Now it is possible to state:
Theorem 1. If for a given reference still state (x0, 0) ∈ M1 there exists a

neighborhood N8(r0) with some r0 > 0 of the state (x0, 0) in R8 such that A is
non-degenerated in N8(r0), then the state(x0, 0) is stable on a manifold.

Proof. First, consider a scalar quantity

E = V0 + αẋTH̄PeY/r,(26)

where α > 0 is a constant and

P = I4 − J+J, J+ = JT(JJT)−1.(27)
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Since P is a projection matrix and two column vectors of J are independent of e in
N8(r0), there exists a positive constant σ0 > 0 such that

eTPe ≥ σ0‖e‖2.(28)

Note that PJT = 0. Hence the time-derivative of E is reduced to the following:

Ė = V̇0 + αẍTH̄Pe
Y

r
+ αẋT

(
˙̄HP + H̄Ṗ

)
e

Y

r
+ αẋTH̄Pe

Ẏ

r

= −q̇TCq̇ + αλTAPe
Y

r
− αẋT

{
1
2

˙̄H + S̄T + C̄

}
Pe

Y

r

+αẋT
{(

˙̄HP + H̄Ṗ
)

Y + H̄P Ẏ
} e

r

= −q̇TCq̇ − αeTPefdY
2/r − αẋTC̄Pe

Y

r

+αẋT

{(
1
2

˙̄HP + H̄Ṗ − S̄TP

)
Y + H̄P Ẏ

}
e

r
.(29)

Since all ˙̄H, Ṗ and S̄ are linear and homogeneous in ẋ, it is possible to evaluate the
last term of the right hand side in the following way

αẋ

{(
1
2

˙̄HP + H̄Ṗ − S̄TP

)
Y + H̄P Ẏ

}
e/r ≤ αhM {1 + |Y/r|}O

(‖ẋ‖2
)
,(30)

where O(‖ẋ‖2) means that O(‖ẋ‖2)/‖ẋ‖2 is of O(1) and hM stands for the maximum
spectre radius of matrix H̄(q) over all q. On the other hand, it follows that

−αẋTC̄Per−1Y ≤ αc

2rfd
q̇TCq̇ +

αfdY
2

2r
eTPe.(31)

According to the assumption of choice for C and fd, it is possible to see that

Ė ≤ −
(
1 − α

3

)
q̇TCq̇ − αfdY

2

2r
eTPe + α(hM/r) {|Y | + r} O

(‖ẋ‖2
)
.(32)

It is also important to note that the holonomic constraint of eq.(5) yields

Ẏ + φ̇r = 0,(33)

which from eq.(4), leads to

θ̇ = q̇1 + q̇2 + q̇3 − r−1Ẏ

= q̇1 + q̇2 + q̇3 − r−1(ẋ0 sin θ + ẏ0 cos θ)

−r−1 {(x0 − xm) cos θ − (y0 − ym) sin θ} θ̇.(34)

Since (x0 − xm) cos θ − (y0 − ym) sin θ = −(l + r), eq.(34) implies that

θ̇ = −r

l
(q̇1 + q̇2 + q̇3) +

1
l

(ẋ0 sin θ + ẏ0 cos θ) .(35)
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Since l is of O(li) for link length li (i = 1, 2, 3), it follows from eq.(35) that

|θ̇|2 ≤ O
(‖q̇‖2

)× 101,(36)

which leads to the following equality

1
6
q̇TCq̇ =

c

6
‖q̇‖2 = ‖q̇‖2O(10−3) ≥ 2σm

2

{
q̇TH(q)q̇ + Iθ̇2

}
= 2σmK,(37)

where observations that the maximum eigenvalue of H(q) is of O(10−6) and the inertia
moment of the object I is of O(10−5) are used. Note that the quantity K defined
as the half of the content of bracket { } in eq.(37) is the total kinetic energy of the
overall system of Fig. 1 and the constant σm > 0 is of O(101). Hence, by setting
α = 2.0 in eq.(32) and noting that |Y | must remain to be of O(10−2) and (hM/r) is
of O(10−3), eq.(32) can be reduced to

Ė ≤ −2σmK − (2eTPe
) fdY

2

2r
≤ −2σV0,(38)

where

σ = min
{
σm, inf eTPe

}
(39)

and the infimum inside bracket { } should be taken along the solution trajectory over
t ∈ [0,∞). Since A is nondegenerated in N8(r0), there exists a positive constant
σ0 > 0 satisfying eq.(28), which means that σ ≥ σ0‖e‖2. In reality, as discussed in
next section, the quantity eTPe remains around 1.4 during maneuvering of the finger
in some example. Finally, it is important to note that eq.(26) leads to

