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Let X be a one-dimensional di�usion process. For each n� 1 we have a round-o� level �n>0 and

we consider the rounded-o� value Xt

(�n)

��n[Xt/�n]. We are interested in the asymptotic behaviour of

the processes U(n, ')t�
1

2

�

1� i� [nt]'(X
(�n)

(iÿ 1)/n,
�p
n(X

(�n)

i/nÿX
(tÿ 1)/n

(�n)

) as n goes to �1: under suitable

assumptions on ', and when the sequence �n

�p
n goes to a limit �2 [0,1), we prove the convergence of

U(n, ') to a limiting process in probability (for the local uniform topology), and an associated central

limit theorem. This is motivated mainly by statistical problems in which one wishes to estimate a

parameter occurring in the di�usion coe�cient, when the di�usion process is observed at times i/n and is

subject to rounding o� at some level �n which is `small' but not `very small'.
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1. Introduction

Let us consider a one-dimensional di�usion process X , solution to the equation

dXt � a�Xt�dt� ��Xt�dWt; �1:1�

whereW is a standard Brownian motion, and a and � are smooth enough functions on R.

The behaviour of functionals of the form

1

n

X

�nt�

i� 1

'�X
�iÿ1�=n;

���

n
p

�Xi=n ÿ X
�iÿ1�=n�� �1:2�

as n!1 is known (see, for example, Jacod 1993), and it is crucial for instance in

estimation problems related to di�usion models when one observes the process X at

times i=n, i � 1.

Now, in practical situations not only do we observe the process at `discrete' times, but

also each observation is subject to measurement errors, one of these being the round-o�

e�ect: if � > 0 is the accuracy of our measurement, we replace the true value Xt by k� when
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k� � Xt < �k� 1�� with k 2 Z. The object of this paper is to study the limiting behaviour

of functionals like (1.2) when Xi=n is substituted with its rounded-o� value.

More precisely, we are given a sequence �n of positive numbers, where �n represents the

accuracy of measurement when the discretization times are i=n. With each real x we

associate its integer part [x] and fractional part fxg � xÿ �x�, and for every real x we

denote by x
��n�

� �n�x=�n� its rounded-o� value at level �n. Instead of (1.2) we consider

processes such as

U�n; '�t �
1

n

X

�nt�

i� 1

'�X
��n�

�iÿ1�=n
;

���

n
p

�X
��n�

i=n
ÿ X

��n�

�iÿ1�=n
��; �1:3�

perhaps with ' replaced by a well-behaved sequence 'n of functions.

In fact, the asymptotic behaviour of (1.3) and of other similar processes will be deduced

from the behaviour of the following:

V�n; fn�t �
1

n

X

�nt�

i� 1

fn�X�iÿ1�=n; fX�iÿ1�=n=�ng;

���

n
p

�Xi=n ÿ X
�iÿ1�=n��; �1:4�

where fn are functions on R� �0; 1� � R. The interest of (1.4) is that it simultaneously

encompasses (1.2) and (1.3), and gives additional results for functions of the fractional

parts fXi=n=�ng which may have independent interest (see Section 3).

Throughout this paper we will assume that �n � �n

���

n
p

converges to a limit � in �0;1�.

In Section 2 we state the main results about processes V�n; fn�. They are twofold: ®rst

convergence in probability; then an associated central limit theorem for the normalized and

compensated processes. In Section 3 we deduce from this the behaviour of processes like

(1.3).

In Section 4 we give an example of a statistical application: the process under observation

is (1.1) with a�x� � 0, ��x� � � and X
0

� 0, that is Xt � �Wt, and we wish to estimate �
2

from the observation of the rounded-o� values X
��n�

i=n
for i � 1; . . . ; n. This simple example

allows us to exhibit the main features of estimation in the presence of round-o�. The

statements of Section 4 can be read without the whole arsenal of notation of Sections 2 and 3,

and corresponding results concerning general di�usion processes will be developed elsewhere.

The rest of the paper is organized as follows. In Section 5 we prove some (more or less

well-known) results about the semigroups of the process X . In Section 6 we introduce the

fundamental tool, which is that if a real-valued random variable Y admits a smooth

density, then for � > 0 the variable fY=�g is `almost' independent of Y and uniformly

distributed on �0; 1� (the `almost' being controlled by powers of �): this is related to results

due to Kosulaje� (1937) and Tukey (1939). In Section 7 we study the functions which occur

in the limits of our processes. In Section 8 we introduce a fundamental martingale. This

martingale is constructed, approximately, as the martingale used in the proof of the central

limit theorem for a triangular array of stationary mixing sequences of random variables, the

`stationary sequence' here being the fractional parts fXi=n=�ng. Finally, Section 9 is devoted

to proving the main theorems.

