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Consider semi-parametric bivariate copula models in which the family of copula functions is

parametrized by a Euclidean parameter � of interest and in which the two unknown marginal

distributions are the (in®nite-dimensional) nuisance parameters. The e�cient score for � can be

characterized in terms of the solutions of two coupled Sturm±Liouville equations. Where the family

of copula functions corresponds to the normal distributions with mean 0, variance 1 and correlation �,

the solution of these equations is given, and we thereby show that the normal scores rank correlation

coe�cient is asymptotically e�cient. We also show that the bivariate normal model with equal

variances constitutes the least favourable parametric submodel. Finally, we discuss the interpretation

of |� | in the normal copula model as the maximum (monotone) correlation coe�cient.
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1. Introduction: copula models

A distribution function C on the unit cube [0, 1]

m
in R

m
with uniform marginal

distributions is called a copula. A classical result of Sklar (1959) relates an arbitrary

distribution F on R
m
to a copula function C via the marginal distribution functions

F
1

; . . . ;Fm of F :

Theorem 1.1 (Sklar 1959). Suppose that F is a distribution function on R
m
with one-

dimensional marginal distribution functions F
1

; . . . ;Fm. Then there is a copula C such that

F�x
1

; . . . ; xm� � C�F
1

�x
1

�; . . . ;Fm�xm��: �1:1�

If F is continuous, then the copula C satisfying (1.1) is unique and is given by

C�u
1

; . . . ; um� � F�F
ÿ1

1

�u
1

�; . . . ;F
ÿ1

m �um�� �1:2�
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for u � �u
1

; . . . ; um� 2 �0; 1�
m
where F

ÿ1

i �u� � inffx :Fi�x�5 ug, i � 1; . . . ;m. Conversely,

if C is a copula on �0; 1�
m
and F

1

; . . .Fm are distribution functions on R, then the function F

de®ned by (1.1) is a distribution function on R
m

with one-dimensional marginal distributions

F
1

; . . . ;Fm.

See Sklar (1959) and Schweizer (1991) for some history. It seems that Hoe�ding (1940) also

had the basic idea of summarizing the dependence properties of a multivariate distribution

by its corresponding copula, but he chose to de®ne the corresponding function on �ÿ
1

2

;
1

2

�
m

rather than on �0; 1�
m
. In particular, see the translation of the Hoe�ding (1940) paper in

Hoe�ding (1994).

Our goal in this paper is to investigate e�cient estimation for semi-parametric copula

models p de®ned as follows: suppose that

fC
�
: � 2 �g �1:3�

is a parametric family of copula functions on �0; 1�
m
with densities fc

�
: � 2 �g with respect

to Lebesgue measure on �0; 1�
m
. For � 2 � and arbitrary distribution functions F

1

; . . . ;Fm

on R, let F
�;F

1

; . . . ; Fm
be the distribution function on R

m
de®ned by

F
�;F

1

; . . . ; Fm
�x

1

; . . . ; xm� � C
�
�F

1

�x
1

�; . . . ;Fm�xm�� for �x
1

; . . . ; xm� 2 R
m
: �1:4�

Then with P
�;F

1

; . . . ; Fm
denoting the corresponding probability measures on (R

m
, b

m
)

andf denoting the collection of all distribution functions on R,

p � fP
�;F

1

; . . . ; Fm
: � 2 �;Fi 2f; i � 1; . . . ;mg �1:5�

is a semi-parametric copula model. Natural submodels of p are those with f replaced by

f
c

, the collection of all continuous distribution functions F on R, or byf
ac

, the collection

of all absolutely continuous distribution functions.

One simple example, which is our main focus in this paper, is provided by the family of

copulas resulting from multivariate normal distributions on R
m
. Suppose that F

�;�
is the

multivariate normal distribution with mean � � ��
1

; . . . ; �m� and covariance � with

elements � i j � i� j, 14 i; j4m. Let � denote the one-dimensional standard normal

distribution function, and �

�
the m-dimensional standard normal distribution function

with mean 0, variances 1, and correlations � i j , � � ��
12

; . . . ; �mÿ1;m�. Then

Fi�yi� � ���yi ÿ �i�=�i�; i � 1; . . . ;m;

and hence C � C
�
satis®es

C
�
�u

1

; . . . ; um� � �

�
��

ÿ1

�u
1

�; . . . ;�
ÿ1

�um�� �1:6�

in this case. Note that the resulting semi-parametric copula modelp given by (1.4) and (1.5)

contains the family of normal distributions: if Fi�xi� � ���xi ÿ �i�=�i� for i � 1; . . . ;m,

then F
�;F

1

; . . . ; Fm
� F

�;�
.

For other copula families of considerable interest, see Kimeldorf and Sampson (1975a;

1975b), Clayton (1978), Genest andMacKay (1986a; 1986b), Genest (1987), Joe (1993) and

Genest et al. (1995). Copula models are also strongly connected with frailty models,

typically via a reparametrization to obtain uniform marginals (Sklar's theorem): for
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interesting frailty models, see, for example, Marshall and Olkin (1988). For work on related

transformation models, see Clayton and Cuzick (1985; 1986) and Klaassen (1988).

For ease of exposition, we will discuss ®rst the bivariate case with m � 2 in detail. As

we will see in Section 5.1 by a direct argument, our results will hold for the general

m-dimensional case too.

We will formulate our estimation problem as follows. Suppose that m � 2 and the

parametric family of copula functions on �0; 1�
2

is given by (1.6): thus

C
�
�u; v� � �

�
��

ÿ1

�u�;�
ÿ1

�v��; 04 u; v4 1: �1:7�

Then we suppose that we observe a sample from the distribution F
�;G;H ofX � �Y ;Z� given

by

F
�;G;H�y; z� � C

�
�G�y�;H�z��; �y; z� 2 R

2

; �1:8�

for some � and distribution functions G and H on R.

Note that � is one-dimensional here, and equals the correlation coe�cient of Y and Z

when X is normally distributed. In fact, in this normal copula model, j� j equals the

maximum correlation coe�cient of Y and Z. We will discuss this together with related

concepts and their history in more detail in Section 2. We observe n i.i.d. copies X
1

; . . . ;Xn

of X and we want to estimate the unknown parameters � asymptotically e�ciently in the

presence of the unknown, arbitrary nuisance parameters G and H.

Our main result is that the normal scores rank correlation coe�cient is an e�cient

estimator of � with asymptotic variance �1ÿ �
2

�
2

, just the same as the asymptotic variance

of the usual sample correlation coe�cient in the case of normal marginal distributions. The

normal scores rank correlation coe�cient is also called the Van der Waerden rank

correlation coe�cient; see Section III.6.1 of HaÂ jek and S

Æ

idaÂ k (1967). A precise formulation

of our main result is given in Section 3 together with a proof. The asymptotic performance

of this locally regular estimator follows directly from Ruymgaart (1974). To show that this

performance is optimal, we need a bound stating that this performance cannot be

improved. We will obtain such a bound by a simple study of a most di�cult (least

favourable) parametric submodel of our normal copula model. Such a model happens to be

the model withX bivariate normal with mean 0 and unknown covariance matrix with equal

variances. This extremal property of the multivariate normal distribution will be discussed

in Section 2, together with other extremal properties of the normal distribution.