E = V0 + αẋTH̄PeY/r

≥ V0 − 10αhM

fdr
ẋTH̄ẋ − α

40
eTPeY 2fd/r

≥ (1 − ε0)K + (1 − ε1)
fdY

2

2r
,(40)

where we set α = 2 and

ε0 =
20hM

fdr
, ε1 =

1
10

· sup eTPe.(41)

Since P is a projection matrix, it follows that eTPe ≤ eTe = 4. Note that ε0 is less
than 0.5 even in the case of fd = 0.1 [N], the smallest value for fd. Thus, inequality
(40) can be reduced to

E ≥ 1
2
V0(42)

and similarly it follows that

E ≤ 3
2
V0.(43)
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From eqs.(42), (43), and (38), it follows that

Ė ≤ −2σV0 ≤ −4σ

3
E,(44)

which shows that

V0(t) ≤ 2E(t) ≤ 2E(0)e−(4σ/3)t ≤ 3V0(0)e−(4σ/3)t.(45)

This inequality shows that all velocity variables q̇i(t) (i = 1, 2, 3) and θ̇(t) together
with Y (t) converge to zero exponentially in time t as t → ∞ and the maximum
magnitude of Y (t) remains small dependently on the initial value of V0(t), that is,
V0(0), which proves that for a given ε > 0 there exists δ1(ε) > 0 such that V0(t) ≤ ε2

along a solution trajectory to the closed-loop equation of eq.(23) starting from an
initial state lying on N4(δ1(ε)) ∩ N8(r1). The remaining proof for the existence of a
fixed value r1 > 0 smaller than r0 and another quantity δ(ε) > 0 for an arbitrarily
given ε > 0 will be given in Appendix B.

Owing to the DOF redundancy, the still state that the solution trajectory con-
verges to is different from the reference still state because only one single variable Y

is specified as Y = 0 at t = ∞. By carefully examining the proof of Theorem 1, it is
also possible to show the following:

Theorem 2. Under the same assumptions as in Theorem 1, there exist numbers
δ1 > 0 and r1 > 0 such that the neighborhood N4(δ1) ∩ N8(r1) of the reference state
(x0, 0) is asymptotically transferable to M1 ∩ N8(r0).

4. Computer Simulation Results. Computer simulations are conducted by
numerically solving the closed-loop dynamics of eq.(23) under the constraints of
eqs.(2) and (5), when physical parameters of the system of Fig. 1 is given as in Table
1, initial values for position variables are set as in Table 2, and q̇i(0) = 0 (i = 1, 2, 3)
and θ̇(0) = 0. Fig. 4 shows transient responses of Y, θ, f , and λ when the values for
fd and c are chosen as in Table 3. In this case, only the desired target values for Y

and f are specified as Y (∞) = 0 and f(∞) = fd, but those of other variables θ and λ

are not specified. As seen in Fig. 4, Y (t) and f(t) converge quickly to their specified
target values within 0.6 second, λ(t) converges to zero also within 0.6 second, and
θ(t) does to some constant value within the same period. In this case, the quantity

ξ0 = eTPe(46)

behaves as shown in Fig. 5, which implies that the parameter σ appearing in the
exponent of exponential function of inequality (45) can be chosen as σ = 1.4 in this
case. Hence, eq.(45) can be reduced to

V0(t) = 3V0(0)e−1.87t(47)
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which means that Y (t) converges to zero exponentially with the exponent exp(−0.93t).
This theoretical evaluation on the speed of exponential convergence is rather conserva-
tive as compared with simulation results shown in Fig. 4, but it shows the importance
of quantity ξ0(= eTPe), which implies the grade of independence of the vector e of
two vectors (∂R/∂x)T and (∂Q/∂x)T as shown in eq.(22).