The assumption that �n goes to a ®nite limit is restrictive, although for statistical

purposes it should be a natural assumption.
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If �n !1 and still �n ! 0, we have seen in Jacod (1996) for the Brownian motion case

(i.e. a � 0, � � 1) that U�n; '�t=�n converges in probability to t
��������

2=p

p

for the function

'�x; y� � y
2

. More generally if 'n has the form 'n�x; y� �  n�x�jyj
p
it is possible to prove

convergence in probability of �
1ÿp

n U�n; 'n�, as well as a corresponding central limit theorem

(these results will be developed elsewhere): this implies that for arbitrary functions 'n the

normalizing factors should depend on 'n in a rather complicated way.

When �n goes to a limit � > 0 (for example, if �n � � > 0 for all n), the situation is quite

di�erent: again in the Brownian case and if '�x; y� � y
2

, then U�n; '�=
���

n
p

converges in

probability to a multiple of the sum

P

k2Z L
k�
, where L

a
is the local time of X at level a.

Presumably a similar result holds here, but the limit is random here and a central limit

theorem, if it holds at all, would be of a di�erent nature.

2. Statement of the main results

We ®rst present our assumptions. First, for the process X , we assume the following:

Hypothesis H. The functions a and � are of class C
5

and � > 0 identically, and for each

starting point the process X is non-explosive.

We denote by Px the law of the process X starting at X
0

� x, on the canonical space


 � C�R
�
;R� endowed with the canonical ®ltration �ft�t� 0

.

Next, let fn : R� �0; 1� � R! R be a sequence of functions satisfying the following for

r � 1 or r � 2:

Hypothesis Kr. The functions fn are C
r
in the ®rst variable, and for all q > 0 there are

constants Cq; rq such that, for 0 � i � r; n � 1:

@
i

@xi
fn�x; u; y�

�

�

�

�

�

�

�

�

� Cq�1� jyj
rq
� for jxj � q: �2:1�

Furthermore, there is a function f : R� �0; 1� � R! R such that for all x 2 R, fn�x; u; y�

converges du
 dy-almost everywhere to f �x; u; y�.

Recall that �n � �n

���

n
p

! � 2 �0;1�, and V�n; fn� is given by (1.4).

For the ®rst theorem, we need some notation. Denote by hs the density of the normal law

n�0; s
2

�, and h � h
1

. For any function f on R� �0; 1� � R satisfying (2.1) for i � 0, we set

(� is as in (1.1)):

mf �x; u� �

�

h
��x��y�f �x; u; y�dy; Mf �x� �

�

1

0

mf �x; u�du: �2:2�

Note that Mf is locally bounded.

Theorem 2.1. Under the hypotheses H and K1, the processes V�n; fn� converge in Px-

probability, locally uniformly in time, to the process
�

t

0 Mf �Xs�ds.

We next give a `central limit theorem' associated with the previous result. Here again we

need to introduce a number of functions. LetW be a standard Brownian motion on a space
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�
;g;P�, generating the ®ltration �gt�t� 0

. If  is a function of polynomial growth on

�0; 1� � R, for all � > 0, � > 0, u 2 �0; 1� we set (for i � 1):

m
�
 �u� � E� �u; �W

1

��; M
�
 �

�

1

0

m
�
 �u�du; �2:3�

�i  ��; �; u� �  �fu� �Wiÿ1=�g; ��Wi ÿWiÿ1�� ÿM
�
 ; �2:4�

`i  ��; �; u� � E��i  ��; �; u��: �2:5�

We will prove later (see Section 7) that the series L �
P

i� 1

`i  is absolutely convergent,

and we can introduce square-integrable random variables by writing (note that �
1

 ��; �; u�

does not depend on �):

� ��; �; u� � �
1

 ��; u� � L ��; �; fu� �W
1

=�g� ÿ L ��; �; u�: �2:6�

Finally, if ' is another function of the same type as  , we set

�
';  

��; �; u� � E��'��; �; u�� ��; �; u��; �

';  
��; �� �

�

1

0

�
';  

��; �; u�du: �2:7�

Equations (2.4)±(2.7) make no sense when � � 0. However, we set, for � � 0:

�

'; 
��; 0� �M

�
�' � ÿM

�
'M

�
 ; �2:8�

and will prove (again in Section 7) that �
'; 

is continuous on �0;1� � �0;1�, while for all

� � 0:

�

 ; 
��; �� � �M

�
� '

�
��
2

; �2:9�

where '
�
�u; y� � y=�.