Viewing G and H as unknown monotone transformations, we see tha the normal copula

model is a transformation model in the following sense: for all distribution functions G

and H,

P
�;G;H�G�Y�4 u; H�Z�4 v� � C

�
�u; v� � P

�;�;�
���Y�4 u;��Z�4 v�: �1:9�

Here we might choose the class of bivariate normal distributions with mean 0, variances 1

and correlation coe�cient � as the core model. In this sense all copula models are

transformation models, the discussion of which has been initiated in Sections 4.7 and 6.7

of Bickel et al. (1993). In particular, formula (4.7.33) (Bickel et al. 1993, p.162) shows that

the semi-parametric paradigm of projection of the score function for � on the nuisance

parameter tangent space leads to Sturm±Liouville di�erential equations. For copula
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models with both marginal distributions unknown, this becomes a pair of coupled Sturm±

Liouville equations. This approach will be discussed in Section 4, and yields another proof

of the e�ciency of the normal scores rank correlation coe�cient. In fact, the simple proof

given in Section 3 was discovered only after doing the information calculations as in Section

4, and for copula models other than Gaussian it seems unlikely that simple proofs or

computations will be possible: the Gaussian case is the only example in which we have been

able to compute the e�cient scores and information explicitly, even though we know that

the e�cient scores and information exist in a large subclass of such models.

Since j� j equals the maximum correlation coe�cient in the normal copula model, one

wonders if the maximum correlation coe�cient can be estimated by a locally regular

estimator in the nonparametric model of all bivariate distributions (or even some appro-

priate subset thereof ). This is not the case. The maximum correlation coe�cient cannot

even be estimated locally consistently, since it is not a continuous parameter on any

appropriately large class of bivariate distributions, as will be shown in Section 5.2.

2. Correlation and extremal properties of normal distributions

Many measures of dependence in bivariate distributions have been proposed. The ®rst and

most important of these is still the correlation coe�cient, which may be ascribed to Galton

(1888); see, for example, Stigler (1986). However, it has the unpleasant property that it can

vanish for dependent variables. The maximum correlation coe�cient, as proposed by

Gebelein (1941), does not have this drawback. If �Y ;Z� is a random vector one may

consider the correlation coe�cient ��a�Y�, b�Z�� of a�Y� and b�Z� for transformations a

and b from R to R. Taking the supremum over all a and b such that var�a�Y�� and

var�b�Z�� are positive and ®nite, we arrive at the maximum correlation coe�cient

�
M

�Y ;Z� � sup

a;b

��a�Y�; b�Z��: �2:10�

Clearly, �
M

�Y ;Z� � 0 if and only if Y and Z are independent; take a and b to be indicator

functions (cf. Feller 1971, p. 136). If �Y ;Z� is normal, then the maximum correlation

coe�cient equals the absolute value of the correlation coe�cient, that is,

�
M

�Y ;Z� � j��Y ;Z� j: �2:11�

We will give a short proof of this equality and discuss its history in Section 6.

Within the normal copula model (1.7), it is straightforward to check that �Y ;Z� and

�G
ÿ1

�G�Y��,H
ÿ1

�H�Z��� have the same distribution function�

�
��

ÿ1

�G�y��,�
ÿ1

�H�z���,

and that ��
ÿ1

�G�Y��, �
ÿ1

�H�Z��� has the standard normal distribution with correlation

coe�cient �. Together with (2.11), this yields

j� j � j���
ÿ1

�G�Y��;�
ÿ1

�H�Z��� j4 �
M

�Y ;Z�

� �
M

�G
ÿ1

�G�Y��;H
ÿ1

�H�Z��� �2:12�
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� �
M

�G
ÿ1

� � � �
ÿ1

� G�Y�;H
ÿ1

� � � �
ÿ1

�H�Z��

4 �
M

��
ÿ1

�G�Y��;�
ÿ1

�H�Z��� � j� j

and in the normal copula model the maximum correlation coe�cient of Y and Z equals j� j,

�
M

�Y ;Z� � j� j: �2:13�

Since the copula model is a transformation model with monotone transformations, it is

natural to restrict a and b in (2.10) to monotone functions. This leads to the (maximum)

monotone correlation coe�cient �
m

�Y ;Z� as de®ned in Section 4 of Kimeldorf and

Sampson (1978). Again by (2.12), we see that

�
m

�Y ;Z� � j� j: �2:14�

Note that (2.13) and (2.14) imply that we are essentially estimating the maximum

correlation coe�cient and the maximum monotone correlation coe�cient in our normal

copula model. However, the parameter � itself is the correlation coe�cient proper of the

normal core model, that is, after transformation of the marginals to normal distributions.

Therefore we will call � the normal correlation coe�cient. As indicated above, we will show

in Sections 3 and 4 that a least favourable parametric submodel of our copula model in

estimating the normal correlation coe�cient is the symmetric normal scale model. As a

matter of fact, this shows that the information I�P
0

j�;p� (cf. Bickel et al. (1993, (3.1.2) and

(3.3.24), pp. 46 and 63) about � at any distribution P
0

� P
�
0

;G
0

;H
0

within our normal copula

model

p � fP
�;G;H : � 2 �ÿ1; 1�;G;H continuous d.f.sg �2:15�

equals the information I�P
�
0

;�;�
j�; p

s

� about � at P
�
0

;�;�
within the symmetric normal

scale model

p
s

� fP
�;� � � =��;�� � =��

: � 2 �ÿ1; 1�; � > 0g: �2:16�

We formulate this more precisely as follows: for P
0

� P
�
0

;G
0

;H
0

2 p,

I
ÿ1

�P
0

j�;p� � supfI
ÿ1

�P
0

j�;q�: q � p;q regular parametricg

� I
ÿ1

�P
�
0

;�;�
j�;p

s

�; �2:17�

or equivalently,

I�P
0

j�;p� � inffI�P
0

j�;q�: q � p;q regular parametricg

� I�P
�
0

;�;�
j�; p

s

�: �2:18�

Thus the regular parametric submodel p
s

� p is least favourable. This is a surprising

extremal property of the bivariate normal distribution which is similar in nature to the well-

known fact that information for location, given the variance, is minimal at the normal

distribution; cf. Huber (1981, p. 83), and Barron (1986, p. 337). An extension of this

extremal property runs as follows. Fix the natural number n. Let Tn be a translation

equivariant estimator of the location parameter � of n i.i.d. random variables with
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symmetric density f � � ÿ �� and Fisher information for location I� f �. Then Theorem 2.3.2

of Klaassen (1981, p. 25), presents a sharpening of the FreÂ chet±CrameÂ r±Rao inequality

varf �Tn�5 �nI� f ��
ÿ1

�2:19�

and proves that equality can hold here if and only if f is a normal density. Inequality (2.19)

itself has been given by FreÂ chet (1943, p. 191), without explicit mention of regularity

conditions. Note that for n � 1 this reduces to the earlier result.