Figure 6 shows another simulation result when the sensory feedback signal of
eq.(11) is used, where physical parameters and initial values of the state vector are
given same as in Tables 1 and 2 and feedback gains c, α, and β together with de-
sired fd and θd are chosen as in Table 4. The speed of convergence is remarkably
retarded though responses of both Y and θ eventually converge to their desired values
Y (∞) = 0 and θ(∞) = θd = 5 [degree] and also f(t) → fd = 0.5 [N] after around
t = 50 second as shown in Fig. 7. In this case, the scalar function V defined in eq.(14)
becomes a Lyapunov function for the closed-loop dynamics composed of eqs.(12) and
(13), because V is positive definite in the state (x, ẋ) under constraints of eqs.(2) and
(5), that is, V is positive definite on the constraint manifold M4 defined by eq.(15).
Since the time-derivative of V is non-positive as described in eq.(14), LaSalle’s invari-
ance theorem [16] implies that the solution trajectory to eqs.(12) and (13) converges
asymptotically to the maximum invariant set in the manifold

M =
{
(x, ẋ) : V̇ = 0, R = 0, Q = 0, Ṙ = 0, Q̇ = 0

}
.

This means that q̈(t) → 0 and θ̈ → 0 as t → ∞ and eqs.(12) and (13) are reduced to

−ATλ̄ + βl∆θeθ = 0(48)

when t → ∞, where λ̄ = (∆f, λ − β∆θ, fdY )T and eθ = (0, 0, 0, 1). Since eθ is
independent of all three column vectors of A and A is of full rank, eq.(48) implies
λ̄(t) → 0, Y (t) → 0, ∆f(t) → 0, and ∆θ(t) → 0 as t → ∞. In other words,
the stability problem in this case is reduced to an ordinary problem of stability in
the sense of Lyapunov. However, LaSalle’s invariance theorem does not present any
information about the speed of convergence. In order to see the convergence speed in
this case, it is important to analyze a scalar quantity described as

Ē = V + α0ẋ
TH̄PeeY/r + α1ẋ

TH̄Pθeθ∆θ,(49)

where

Pθ = I4 − A+A, A+ = AT(AAT)−1(50)

Pe = I4 − A+
θ Aθ, A+

θ = AT
θ (AθA

T
θ )−1(51)

Aθ =

((
∂R

∂x

)T

,

(
∂Q

∂x

)T

,−eθ

)T

.(52)

Note that

PθA
T = 0, PeA

T
θ = 0(53)
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and, in particular, Pθe = 0 and Peeθ = 0. Then, similar to the derivation of inequality
(32), it is possible to obtain

d
dt

Ē = −
(

1 − α0 + α1

3

)
q̇TCq̇ − α0fdY

2

2r
eTPee − α1lβ∆θ2

2
eT

θ Pθeθ

−α1lαθ̇2 +
{

α0hM

r
(|Y | + r) + α1hM (|∆θ| + 1)

}
O(‖ẋ‖2).(54)

Similar to the derivation of eqs.(42) and (43), it is also possible to show

1
2
V < Ē <

3
2
V(55)

provided that α0 and α1 are set as α0 = α1 = 1.0 and β is chosen as in Table 4. Then,
by defining

ξe = eTPee, ξθ = eT
θ Pθeθ(56)

σ = min {inf ξe, inf ξθ} ,(57)

where both ‘inf’s inside bracket { } are taken along the solution trajectory to the
closed-loop dynamics of eqs.(12) and (13), it is possible to show

V (t) ≤ 3V (0)e−(2σ/3)t.(58)

Thus, the exponent parameter σ signifies the grade of exponential convergence. In
Fig. 8, transient behaviours of ξe and ξθ are shown. Both ξe and ξθ converge to
some constant values after 50 second respectively. Since ξe is fairly smaller than ξ0 as
compared with Fig. 5, it is possible to understand why the response of Y in the case
of feedback signal of eq.(11) is remarkably retarded in comparison with that of Y in
the case of eq.(16). This shows that, if the number of physical variables necessary
and sufficient for description of a desired target task is less than the total DOFs, then
the convergence of its solution trajectory can be speeded up. In other words, surplus
DOFs of robotic systems may enhance dexterity in execution of tasks.

5. Redundancy Resolution in Case of Stable Grasping by a Pair of

Multi-DOF Fingers. Next consider a problem of redundancy resolution for the
dynamics of planar motion of a pair of multi-DOF robot fingers with hemi-spherical
finger ends contacting with a rigid object with parallel surfaces and rolling on object
surfaces (see Fig. 9). As already shown in the previous papers [9]-[10] or reasonably
predicted from the discussion in derivation of eqs.(7) and (8), the overall dynamics of
motion of the system are described as follows:

Hiq̈i +
{

1
2
Ḣi + Si

}
q̇i + (−1)i−1JT

0i

(
cos θ

− sin θ

)
fi

+λi

{
ri

(
1
1

)
− JT

0i

(
sin θ

cos θ

)}
= ui, i = 1, 2(59)
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⎧⎪⎨
⎪⎩