The connection between (2.2) and (2.3) is as follows, where fx�u; y� � f �x; u; y�:

mf �x; u� � m
��x� fx�u�; Mf �x� �M

��x� fx; �2:10�

and we introduce in a similar fashion (with '
�
�u; y� � y=� again):

�� f ; g��x; �� � �fx ; gx
���x�; ��; Rf �x� �M

��x�� fx'��x��: �2:11�

For further reference, we also set:

~f �x; u; y� � f �x; u; y� y
a�x�

��x�
2

ÿ

3�
0

�x�

2��x�

 !

� y
3

�
0

�x�

2��x�
3

 !

: �2:12�

where �
0

is the ®rst derivative of �.

After this long list of notation, we also recall that if Vn is a sequence of random variables

on �
;f;Px�, taking values in a Polish space E, we say that Vn converges stably in law to a

limit V if V is an E-valued random variable de®ned on an extension �
�


;
�f; �Px� of the space

�
;f;Px� and if Ex�Yf �Vn�� !
�

Ex�Yf �V�� for every bounded random variable Y on

�
;f;Px� and every bounded continuous function f on E (see Renyi 1963; Aldous and

Eagleson 1978; or Jacod and Shiryaev 1987). This is obviously a (slightly) stronger mode of

convergence than convergence in law.
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We will apply this to processes, so E is the Skorokhod space D�R
�
�. The extension

�
�


;
�f; �Px� is such that it accomodates another standard Brownian motion B independent

ofW , and we consider the process (recall that �� f ; f ��x; �� � Rf �x�
2

by (2.9) and (2.11)):

B
0

t �

�

t

0

��� f ; f ��Xs; �� ÿ Rf �Xs�
2

�
1=2

dBs: �2:13�

Theorem 2.2. Assume that the hypotheses H and K2 hold. The processes
���

n
p

�V�n; fn�tÿ
�

t

0 Mfn�Xs�ds� and
���

n
p

�V�n; fn�t ÿ
1

n

P

�nt�

i� 1
Mfn�X�iÿ1�=n�� converge stably in law to

the following process (with B
0

and ~f given by (2.13) and (2.12)):

�

t

0

M ~f �Xs�ds�

�

t

0

Rf �Xs�dWs � B
0

t : �2:14�

Corollary 2.3. Assume that the hypotheses H and K2 hold, and associate
~fn with fn by (2.12).

The two sequences of processes

���

n
p

V�n; fn�t ÿ

�

t

0

Mfn�Xs�dsÿ
1

���

n
p

�

t

0

M ~fn�Xs�ds

� �

;

���

n
p

V�n; fn� ÿ
1

n

X

�nt�

i� 1

Mfn�X�iÿ1�=n� ÿ n
ÿ3=2

X

�nt�

i� 1

M ~fn�X�iÿ1�=n�

 !

;

converge stably in law to the process
�

t

0

Rf �Xs�dWs � B
0

t .

Remark 2.1. Another way of characterizing the process B
0

is as follows: it is a process on

the extension �
�


;
�f; �Px� such that, conditionally on the �-®eld f, it is a continuous

Gaussian martingale null at t � 0, with (deterministic) bracket

hB
0

;B
0

it �

�

t

0

��� f ; f ��Xs; �� ÿ Rf �Xs�
2

�ds: �2:15�

Remark 2.2. There is, of course, a version of these results for d-dimensional functions

fn � �f
i

n �1�i�d all of whose components satisfy hypothesis K2. Then the processes V�n; fn�

and functionsM ~f and Rf are d-dimensional as well, as the results are exactly the same as in

Theorem 2.2 and Corollary 2.3, provided we describe the d-dimensional process

B
0

� �B
0i
�
1�i�d , conditionally on f, as a continuous Gaussian martingale null at t � 0,

with the following brackets:

hB
0i
;B

0j
it �

�

r

0

��� f
i
; f

j
��Xs; �� ÿ Rf

i
�Xs�Rf

j
�Xs��ds: �2:16�

The proof is exactly the same as for the one-dimensional case. Another description of B
0

as

the stochastic integral with respect to a d-dimensional Brownian motion independent ofW

is, of course, possible, and involves a square root of the symmetric non-negative matrices

(�� f
i
; f

j
��x; �� ÿ Rf

i
�x�Rf

j
�x��

1�i; j�d .
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3. Some applications

We consider here the processes U�n; '� of (1.3). More precisely, let 'n be a sequence of

functions on R
2

, satisfying the following assumption (for r � 1 or r � 2):

Hypothesis Lr. The functions 'n are C
r
in the ®rst variable, continuous in the second

variable, and for all q > 0 there are constants Cq, rq such that, for 0 � i � r, n � 1:

@
i

@x i
'n�x; y�

�

�

�

�

�

�

�

�

� Cq�1� jyj
rq
� for jxj � q: �3:1�

Furthermore, 'n converges pointwise to a function '.