A related extremal property of the normal density is that it maximizes the Shannon

entropy ÿ

�

f log f for a given variance; again cf. Barron (1986, p. 337). Finally, we

mention another extremal property of the normal density. Let, for the moment, X be a

random variable with density f . For f normal and g an absolutely continuous function with

derivative g
0

, Cherno� (1981) proved

varf g�X�4 varf �X�Ef �g
0

�X��
2

: �2:20�

This inequality has been generalized by Klaassen (1985) to general f . Borovkov and Utev

(1983) de®ned

Uf � sup

g

varf g�X�

varf �X�Ef �g
0
�X��

2

and showed

Uf 4 1; �2:21�

with equality if and only if f is normal.

3. Approach 1: estimation by rank correlation

Let X � �Y ;Z� and suppose there exist known transformations � and � such that

��Y�

��Z�

 !

� N
2

0

0

 !

;

�
2

1

��
1

�
2

��
1

�
2

�
2

2

 ! !

: �3:22�

For example, we might have ��x� � ��x� � log�x� and hence X log-normal. Suppose that

we observe X
1

� �Y
1

;Z
1

�; . . . ;Xn � �Yn;Zn� i.i.d. as X � �Y ;Z�. By applying � and � to

the Ys and Zs, respectively, we arrive at the well-known situation of data with bivariate

normal distribution with unknown covariance matrix and mean zero; see, for example,

Example 2.4.6 of Bickel et al. (1993, pp. 36±38). The parameter of interest is �, which can be

estimated e�ciently in the presence of the nuisance parameters �
1

; �
2

by

^

�n �

1

n

P

n

i�1

��Yi���Zi�

f
1

n

P

n

i�1

�
2

�Yi�
1

n

P

n

i�1

�
2

�Zi�g
1=2

60 C.A.J.Klaassen and J.A.Wellner



attaining the information lower bound �1ÿ �
2

�
2

; cf. Bickel et al. (1993, p. 38). In fact, this

estimator is asymptotically linear with e�cient in¯uence function (at �
1

� �
2

� 1)

��Y���Z� ÿ
�

2

��
2

�Y� � �
2

�Z��: �3:24�

Furthermore, this information lower bound for � is valid also in the submodel of (3.22) with

the one-dimensional nuisance parameter �
2

� �
2

1

� �
2

2

. In the case of the normal copula

model with known marginal distributions G and H, the estimator (3.23) becomes

^

�n �

1

n

P

n

i�1

�

ÿ1

�G�Yi���
ÿ1

�H�Zi��

1

n

P

n
i�1

�

ÿ1
�G�Yi��� �

2

1

n

P

n
i�1

��
ÿ1
�H�Zi���

2

n o

1=2

: �3:25�

If � and � are unknown, then we have a semi-parametric model for which the parametric

information lower bound �1ÿ �
2

�
2

is still valid. In fact, we have the following model now:

there exist monotone transformations ~� and ~� such that �~��Y�; ~��Z�� � �

�
, the bivariate

normal distribution with standard normal marginal distributions and correlation �. In

agreement with Section 1 above and with Example 4.7.4.III of Bickel et al. (1993, p. 157) we

call this model the normal copula model. In this normal copula model, it is natural to

consider properties of the normal scores rank correlation coe�cient obtained from

^

�n given

in (3.25) by estimating G and H by the corresponding marginal empirical distributions Gn

and Hn rescaled by n=�n� 1�: with

G
�

n �

n

n� 1

Gn H
�

n �

n

n� 1

Hn; �3:26�

the normal scores rank correlation coe�cient �̂n is

�̂n �

1

n

P

n

i�1

�

ÿ1

�G
�

n�Yi���
ÿ1

�H
�

n�Zi��

1

n

P

n

i�1

�

ÿ1 i

n�1

� �h i

2

�3:27�

�

1

n

P

n

i�1

�

ÿ1 i

n�1

� �

�

ÿ1 Rn i

n�1

� �

1

n

P

n
i�1

�

ÿ1 i

n�1

� �h i

2

; �3:28�

where Rni � nHn�G
ÿ1

n
i

n

ÿ �

�; i � 1; . . . ; n; see HaÂ jek and S

Æ

idaÂ k (1967, p. 113).

In our present context, however, we need to consider the large-sample behaviour of �̂n

not only under the usual (independence) null hypothesis, but also under the normal copula

model as speci®ed above with � 6� 0. Fortunately, a very general study of the large-sample

theory of rank correlation statistics under ®xed alternatives has already been done by

Ruymgaart et al. (1972) and Ruymgaart (1974). In particular, we will use Theorem 2.2 of

Ruymgaart (1974) which treats the case of local sequences converging to a ®xed alternative.

When specialized to our normal copula model and �̂n, we obtain the following theorem.
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Theorem 3.1 (Asymptotic linearity and e�ciency of the normal scores rank correlation

coe�cient estimator). If �Y
1

;Z
1

�; . . . ; �Yn;Zn� are i.i.d. P � P
�0;G;H

2 p, then �̂n is a locally

asymptotically linear estimator of � with (e�cient) in¯uence function

~l
�
�y; z� � ~l

�
�y; z; �;G;H�

� �

ÿ1

�G�y���
ÿ1

�H�z�� ÿ
�

2

f��
ÿ1

�G�y���
2

� ��
ÿ1

�H�z���
2

g: �3:29�

Thus, for �n � �
0

�O�1=
���

n
p

�, we have under P
�n;G;H

���

n
p

� �̂n ÿ �n� �

1

���

n
p

X

n

i�1

~l
�
�Yi;Zi; �n;G;H� � o

p

�1� �3:30�

!
d

N�0; �1ÿ �
2

0

�
2

�: �3:31�

Before proving the theorem, we note that the normal scores rank correlation coe�cient

�̂n is, in fact the e�cient score equation estimator of � with G; H estimated by G
�

n, H
�

n: the

solution � of

0 �

1

n

X

n

i�1

l
�

�
�Yi;Zi; �;G

�

n;H
�

n�

�

1

n

X

n

i�1

1

�1ÿ �
2

�
2

�

ÿ1

�G
�

n�Yi���
ÿ1

�H
�

n�Zi�� ÿ

�

2

f��
ÿ1

�G
�

n�Yi���
2

� ��
ÿ1

�H
�

n�Zi���
2

g

� �

is just � � �̂n.

Proof. We ®rst give a heuristic development showing why the result is true, followed by a

formal proof based on Ruymgaart's (1974) theorem.