Mẍ − (f1 − f2) cos θ + (λ1 + λ2) sin θ = 0
Mÿ + (f1 − f2) sin θ + (λ1 + λ2) cos θ = 0
Iθ̈ − f1Y1 + f2Y2 + l1λ1 − l2λ2 = 0,

(60)

where J0i denotes the Jacobian matrix of (x0i, y0i) with respect to qi = (qi1, qi2)T for
i = 1, 2 and M and I denote the mass and inertia moment of the object. It should
be noted that the inertia matrix Hi for finger i depends on the position vector qi and
hence Ḣi and Si depend on both qi and q̇i. However, it should be remarked that
Si(qi, q̇i) is linear and homogeneous in q̇i and skew-symmetric. Hence, it follows that

q̇T
i

[
Hiq̈i +

{
1
2
Ḣi + Si

}
q̇i

]
=

d
dt

1
2
q̇T
i Hi(qi)q̇i, i = 1, 2.(61)

Now consider the sensory feedback signal

usi = −ciq̇i − (−1)iJT
0i

(
cos θ

− sin θ

)
fd + (−1)i rifd

r1 + r2
(Y1 − Y2)

(
1
1

)
,(62)

where ci > 0 and Y1−Y2 can be calculated in real-time on the basis of measured data
on θ(t) and qi(t) (i = 1, 2) as follows:

Y1 − Y2 = (x01 − x02) sin θ + (y01 − y02) cos θ.(63)

Substituting eq.(62) into eq.(59) by setting ui = usi yield

Hiq̈i +
{

1
2
Ḣi + Si + ciI2

}
q̇i −

(
∂Q

∂qi

)T

∆fi −
(

∂R

∂qi

)
λi

−(−1)i rifd

r1 + r2
(Y1 − Y2)

(
1
1

)
= 0, i = 1, 2,(64)

where⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Q = f1Q1 + f2Q2,

Qi = (−1)i {(x0i − x) cos θ − (y0i − y) sin θ} − ri − li = 0

R = λ1R1 + λ2R2, Ri = Yi − c0i + ri

{
π − (−1)iθ − qi1 − qi2

}
= 0(

∂Q

∂qi

)T

= (−1)iJT
0i

(
cos θ

− sin θ

)
, i = 1, 2

(
∂R

∂qi

)T

= JT
0i

(
sin θ

cos θ

)
− ri

(
1
1

)
, i = 1, 2.

(65)

At this stage it is important to note that the first two equations of object dynamics
described by eq.(60) are expressed on the basis of physical unit of force, that is, their
numerical values are based on the unit [N], but the last equation of eq.(60) is based
on the physical unit of torque, that is, [Nm]. Therefore, the numerical value for the
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object mass M is unbalanced in comparison with the object inertia moment I in the
centimeter world. In order that the coefficients of acceleration terms (ẍ, ÿ, θ̈) are
reasonably comparable to each other, it is convenient to rewrite the equation (60)
into ⎧⎪⎨

⎪⎩
M̄ ¨̄x − (∆f1 − ∆f2)r cos θ + (λ1 + λ2)r sin θ = 0
M̄ ¨̄y + (∆f1 − ∆f2)r sin θ + (λ1 + λ2)r cos θ = 0
Iθ̈ − ∆f1Y1 + ∆f2Y2 + l1λ1 − l2λ2 − fd(Y1 − Y2) = 0,

(66)

where

r = 10−2, M̄ = r2M, x̄ = r−1x, ȳ = r−1y.(67)

Finally, the closed-loop dynamics of the overall system are expressed as

Hẍ +
{

1
2
Ḣ + S + C

}
ẋ − JT∆λ − fd(Y1 − Y2)e = 0,(68)

where H0 = diag(M̄, M̄ , I), x = (qT
1 , qT

2 , x̄, ȳ, θ)T, and

H =

⎛
⎜⎝

H1(q1) 0 0
0 H2(q2) 0
0 0 H0

⎞
⎟⎠ ,

S =

⎛
⎜⎝

S1 0 0
0 S2 0
0 0 0

⎞
⎟⎠ , C =

⎛
⎜⎝

c1I2 0 0
0 c2I2 0
0 0 0

⎞
⎟⎠(69)

⎧⎪⎨
⎪⎩

∆λ = (∆f1, ∆f2, λ1, λ2)

e =
( −r1

r1 + r2
,

−r1

r1 + r2
,

r2

r1 + r2
,

r2

r1 + r2
, 0, 0, 1

)T(70)

JT =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(
∂Q

∂q1

)T

0
(

∂R

∂q1

)T

0

0
(

∂Q

∂q2

)T

0
(

∂R

∂q2

)T

r cos θ −r cos θ −r sin θ −r sin θ

−r sin θ r sin θ −r cos θ −r cos θ

Y1 −Y2 −l1 l2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.(71)

It is easy to check that taking inner product of eq.(68) with ẋ gives rise to⎧⎪⎪⎨
⎪⎪⎩

d
dt

W0 = −
∑

i=1,2

ci‖q̇i‖2

W0 = K +
fd

2(r1 + r2)
(Y1 − Y2)2,

(72)
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where K is the total kinetic energy of the system, i.e.,

K =
∑

i=1,2

1
2
q̇T
i Hi(qi)q̇i +

1
2

{
M̄ ˙̄x2 + M̄ ˙̄y2 + Iθ̇2

}
.(73)

Description of stable grasping corresponds to the 2-dimensional manifold

M2 = {(x, ẋ) : Qi = 0, Ri = 0 (i = 1, 2), Y1 − Y2 = 0, ẋ = 0}(74)

and any solution trajectory to the closed-loop dynamics of eq.(68) lies on the 6-
dimensional manifold

M6 =
{
(x, ẋ) : Qi = 0, Ri = 0, Q̇i = 0, Ṙi = 0 (i = 1, 2)

}
.(75)

Now, consider a reference state (x0, ẋ = 0) ∈ M2 and assume that in a neighbor-
hood of (x0, 0) with radius η0 defined by

N14(η0) =
{

(x, ẋ) :
1
2
ẋTHẋ +

1
2
∆xTH∆x < η2

0

}
;(76)

all column vectors of JT together with e and eθ = (0, 0, 0, 0, 0, 0, 1)T are independent
to each other. Then, similar to the definition of N4(ε) of eq.(21), it is possible to
define

N6(ε) =
{
(x, ẋ) : Qi = 0, Ri = 0, Q̇i = 0, Ṙi = 0 (i = 1, 2), W0 ≤ ε2

}
.(77)

Further, it is possible to define the concepts of stability on a manifold and asymptotic
transferability to a manifold in a similar way as discussed in section 3. At this stage,
it is important to remark that concerned fingers and object are of centimeter size and
therefore their physical parameters are likely as given in Table 5. Now it is possible
to show the following result:

Theorem 3. Under the choice of damping gains as c1 = c2 = c > 0 so that
c/2fd(r1 + r2) = 0.1 ∼ 0.3, the concerned reference state (x0, 0) is stable on a mani-
fold. Moreover, their exist two positive numbers δ1 and η1 such that the neighborhood
N6(δ1) ∩ N14(η1) of (x0, 0) is transferable to the manifold of M2 ∩ N14(η0).

The proof is similar to that of Theorem 1. In this case, the scalar function W0

is neither positive definite in the state space R14 nor on the constraint manifold M6

defined in eq.(75). Nevertheless, W0 plays a crucial role in the proof of Theorem 3.
Since W0 is non-negative and its time-derivative is non-positive as shown in eq.(72),
W0 is non-increasing with increase of t. This shows that, for an arbitrarily given
ε > 0, any solution trajectory to the closed-loop dynamics of eq.(68) start from an
arbitrarily given initial state (x(0), ẋ(0)) lying on N6(ε) ∩ N14(η0) remains also on
N6(ε). The problem is whether the trajectory also remains in N14(η0). To show the
existence of δ(ε) > 0 and η1 > 0 such that the solution trajectory starting from an
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initial state on N6(δ(ε)) ∩ N14(η1) remains not only on N6(ε) but also in N14(η0), it
is necessary to introduce the quantity

F = W0 + αẋTHPe(Y1 − Y2)/(r1 + r2),(78)

where

P = I7 − J+J, J+ = JT(JJT)−1.(79)

Then, by virtue of the property of inertia matrix H whose maximum eigenvalue hM

over all x is of O(10−5) as remarked in derivation of eq.(66) by introduction of the
scale factor r (= 10−2), it is possible to show that, similar to eqs.(42) and (43),