First note that

��
ÿ1

�G�Yi��;�
ÿ1

�H�Zi��� � �

�
; �3:32�

the bivariate normal distribution with mean 0, variances 1 and correlation �. Since

n
ÿ1
P

n

i�1

��
ÿ1

�i=�n� 1���
2

ÿ 1 � O�n
ÿ1

log n�, we can rewrite

���

n
p

� �̂n ÿ �� as

���

n
p

� �̂n ÿ �� �

1�O�n
ÿ1

log n�
���

n
p

X

n

i�1

f�
ÿ1

�G
�

n�Yi���
ÿ1

�H
�

n�Zi�� ÿ �g �O�n
ÿ1=2

log n�

�

1� o�1�
���

n
p

X

n

i�1

f�
ÿ1

�G�Yi���
ÿ1

�H�Zi�� ÿ �g �3:33�

�

1

���

n
p

X

n

i�1

f�
ÿ1

�G
�

n�Yi�� ÿ �

ÿ1

�G�Yi��g�
ÿ1

�H�Zi��

�

1

���

n
p

X

n

i�1

f�
ÿ1

�H
�

n�Zi�� ÿ �

ÿ1

�H�Zi��g�
ÿ1

�G�Yi�� � o
p

�1�;

62 C.A.J.Klaassen and J.A.Wellner



where the o
p

�1� comes from replacement of �

ÿ1

�H
�

n�Zi�� by �

ÿ1

�H�Zi�� in the second

term.

Now we rewrite the second term, using �d=du��
ÿ1

�u� � 1=���
ÿ1

�u�� and Taylor

expansion:

1

���

n
p

X

n

i�1

1

���
ÿ1
�
~G
�

n�Yi���

�G
�

n ÿ G��Yi� ��

ÿ1

�H�Zi�� �3:34�

�

�

�

ÿ1

�H�z��

���
ÿ1
�G�y���

���

n
p

�G
�

n ÿ G��y�dPn�y; z� � o
p

�1�

�

�

�

ÿ1

�H�z��

���
ÿ1
�G�y���

���

n
p

�G
�

n ÿ G��y�dP
�;G;H�y; z� � o

p

�1�

�

�

��
ÿ1

�G�y��
���

n
p

�G
�

n ÿ G��y�d�
ÿ1

�G�y�� � o
p

�1�

� ÿ

�

2

�

f�
ÿ1

�G�y��g
2

df

���

n
p

�G
�

n ÿ G��y�g � o
p

�1�

� ÿ

�

2

1

���

n
p

X

n

i�1

f�
ÿ1

�G�Yi��
2

ÿ 1g � o
p

�1�;

here the third equality comes from computing conditionally onY � y and noting (3.32). An

analogous development for the third term on the right-hand side of (3.33) shows that it can

be rewritten as

ÿ

�

2

1

���

n
p

X

n

i�1

f�
ÿ1

�H�Zi��
2

ÿ 1g � o
p

�1�: �3:35�

Combining (3.33), (3.34) and (3.35) yields the conclusion ± with the understanding that the

arguments for the o
p

�1� terms have been only heuristic.

We proceed with the formal proof by verifying Assumptions 2.1±2.3 and 2.5 of

Ruymgaart (1974) withh
0

� fP
�n;G;H

: n � 0; 1; 2; . . .g and " � 1=4. (Note that regularity

of the estimators is automatic as far as the nuisance parameters go.) First, note that

J � K � �

ÿ1

.

Assumption 2.1 holds easily, since B
�

0n � 0 if an�i � � bn�i � � �

ÿ1

�i=�n� 1��:

As for Assumption 2.2, J
d

� K
d

� 0, J
c

� J � K
c

� K � �

ÿ1

is continuously di�erenti-

able, r
2

� r
1

� jJ j � j�
ÿ1

j, �r
2

� �r
1

� jJ
0

j � 1=���
ÿ1

�.

Moving on to Assumption 2.3, the ®rst supremum overh
0

is ®nite since, for all �,

� �

j�
ÿ1

�G�y���
ÿ1

�H�z�� j
2� "

dP
�;G;H�y; z� � E

�

�

�YZ �
2� "

<1: �3:36�

Let q
1

�s� � �
1=3

��
ÿ1

�s��. Then

�

q
ÿ2ÿ "

1

�s�ds �

�

�
1=4

�y�dy <1; �3:37�
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and, by HoÈ lder's inequality, the second supremum is ®nite because

E
�

�

j�
1=3ÿ1

�Y �Z j
1�1=4

<1 �3:38�

since

E�
ÿ

2

3

5

4

7

6�Y� �

�

�
1=36

�y�dy <1: �3:39�

By symmetry the last supremum is the same and Assumption 2.3 is satis®ed. Finally, we

verify Assumption 2.5: (a) is satis®ed in view of J
d

� K
d

� 0. Thus Theorem 2.2 of

Ruymgaart (1974) applies and yields the asymptotic normality claimed, since the

random variable in Ruymgaart's (3.5) equals �� ~l��Y ;Z �. Asymptotic linearity follows

from e�ciency and the convolution theorem; see, for example, Theorem 3.3.2 of Bickel et al.

(1993, p. 63). h

As noted immediately following the theorem, �̂n is the e�cient score estimator of �. It is

interesting to note that it is also asymptotically equivalent to the `pseudo-maximum

likelihood' estimator obtained by estimating the unknown marginal distribution G and

H by the marginal empiricals G
�

n and H
�

n and then maximizing the resulting `pseudo-

likelihood' as a function of �, or by solving the (ordinary) score equation with G and H

estimated away by the marginal empiricals G
�

n and H
�

n: from the score for � (see, for

example, Bickel et al. (1993, pp. 36±37) we ®nd that this estimator

^

�
pml

n is the solution � of

0 � ��1ÿ �
2

� ÿ

1

n

X

n

i�1

f���
ÿ1

�G
�

n�Yi��
2

� �

ÿ1

�H
�

n�Zi��
2

�

� �1� �
2

��
ÿ1

�G
�

n�Yi���
ÿ1

�H
�

n�Zi��g:

In view of

���

n
p

fn
ÿ1

�

n

i�1

��
ÿ1

�i=�n� 1��
2

ÿ 1g � o�1�, the above equation may be rewritten

as

0 � ��1ÿ �
2

� ÿ 2�� o�n
ÿ1=2

� � �1� �
2

�

1

n

X

n

i�1

�

ÿ1

�G
�

n�Yi���
ÿ1

�H
�

n�Zi��

� ÿ��1� �
2

� � o�n
ÿ1=2

� � �1� �
2

�

1

n

X

n

i�1

�

ÿ1

�G
�

n�Yi���
ÿ1

�H
�

n�Zi��; �3:40�

which shows that

^

�
pml

n � o�n
ÿ1=2

� �

1

n

X

n

i�1

�

ÿ1

�G
�

n�Yi���
ÿ1

�H
�

n�Zi�� � �̂n � o�n
ÿ1=2

�: �3:41�

Hence even the pseudo-maximum likelihood estimator

^

�
pml

n is asymptotically e�cient in

our present normal copula model. The pseudo-maximum likelihood method has been

studied more generally in the context of copula models by Genest et al. (1995), who prove
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asymptotic normality of

^

�
pml

n . When specialized to the normal copula model, their

asymptotic variance formula yields �1ÿ �
2

�
2

in agreement with the preceding argument,

as has been shown by Hu (1995).

4. Approach 2: information calculations for copula models

In the framework of Section 1, suppose that the copula distributions C
�
have densities c

�

with respect to Lebesgue measure on �0; 1�
2

. We assume that c
1=2

�
is FreÂ chet di�erentiable

in � in the Hilbert space of square Lebesgue-integrable functions on the unit square. The

resulting FreÂ chet derivative multiplied by 2c
ÿ1=2

�
1
�c
�
> 0�

is called the score function for � and

denoted by

_l
�
.

We will follow the development in Section 4.7 of Bickel et al. (1993), especially

Propositions 4±7 (pp. 166±169), together with Proposition A.4.1 (p. 439). For copula

models with two unknownmarginal distributions, the equations determining the projection

of the score function for � onto the nuisance parameter tangent space given in general by

(A.4.11)±(A.4.13) can be written as

_lg a � �g�
_l
�
ÿ

_l hb� �4:42�

and

_lh b � �h�
_l
�
ÿ

_lg a� �4:43�

where �g �
_lg�

_l
T

g
_lg�

ÿ1
_l
T

g is the projection operator onto

_pg, the tangent space of score

functions for g, and �h �
_lh�

_l
T

h
_lh�

ÿ1
_l
T

h is the projection operator onto

_ph; here

_lg a�u; v� � a�u� � _lu�u; v�

�

u

0

a�s�ds; �4:44�

_lhb�u; v� � b�v� � _lv�u; v�

�

v

0

b�s�ds �4:45�

for a; b 2 L
0

2

��0; 1�;Lebesgue� with

_lu�u; v� �
@

@u
log c

�
�u; v�; _lv�u; v� �

@

@v
log c

�
�u; v�;

while

_l
T

g a�u� �

�

1

0

a�u; v�c
�
�u; v�dv�

�

1

0

�

1

0

�1
�u 4 s�

ÿ s� _lu�s; v�a�s; v�c��s; v�dsdv; �4:46�

_l
T

h b�u� �

�

1

0

b�u; v�c
�
�u; v�du�

�

1

0

�

1

0

�1
�v 4 s� ÿ s� _l v�u; s�b�u; s�c��u; s�duds �4:47�
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for a; b 2 L
0

2

�C
�
�. Actually, we only know that the nuisance tangent space contains

_pg �
_ph and that

_pg � �
_lg a : a 2 L

0

2

��0; 1�;Lebesgue�� � r� _lg�

and

_ph � �
_lhb : b 2 L

0

2

��0; 1�;Lebesgue�� � r� _lh�:

Consequently, in (4.42) and (4.43), �g and �h describe projections onto possibly proper

subspaces of the nuisance tangent spaces

_pg and
_ph, respectively. However this may be, the

resulting projection onto a subspace of the nuisance tangent space will yield a valid

information bound for our semi-parametric model, and, in fact, it will yield the e�cient

information bound and corresponding e�cient score function (4.70) (cf. (3.29)); see the

discussion in Bickel et al. (1993, pp. 76±77). De®ne two functions �, � by

��u� �

�

1

0

_l
2

u�u; v�c��u; v�dv; ��v� �

�

1

0

_l
2

v�u; v�c��u; v�du: �4:48�

Note that by Proposition 4.7.6. of Bickel et al. (1993, p. 168), the sum spacer� _lg� �r�
_lh� is

closed if � and � satisfy

��u�4Mfu�1ÿ u�g
ÿ2

; 0 < u < 1;

and

��v�4Mfv�1ÿ v�g
ÿ2

; 0 < v < 1:

Operating across (4.42) by

_l
T

g yields

_l
T

g
_lg a �

_l
T

g
_lg�

_l
T

g
_lg�

ÿ1
_l
T

g �
_l
�
ÿ

_lhb� �4:49�

�
_l
T

g
_l
�
ÿ

_l
T

g
_lhb: �4:50�

Here

_l
T

g
_lg a�u� � a�u� �

�

1

0

�1
�u 4 s� ÿ s�

�

s

0

adI

� �

��s�ds �4:51�

for a 2 L
0

2

�G�, and

_l
T

g
_l
�
�u� �

�

1

0

�1
�u 4 s� ÿ s�
�s�ds; �4:52�

with � as de®ned in (4.48) and


�u� �

�

1

0

_l
�

_lu�u; v�c��u; v�dv:
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So di�erentiation across (4.50) yields, with A
0

� a, A
00

� a
0

,

A
00

�u� ÿ ��u�A�u� � ÿ
�u� ÿ
@

@ u
f
_l
T

g
_lhbg: �4:53�

To calculate the last term, we ®rst calculate

_l
T

g
_lhb. By (4.46) and the formula (4.45) for

_lh, we

obtain, with B�v� �
�

v

0

b�s�ds,

_l
T

g �
_lhb��u� �

�

1

0

b�v�c
�
�u; v�dv

�

�

1

0

_lv�u; v�B�v�c��u; v�dv �4:54�

�

�

1

0

b�v�

�

1

0

�1
�u 4 s� ÿ s� _lu�s; v�c��s; v�ds

� �

dv

�

�

1

0

�

1

0

�1
�u 4 s� ÿ s� _lu�s; v�

_lv�s; v�B�v�c��s; v�dsdv:

Di�erentiation of (4.54) with respect to u yields

@

@ u
f
_l
T

g
_lhbg�u� �

�

1

0

B�v��lu v�u; v�c��u; v�dv: �4:55�

By symmetry, we obtain

@

@ v
f
_l
T

h
_lg ag�v� �

�

1

0

A�u��lu v�u; v�c��u; v�du: �4:56�

Let K�u; v� � �lu v�u; v�c��u; v�; then the coupled equations (4.42) and (4.43) become:

A
00

�u� ÿ ��u�A�u� � ÿ
�u� ÿ

�

1

0

B�v�K�u; v�dv; �4:57�

B
00

�v� ÿ ��v�B�v� � ÿ��v� ÿ

�

1

0

A�u�K�u; v�du �4:58�

with � as de®ned in (4.48) and

��v� �

�

1

0

_l
�

_lv�u; v�c��u; v�du:

To this point, our development has involved rewriting the equations determining the

projection of

_l
�
onto the sum spacer� _lg� �r�

_lh� for a general bivariate copula model. Now

we specialize to the case of the normal copula family given by (1.7). In this case the

corresponding density c
�
is (with �

�
denoting the density of �

�
)

c
�
�u; v� �

�
�
��

ÿ1

�u�;�
ÿ1

�v��

���
ÿ1
�u�����ÿ1

�v��
: �4:59�
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Then we obtain by straightforward calculation that (see also (4.7.92) and (4.7.93) in Bickel

et al. 1993, p. 174)

��u� � ��u� �
�
2

1ÿ �
2

1

�
2

��
ÿ1
�u��

; �4:60�


�u� � ��u� �
�

1ÿ �
2

�

ÿ1

�u�

���
ÿ1
�u��

�4:61�

and

�l
uv

�u; v� �
�

1ÿ �
2

1

���
ÿ1
�u�����ÿ1

�v��
: �4:62�

Note that ��u� � o��u�1ÿ u��
ÿ2

as u! 0 or u! 1, and (a natural generalization of )

Proposition 4.7.6 of Bickel et al. (1993, p. 168) holds and shows thatr� _lg� �r�
_lh� is closed.