3
2
W0 ≥ F ≥ 1

2
W0(80)

if α is set as α = 2.0 and

d
dt

F ≤ − c

3
{‖q̇1‖2 + ‖q̇2‖2

}− fd(Y1 − Y2)2

r1 + r2
eTPe

+hM

{
1 +

|Y1 − Y2|
r1 + r2

}
O(‖ẋ‖2).(81)

Since the damping factor c is sufficiently large in comparison with hM , the maximum
eigenvalue of H over all x, and |θ̇|2 is of O(‖q̇1‖2 +‖q̇2‖2) according to the constraints
of Ṙi = 0 and Q̇i = 0 for i = 1, 2, it is possible to conclude that

W0(t) ≤ 2F (t) ≤ 2F (0)e−(4σ/3)t

≤ 3W0(0)e−(4σ/3)t(82)

where

σ = inf
t∈[0,∞)

eTPe.(83)

This shows that the velocity vector ẋ and Y1 − Y2 converge to zero exponentially.
Further, in a similar way to Appendix B, it is possible to show the existence of δ(ε)
and η1 > 0 less than η0 by choosing W0(0) appropriately small so that any solution
starting from N6(δ(ε)) ∩ N18(η1) remains on N6(ε) ∩ N18(η0), which completes the
proof of Theorem 3.

Computer simulation based on physical parameters of Table 5 and initial positions
of Table 6 together with physical values for c and fd of Table 7 was conducted, which
results in transient behaviours of Y1 −Y2 and θ together with ζ0 = eTPe as shown in
Fig. 10. Note that ζ0 > 1.24 and hence Y1 − Y2 converges to zero exponentially with
the exponent greater than 4σ/3 ≈ 1.65.
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When the desired task is to realize stable grasping and orientation control of the
target angle θd concurrently, the sensory feedback⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ui = usi + uθi

i = 1, 2

uθi = (−1)i

{
JT

0i

(
sin θ

cos θ

)
− ri

(
1
1

)}
(αθ̇ + β∆θ)

(84)

can be used, where ∆θ = θ − θd, α > 0 and β > 0 are constant. In this case, if we
define ⎧⎪⎨

⎪⎩
F̄ = W + α0ẋ

THPee(Y1 − Y2)/(r1 + r2) + α1ẋ
THPθe0∆θ

W = W0 +
l

2
β∆θ2

(85)

and ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Pθ = I7 − B+B, B+ = BT(BBT)−1

Pe = I7 − B+
θ Bθ, B+

θ = BT
θ (BθB

T
θ )−1

B = (JT,−e)T, Bθ = (JT,−eθ)T

(86)

then it follows that
d
dt

F̄ ≤ − c

6
{‖q̇1‖2 + ‖q̇2‖2

}− lαθ̇2

−fd(Y1 − Y2)2

2(r1 + r2)
eTPee − l(β∆θ2 + αθ̇2)

2
eT

θ Pθeθ.(87)

This shows that the quantities

ζe = eTPee, ζθ = eT
θ Pθeθ(88)

play a key role in evaluation of the speed of exponential convergence of Y1−Y2 and ∆θ.
Figure 11 shows that both Y1−Y2 and ∆θ converge to zero around at t = 10.0 ∼ 15.0
but the speed of convergence is remarkably retarded in comparison with Fig. 10. This
phenomenon can be expected by comparing the quantity ζe of Fig. 11 with ζ0 of
Fig. 10. Note that ζe is reduced to around 0.012. which is equal to about 1/100 of ζ0.

6. Conclusions. It has been shown in this paper that ill-posedness of inverse
kinematics for robotic systems with redundant DOFs can be resolved by avoiding
the use of inverse kinematics and, instead of it, finding and using a sensory feedback
from the task space to the joint space via multiplication of a corresponding Jacobian
transpose. Hence, there is no need for introduction of any artificial performance
index for uniquely solving the inverse kinematics and any feedback term from the zero
space of the Jacobian matrix J , that is, (I − J+J)v. Illustrative examples are taken
from robotic systems with surplus DOFs under constraints. In the case of redundant
robotic systems with no constraint, the problem must be reduced to the stability proof
of ordinary PD feedback from the task space through a Jacobian transpose.
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Appendix A (Proof of rank(A) = 3). The 4 × 3 matrix A defined by eq.(22)
can be expressed as