Calculations will become simpler and more transparent in this present case if we transform

back to y and z corresponding to normal marginal distributions, so we de®ne

~A and

~B by

~A�y� � A���y��; A�u� � ~A��
ÿ1

�u��; �4:63�

~B�z� � B���z��; B�v� � ~B��
ÿ1

�v��: �4:64�

Then

A
0

�u� � ~A
0

��
ÿ1

�u��
1

���
ÿ1
�u��

�4:65�

and

A
00

�u� � ~A
00

��
ÿ1

�u��
1

�
2

��
ÿ1
�u��

�
~A
0

��
ÿ1

�u��
�

ÿ1

�u�

�
2

��
ÿ1
�u��

: �4:66�

Using these in (4.57) and letting y � �

ÿ1

�u�, we obtain a di�erential equation for ~A with a

coupling term involving

~B:

~A
00

�y� � y ~A
0

�y� ÿ
�
2

1ÿ �
2

~A�y�

� ÿ

�

1ÿ �
2

y��y� ÿ

�

1

ÿ1

~B�z�
�

1ÿ �
2

�
�
�y; z�

��z�
dz: �4:67�

By symmetry, equation (4.58) becomes

~B
00

�z� � z ~B
0

�z� ÿ
�
2

1ÿ �
2

~B�z�

� ÿ

�

1ÿ �
2

z��z� ÿ

�

1

ÿ1

~A�y�
�

1ÿ �
2

�
�
�y; z�

��y�
dy: �4:68�

To solve equations (4.67) and (4.68), we simply `guess' the answer up to a constant c, and

then solve for c: by taking ~A�y� � cy��y� � ÿc�
0

�y�, ~B�z� � cz��z� � ÿc�
0

�z�, it is easily
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checked that

~A, ~B satisfy (4.67) and (4.68) for c � 2

ÿ1

�=�1ÿ �
2

�. This yields the e�cient

score function l
�

�
for �:

l
�

�
�u; v� � _l

�
�u; v� ÿ _lg a�u; v� ÿ

_lhb�u; v�; �4:69�

again it is a little bit easier to continue calculation on the y; z scales, and indeed we ®nd,

upon substitution, that

l
�

�
�y; z� � l

�

�
���y�;��z�� �

1

�1ÿ �
2

�
2

yzÿ
�

2

�y
2

� z
2

�

� �

: �4:70�

Hence, with �Y ;Z� � �

�
, the e�cient information for � in the bivariate normal copula

model (1.7) is given by

I
�
��� � Efl

�

�
�Y ;Z �g

2

�

1

�1ÿ �
2

�
4

E YZ ÿ

�

2

�Y
2

� Z
2

�

� �

2

�

1

�1ÿ �
2

�
2

: �4:71�

As already shown in Section 3, this means that the normal scale submodel of the bivariate

normal copula is least favourable for estimation of �.

It should be emphasized that the short proof given in Section 3 was found only after we

had performed the calculations presented in this section. Furthermore, we do not know

solutions of the projection equations (4.57) and (4.58) for any other copula model. For

example, it would be of interest to know more about the solution of (4.57) and (4.58) for the

Clayton±Oakes and Frank models with

C
�
�u; v� �  

ÿ1

�
� 

�
�u� �  

�
�v�� �4:72�

and  
�
�u� � �u

ÿ�

ÿ 1�=� or  
�
�u� � logf�1ÿ ��=�1ÿ �

u
�g, respectively. Such calculations

may be possible via calculation of eigenfunctions and eigenvalues of the integral operator(s)

with kernel K appearing in (4.57) and (4.58). In the normal copula model considered here,

K�u; v� �
�

1ÿ �
2

�
�
��

ÿ1

�u�;�
ÿ1

�v��

�
2

��
ÿ1
�u���2

��
ÿ1
�v��

;

and hence Mehler's (1866) formula (6.89), which we will discuss in Section 6, yields an

eigenexpansion of K (composed on � in each argument) and of the integral operators in

(4.57) and (4.58).

5. Miscellanea

5.1. EXTENSION FROM m � 2 TO GENERAL m5 2

Now suppose that X � �Y
1

; . . . ;Ym� � Nm�0;�� where � 2s can be regarded as a vector

in R
m�m�1�=2

. It is well known that the maximum likelihood estimator

^

� is an (asymp-

totically) e�cient estimator of � in this regular parametric model. Since the population

correlation coe�cient �
12

is a di�erentiable function of �, say �
12

�  
12

���,  
12

�
^

�� is

e�cient in estimating  
12

��� � �
12

. But

^

� is the sample covariance matrix, and hence
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12

�
^

�� is the sample correlation coe�cient. Consequently, the e�cient in¯uence function in

estimating �
12

equals the in¯uence function of  
12

�
^

��, which (as we know) equals the

e�cient in¯uence function for estimating �
12

within the bivariate normal model based on

observing X � �Y
1

;Y
2

�. It follows that the results of Sections 3 and 4 for the case of m � 2

carry over immediately to the case m > 2: the normal scores rank correlation coe�cient is

(asymptotically) e�cient for estimation of �
12

, and similarly for the other correlation

coe�cients �
13

; . . . ; �
�mÿ1�m.

5.2. DISCONTINUITY OF �
M

AND �
m

One issue which appeared in Section 2 is that of identifying useful extensions of the

parameter ��P
�;G;H� � � beyond the normal copula model p. As noted in Section 2 (and

discussed further in Section 6), the maximum correlation coe�cient equals j� j on the

normal copula model, so the maximum correlation coe�cient �
M

�P� gives an extension of

j��P�j beyond the normal copula model p. Similarly, the maximum monotone correlation

coe�cient �
m

�P� extends j��P�j too.

Let the model p
e

� p be an extension of p. For the maximum correlation coe�cient

�
M

�P� to be consistently estimable (uniformly on compact subsets of p
e

in the variational

distance), it is necessary that �
M

�P� be continuous on p
e

; see, for example, Proposition

2.2.1.A of Bickel et al. (1993, p. 20). Ifp
e

is a su�ciently large extension ofp this is not the

case, as we will show in this subsection. In fact, we will prove the stronger result that both

�
M

�P� and �
m

�P� are discontinuous on appropriate extensions p
e

of the core model of p,

that is, the normal model. Indeed, letp
e

be the class of all distributions on R
2

with smooth

density with respect to Lebesgue measure. Many de®nitions of smoothness will do for our

proof of Theorem 5.1 below, for example if all partical derivatives of any order of the

density exist.