A =

( (
JT

0 , e
)
Λ

Y, −l, 1

)
, Λ =

⎛
⎜⎝

− cos θ sin θ 0
sin θ cos θ 0

0 −r −1

⎞
⎟⎠(A-1)

and JT
0 =

(
(∂x0/∂q)T, (∂y0/∂q)T

)
, x0 = −l1 cos q1−l2 cos(q1+q2)−l3 cos(q1+q2+q3),

and y0 = l1 sin q1 + l2 sin(q1 + q2) + l3 cos(q1 + q2 + q3). Then,⎧⎪⎨
⎪⎩

∂x0

∂q
= (l1s1 + l2s12 + l2s123, l2s12 + l2s123, l3s123)

∂y0

∂q
= (l1c1 + l2c12 + l3c123, l2c12 + l3c123, l3c123) ,

(A-2)

where s1 = sin q1, s12 = sin(q1 + q2), etc. Since Λ is apparently nonsingular,
it is easy to confirm that A is nondegenerated if the three 3-dimensional vectors
∂x0/∂q, ∂y0/∂q, and e are independent to each other. Hence, it is important to
check the cases when these three vectors become dependent. Actually, these three
vectors become dependent if and only if 1) q1 = q2 = 0, 2) q1 = π/2 and q2 = 0, or
3) q2 = q3 = 0. The first and second cases can be excluded due to the conditions R2)
and R3). The third case corresponds to the finger posture such that it is stretched
straightforwardly. In this case the root of x2

0 +y2
0 is equal to l1 + l2 + l3. Hence the po-

sition (x0, y0) can not satisfy R2) and R4) simultaneously. Hence, the third case can
be also excluded. Thus, A must be nondegenerated under the conditions of R1) to R4).

Appendix B. To prove the existence of δ1(ε) > 0 and a fixed number r1 > 0
smaller than r0 such that a solution trajectory to the closed-loop dynamics of eq.(12)
with α = 0 and β = 0 starting from N4(δ1(ε))∩N8(r1) remains in N4(ε)∩N8(r0), it
is convenient to define

‖x(t) − x(0)‖K̄ =
{

hM

2
(q(t) − q(0))T(q(t) − q(0)) +

1
2
I(θ(t) − θ(0))2

}1/2

,(B-1)

where x = (qT, θ)T and hM stands for the maximum eigenvalue of H(q) over all q.
Then, it is necessary to see that

d
dt

‖x(t) − x(0)‖K̄ =
ẋTHM (x(t) − x(0))

2‖x(t) − x(0)‖K̄

≤
{

1
2
ẋHM ẋ

}1/2

≤
(

hM

hm

)1/2

‖ẋK‖,(B-2)

where hm stands for the minimum eigenvalue of H(q) over q, Hm = diag(hM , hM ,

hM , I), and

‖ẋ‖2
K =

1
2
q̇TH(q)q̇ +

1
2
Iθ̇2.(B-3)
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Then, according to eq.(46), it follows that

‖ẋ‖2
K ≤ V0(t) ≤ 3V0(0)e−(4σ/3)t.(B-4)

This inequality together with eq.(A-2) leads to

‖x(t) − x(0)‖K =
{

1
2
(q(t) − q(0))TH(q)(q(t) − q(0)) +

I

2
(θ(t) − θ(0))2

}1/2

≤ ‖x(t) − x(0)‖K̄ ≤
(

hM

hm

)1/2√
3V0(0)

∫ t

0

e−(2σ/3)t

≤
(

3hMV0(0)
hm

)1/2 3
2σ

.(B-5)

Thus, for an arbitrarily given ε > 0, it is possible to choose r1 = r0/3 and set

δ1(ε) =

{
ε if ε < ε0

ε0 if ε ≥ ε0

(B-6)

where

ε0 =
2σr0

9

(
hm

3hM

)1/2

.(B-7)

Then, according to eq.(A-5), V0(0) ≤ δ2
1(ε) implies that

‖x(t) − x(0)‖K ≤ r0/3

and finally it is shown that

‖∆x‖K + ‖ẋ‖K ≤ ‖x(t) − x(0)‖K + ‖x(0) − x0‖K + ‖ẋ‖K

≤ r0

3
+

r0

3
+

r0

3
= r0(B-8)

which shows that if (x(0), ẋ(0)) lies in N4(δ1(ε))∩N8(r0/3) then the solution trajec-
tory (x(t), ẋ(t)) starting from the above initial state (x(0), ẋ(0)) remains to be on
N4(ε) ∩ N14(r0).
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Time[s]

ξ e

0 20 40 60

0.05

0.06

0.07

Time[s]

ξ θ

0 20 40 60

0.03

0.035

0.04

0.045

Fig. 8. Transient behaviours of ξe and ξθ corresponding to the case of motion of Fig. 7



24 S. ARIMOTO ET AL.

θ

φ2

φ1

q21

q22

q12

q11

f1 f2

Y1 Y2

O

Oc.m.(x,y)

O02(x02,y02)

O01(x01,y01)

O'

λ1

λ2

r1

r2

l1
l2

x

y

O1(x1,y1)

O2(x2,y2)

Fig. 9. A pair of dual two DOF robot fingers pinching a rigid object.