Theorem 5.1 (Discontinuity of �M and �m). Both �M�P� and �m�P� are (weakly) discontin-

uous functionals on p
e

at any P
0

2 p
e

with �
M

�P
0

� < 1 and �
m

�P
0

� < 1, respectively.

Furthermore, �
M

�P� and �
m

�P� are lower semi-continuous on p
e

and hence continuous at

those P
0

with �
M

�P
0

� � 1 and �
m

�P
0

� � 1, respectively.

Remark 5.1. Discontinuity of �
M

at any bivariate distribution with independent marginals

was proved by Kimeldorf and Sampson (1978): their Theorem 1 (p. 897) exhibits a sequence

of distributions Pn on the unit square in R
2
(now known as `shu�es of min' distributions)

which satisfy:

� �
M

�Pn� � 1 for all n � 1; 2; . . . .

� Pn !d

Uniform��0; 1�
2

�.

Since �
M

�Uniform��0; 1�
2

�� � 0, this proves that �
M

is discontinuous at `independence'.

This was strengthened by MikusinÂ ski et al. (1991), who show that shu�es of min are

dense in the collection of all copulas on �0; 1�
2

in the sense of Kolmogorov (supremum
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norm) distance between distribution functions. Stated another way, this says that for

copula C on �0; 1�
2

with arbitrary maximal correlation �
M

�C�, there exists a sequence of

copulas fCng on �0; 1�
2

with �
M

�Cn� � 1 for all n and k Cn ÿ C k
1
! 0. Since

k Cn ÿ C k
1
! 0 implies that C

n

!
d

C, this implies that �
M

is weakly discontinuous at

every copula C, and hence also at every bivariate distribution P.

Now we turn to �
m

. Preservation of �m�P� � 1 under weak convergence was proved by

Kimeldorf and Sampson (1978): their Theorem 3 (p. 899) can be rephrased as follows. If

Pn !d

P and �
m

�Pn� � 1 for each n, then �m�P� � 1. (This is not the same as continuity of

�
m

at 1, which would assert that if Pn !d

P and �
m

�P� � 1, then �
m

�Pn� ! 1.)

Proof. First consider �
m

�P�. Fix P
0

and � > 0 so that �
m

�P
0

� � � < 1. Let a; b be monotone

functions satisfying

�
m

�P
0

�4

�

a�y�b�z�dP
0

�y; z� � � �5:73�

with

E
0

a�Y� � E
0

b�z� � 0; E
0

a
2

�Y� � E
0

b
2

�Z� � 1: �5:74�

Without loss of generality we may assume that both a : R!
�R and b : R!

�R are

continuous and unbounded on the support of Y and Z, respectively. We may even

assume them to be strictly increasing. (If a : R!
�R is not continuous, unbounded, or

strictly increasing, ®rst truncate a to obtain a
1

�y� � �ÿM� _ �a�y� ^M� withM su�ciently

large such that

�

�a
1

ÿ a�
2

dF is su�ciently small; here F is the marginal distribution function

of Y . Second, convolve a
1

with a smooth density, getting a
2

�y� �
�

a
1

�y� "u�k�u�du; here

k is, for instance, the logistic density. If " > 0 is su�ciently small, then

�

�a
2

ÿ a
1

�
2

dF is

small. Note that a
2

is continuous and strictly increasing unless a � 0. Furthermore, de®ne

a
3

�y� � a
2

�y� � "f�F�y��
ÿ1=4

� �1ÿ F�y��
ÿ1=4

g, for y in the support of Y , with "

su�ciently small. Finally, normalize a
3

such that the resulting a
4

satis®es (5.74). For

appropriate choices M and " it also satis®es (5.73).)

For " > 0 we de®ne the sets A
"
and B

"
by

A
"
� f�y; z� : "

ÿ2

4 a�y�4 "
ÿ2

�1� "
4

�
1=2

; "
ÿ2

� b�z�4 "
ÿ2

�1� "
4

�
1=2

g; �5:75�

B
"
� f�y; z� : ÿ"

ÿ2

�1� "
4

�
1=2

4 a�y�4 ÿ "
ÿ2

;ÿ"
ÿ2

�1� "
4

�
1=2

4 b�z�4 ÿ "
ÿ2

g: �5:76�

We choose P
1"
2 p

e

such that

P
1"
�A

"
� � P

1"
�B

"
� �

1

2

: �5:77�

This may be done in such a way that both a�Y� and b�Z� have mean 0 under P
1"
. Note

that

E
1"
a
2

�Y�4 "
ÿ4

�1� "
4

�; E
1"
a�Y�b�Z�5 "

ÿ4

: �5:78�
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Now we de®ne P
"
2 p

e

by P
"
� �1ÿ "

4

�P
0

� "
4

P
1"
. Then E

"
a�Y� � E

"
b�Z� � 0, and by

(5.78) we obtain

�m�P"�5
E
"
a�Y�b�Z�

����������������������������������

E
"
a2�Y�E

"
b2�Z�

p 5
1ÿ "

4

���m�P0

� ÿ �� � 1

�1ÿ "
4

� � �1� "�
4

: �5:79�

In view of �
m

�P
0

� � � < 1, this yields

lim inf

"#0

�
m

�P
"
�5

1� �
m

�P
0

� ÿ �

2

> �
m

�P
0

�: �5:80�

Since P
"
!

d

P
0

as " # 0, P! �
m

�P� is not weakly continuous at P
0

.

The same arguments without the monotonicity restrictions yield a proof for the

discontinuity of �
M

�P� at P
0

.

Again, ®x P
0

and � > 0. Choose bounded continuous monotone functions a and b such

that

�
P
0

�a�Y�; b�Z��5 �
m

�P
0

� � �: �5:81�

For any sequence fPng converging weakly to P0

we have

�
m

�Pn�5 �Pn
�a�Y�; b�Z�� ! �

P
0

�a�Y�; b�Z�� �5:82�

as n!1. Since � is arbitrary, the second part of the theorem follows from (5.81) and

(5.82). Subsequently, the continuity property is implied by �
m

�P�4 1. h

5.3. EFFICIENT ESTIMATION OF G AND H?

It would be very interesting to know information bounds and e�cient estimators for

estimation of the marginal distribution functions G and H in the bivariate normal copula

model treated here, or in other copula models. It is clear that the marginal distributions Gn

and Hn provide

���

n
p

-consistent estimators of G and H, respectively, but because of the

parametric dependence structure these will be ine�cient in general. One approach to

calculation of an information bound for estimation of G�x
0

� for a ®xed x
0

involves

projection of the in¯uence function 1
�ÿ1;x

0

�
ÿ G�x

0

� of the ine�cient estimator Gn�x0�

onto the tangent space

_p � �
_l
�
� �

_pg �
_ph of the model. We have not yet succeeded in

solving the (coupled) di�erential equations connected to this projection problem.