Time[s]

Y
1-

Y
2[

m
m

]

0 0.5 1 1.5 2

-3

-2

-1

0

Time[s]

θ
[d

eg
]

0 0.5 1 1.5 2

-6

-4

-2

0

Time[s]

ζ o

0 0.5 1 1.5 2
1.244

1.245

1.246

1.247

Fig. 10. Transient responses of Y1 − Y2, θ, and ζ0 for the closed-loop dynamics of eq.(69).



NATURAL RESOLUTION OF ILL-POSEDNESS OF INVERSE KINEMATICS 25

Time[s]

Y
1-

Y
2[

m
m

]

0 0.5 1 1.5 2

-5

-4

-3

Time[s]

θ[
de

g]

0 0.5 1 1.5 2

0

1

2

3

4

Time[s]

ζ e

0 0.5 1 1.5 2

0.0116

0.0117

0.0118

0.0119

Time[s]

ζ θ

0 0.5 1 1.5 2

0.0068

0.0069

0.007

Fig. 11. Transient responses of Y1 − Y2, θ, ζe, and ζθ for the closed-loop dynamics of eq.(80)

Table 1

Physical Parameters

l1 link length 0.04 [m]
l2 link length 0.04 [m]
l3 link length 0.04 [m]
m1 link mass 0.0450 [kg]
m2 link mass 0.0300 [kg]
m3 link mass 0.0150 [kg]
I1 inertia moment 6.00 × 10−6[kgm2]
I2 inertia moment 4.00 × 10−6[kgm2]
I3 inertia moment 2.00 × 10−6[kgm2]
M object mass 0.05[kg]

I
object inertia

1.42 × 10−5[kgm2]
moment

l object width 0.015 [m]
r finger end radius 0.010 [m]
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Table 2

Initial Values

q1(0) 45.0000 [deg]
q2(0) 41.7508 [deg]
q3(0) 73.0979 [deg]
θ(0) 0.0 [deg]
Y (0) 2 [mm]

(xm, ym) (0.032 , 0.080) [m]

Table 3

Gains & desired values of force and orientation angle

Gain

D-gain for grasping c 0.003 -
P-gain for posture β 0 -
D-gain for posture α 0 -

Desired value
force fd 0.5 [N]
angle θd [deg]

Table 4

Gains & desired values of force and orientation angle

Gain

D-gain for grasping c 0.003 -
P-gain for posture β 3 -
D-gain for posture α 0.03 -

Desired value
force fd 0.5 [N]
angle θd 5 [deg]



NATURAL RESOLUTION OF ILL-POSEDNESS OF INVERSE KINEMATICS 27

Table 5

Physical Parameters

l11 link length 0.04 [m]
l12 link length 0.04 [m]
l21 link length 0.04 [m]
l22 link length 0.04 [m]
m11 link mass 0.04 [kg]
m12 link mass 0.04 [kg]
m21 link mass 0.04 [kg]
m22 link mass 0.04 [kg]
Iij inertia moment 5.3333× 10−6[kgm2]
M object mass 0.02[kg]

I
object inertia

7.5000× 10−6[kgm2]
moment

l object width 0.030 [m]
r finger end radius 0.010 [m]
L distance between fingers 0.070 [m]

Table 6

Initial Values

q11(0) 55.4469 [deg]
q12(0) 89.3554 [deg]
q21(0) 58.0387 [deg]
q22(0) 83.1619 [deg]
θ(0) 0.0 [deg]

(Y1 − Y2)(0) -3 [mm]
(xcm, ycm)(0) (0.035 , 0.060) [m]
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Table 7

Gains and Desired values

Gain
D-gain for grasping c 0.003 -
P-gain for posture β - -
D-gain for posture α - -

Desired value
force fd 0.5 [N]
angle θd - [deg]

Table 8

Gains and Desired values

Gain
D-gain for grasping c 0.003 -
P-gain for posture β 5.0 -
D-gain for posture α 0.03 -

Desired value
force fd 0.5 [N]
angle θd 5.0 [deg]