6. Mehler's formula and the Gebelein±Lancaster theorem

In his well-known paper `On measures of dependence', ReÂ nyi (1959) includes the following

postulate among his list of requirements of a measure of dependence ��Y ;Z� between two

random variables Y and Z: `If the joint distribution of Y and Z is normal, then ��Y ;Z� �

j��Y ;Z�j where ��Y ;Z� is the correlation coe�cient of Y and Z.' In his discussion of the
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maximum correlation �
M

, ReÂ nyi attributes the veri®cation of this postulate in the case of

�
M

to Gebelein (1941). This seems to be one thread in what we shall call the `continental

European' history of the maximum correlation and its properties, which seems to have

begun with Gebelein (1941) and continued with Richter (1949), Sarmanov (1958), ReÂ nyi

(1959) and Bell (1962).

On the other hand, there was a strong development of maximum correlation (or

canonical correlation) in England, especially for discrete variables. The introduction of

correlation seems to have begun with Galton (1888) and Pearson (1896); see Stigler (1986,

pp. 297±299 and 342). Study of maximum correlation took o� with Hirschfeld (1935),

Fisher (1940) and Maung (1942). Lancaster (1957) renewed the investigation, and inde-

pendently proved Gebelein's result in Lancaster (1958) (where he references Mehler 1866).

Lancaster (1963) and Eagleson (1964) contain related results, and by Lancaster (1969) the

`continental' and English developments have united: Lancaster (1969) references ReÂ nyi

(1959).

To the best of our knowledge, the only textbook containing a proof of the theorem noted

by ReÂ nyi (1959) is Kendall and Stuart (1973), where the theorem is attributed to Lancaster

(1957).

It seems fairly clear that one major reason for the lack of contact between the two

literatures (`continental Europe' and `English') was the Second World War. That it took

until 1969 for this contact or bridging to occur attests to the depth of the division. Because

the proof in Kendall and Stuart is quite brief and apparently not well known, we include a

proof here of the theorem due to Gebelein (1941) and Lancaster (1957).

Theorem 6.1. If the joint distribution of X and Y is normal, then �M�X ;Y� � j��X ;Y� j.

Moreover, the supremum is attained for (and only for) linear transformations a and b of X

and Y, respectively.

Proof. The following formulae appear in Mehler (1866), pp. 173±174):

E�x; y� �
1

��������������

1ÿ �
2

p exp

ÿ�
2

�x
2

� y
2

� � 2�xy

1ÿ �
2

 !

�

e

x
2

���

�

p

�

1

ÿ1

e

ÿ�tÿ iy�
2

ÿ�x� i� t�
2

dt

�

e

x
2

���

�

p

�

1

ÿ1

e

ÿ�tÿ iy�
2

X

1

n�0

�i�t�
n

n!

@
n

@xn
e

ÿx
2

dt �6:83�

�

X

1

n�0

�2��
n

n!

~Hn�x�
~Hn�y�;

with

~Hn�x� � �ÿ2�
ÿn
e

x
2 @

n

@xn
e

ÿx
2

�

�ÿi�
n

���

�

p

�

1

ÿ1

t
n
e

ÿ�tÿ ix�
2

dt: �6:84�
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The Hermite polynomials Hn�x� are de®ned (cf. Feller 1971, p. 532) by

Hn�x� � �ÿ1�
n 1

��x�

@
n

@xn
��x� �6:85�

where ��x� � �2��
ÿ1=2

e

ÿx
2

=2

is the standard normal density. So

~Hn

1

2

���

2

p

x

� �

� �ÿ2�
ÿn 1

��x�

@
n

@xn
��x�2

n=2
� 2

ÿn=2
Hn�x�; �6:86�

and

E
1

2

���

2

p

x;
1

2

���

2

p

y

� �

�

1

��������������

1ÿ �
2

p exp ÿ

�
2

�x
2

� y
2

� ÿ 2�xy

2�1ÿ �
2

�

 !

�6:87�

�

X

1

n�0

�
n

n!
Hn�x�Hn�y�: �6:88�

If �X ;Y� � �

�
then the density �

�
of �X ;Y� equals

�
�
�x; y� �

1

2�

E
1

2

���

2

p

x;
1

2

���

2

p

y

� �

exp ÿ

�1ÿ �
2

��x
2

� y
2

�

2�1ÿ �
2

�

 !

� E
1

2

���

2

p

x;
1

2

���

2

p

y

� �

��x���y�

� 1�

X

1

n�1

�
n

n!
Hn�x�Hn�y�

( )

��x���y�

� 1�

X

1

n�1

�
n
H

�

n�x�H
�

n�y�

( )

��x���y�; �6:89�

where H
�

n � �n!�
ÿ1=2

Hn, n � 0; 1; 2; . . . ; the normalized Hermite polynomials, form a

complete orthonormal system with respect to � (see, for example, Abramowitz and

Stegun 1972, Chapter 22). Either of these last two expansions is commonly known now

asMehler's expansion orMehler's formula. For further information on general expansions

of this type and references to related literature, see Buja (1990).

Now we turn to the maximum correlation coe�cient

�
M

�X ;Y� � sup

a;b

��a�X�; b�Y��: �6:90�

For functions a; b with var�a�X�� <1, var�b�Y�� <1, we can expand in terms of the

normalized Hermite polynomials H
�

n:

a�x� �

X

1

m�0

�mH
�

m�x�; b�y� �

X

1

n�0

�nH
�

n�y�: �6:91�
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Then, using Mehler's expansion (6.89),

cov
�
�a�X�; b�Y�� � cov

�

X

1

m�1

�mH
�

m�X�;

X

1

n�1

�nH
�

n�Y�

 !

�6:92�

� E

X

1

m�1

�mH
�

m�U�

X

1

n�1

�nH
�

n�V�

X

1

j�1

�
j
H

�

j �U�H
�

j �V�

( )

�6:93�

where U and V are independent N�0; 1� random variables. By the orthonormality of the

h
�

ms this yields

cov
�
�a�X�; b�Y�� �

X

1

n�1

�n�n�
n
: �6:94�

Since the marginals are standard normal,

var�a�X�� � E

X

1

m�1

�mH
�

m�X�

 !

2

�

X

1

m�1

�
2

m; �6:95�

var�b�Y�� �

X

1

n�1

�
2

n: �6:96�

Consequently

��a�X�; b�Y�� �

P

1

n�1

�n�n�
n

P

1

m�1

�
2

m

P

1

n�1

�
2

n

� 	

1=2

: �6:97�

By the Cauchy±Schwarz inequality this yields

��a�X�; b�Y��4

P

1

n�1

�
2

n��
2

�
n

P

1

n�1

�
2

n

( )

1=2

4 j� j; �6:98�

where the last inequality is an equality if �n � 0; n5 2; �
1

6� 0. Consequently

sup

a;b

��a�X�; b�Y�� � j� j � ��X ;Y� _ ��X ;ÿY� �6:99�

where equality holds if a and b are linear functions of X and Y , respectively. h
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