Since X
��n�

t � Xt ÿ �nfXt=�ng, we have U�n; 'n� � V�n; fn�, where

fn�x; u; y� � 'n�xÿ �nu; �n�u� y=�n��: �3:2�

Furthermore, we have the following lemma.

Lemma 3.1. If �n ! � the hypothesis Lr implies that the sequence � fn� de®ned by (3.2)

satis®es Kr, with the limiting function f given by

f �x; u; y� �
'�x; ��u� y=��� if � > 0

'�x; y� if � � 0.

�

�3:3�

Proof. Property (2.1) is obvious. Recall that �n ! 0, while �n�u� y=�n� converges to y if

� � 0, and to ��u� y=�� for du
 dyÿ almost all �u; y� if � > 0. Hence the continuity of 'n

yields 'n�x; �n�u� y=�n�� ÿ 'n�x; y� ! 0 if � � 0, and 'n�xÿ �nu; �n�u� y=�n��ÿ

'n�x; ��u� y=��� ! 0 if � > 0. Since 'n ! ' we deduce that fn�x; :� !

f �x; :�du
 dyÿ almost everywhere. h

In order to translate the results of Section 2 into the present setting, we introduce some

more notation. For any function ' on R
2

satisfying (3.1) for i � 0, set

ÿ'�x; �� �

�

1

0

du

�

h�y�'�x; ��u� y��x�=���dy if � > 0

�

h�y�'�x; ��x�y�dy if � � 0.

8

>

>

<

>

>

:

�3:4�

Theorem 3.1. Under the hypotheses H and L1 the processes U�n; 'n� converge in Px-

probability, locally uniformly in time, to the process
�

t

0 ÿ'�Xs; ��ds.

Proof. It su�ces to observe that ÿ'�x; �� �Mf �x� with f as in (3.3). h

In a similar way to (3.4), we set, for � > 0:

~

ÿ'�x; �� �

�

1

0

udu

�

h�y�'�x; ��u� y��x�=���dy: �3:5�

For all 'n we also write '
0

n�x; y� � @'n�x; y�=@x.
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Theorem 3.2. Assume that the hypotheses H and L2 hold. The processes

���

n
p

U�n; 'n�t ÿ

�

t

0

ÿ'n�Xs; �n�ds� �n

�

t

0

~

ÿ'
0

n�Xs; �n�ds

� �

; �3:6�

���

n
p

U�n; 'n�t ÿ
1

n

X

�nt�

i� 1

ÿ'n�X�iÿ1�=n; �n� �

�n

n

X

�nt�

i� 1

~

ÿ'
0

n�X�iÿ1�=n; �n�

 !

; �3:7�

converge stably in law to the process (2.14), with f given by (3.3).

Proof. Set 
n�x� �Mfn�x� ÿ ÿ'n�x; �n� � �n
~

ÿ'
0

n�x�. The processes (3.6) and (3.7) are

respectively equal to

���

n
p

�V�n; fn�t ÿ
�

t

0

Mfn�Xs�ds� �
���

n
p �

t

0


n�Xs�ds and

���

n
p

�V�n; fn�tÿ

1

n

P

�nt�

i� 1

Mfn�X�iÿ1�=n�� � n
ÿ1=2

P

�nt�

i� 1


n�X�iÿ1�=n�. Therefore, the result will follow from

Theorem 2.2 if we prove that

sup

x:jxj�A

���

n
p

j
n�x�j ! 0 for all A > 0: �3:8�

We have


n�x� �

�

1

0

du

�

h�y��'n�xÿ �nu; �n�u� ��x�y=�n�� ÿ 'n�x; �n�u� ��x�y=�n��

� �nu'
0

n�x; �n�u� ��x�y=�n���dy:

Since �
2

n

���

n
p

! 0, (3.8) is deduced from hypothesis L
2

. h

Remark 3.1. If � � 0, then �n

���

n
p

! 0, while

~

ÿ'
0

n�x; �n� is locally bounded in x, uniformly

in n: therefore we can replace (3.6) and (3.7) by the processes

���

n
p

U�n; 'n�t ÿ

�

t

0

ÿ'n�Xs; �n�ds

� �

and

���

n
p

U�n; 'n�t ÿ
1

n

X

�nt�

i� 1

ÿ'n�X�iÿ1�=n�n�

 !

:

Very often in applications, the functions 'n will be even in the second variable. The

results then take a simpler form, as follows.

Corollary 3.3. Assume that the hypotheses H and L2 hold, and also that '�x; y� � '�x;ÿy�

identically. The processes (3.6) and (3.7) converge stably in law to the process
�

t

0�� f ; f ��Xs; ��
1=2

dBs, where f is given by (3.3) and B is a standard Brownian motion

independent of W .

Proof. It su�ces to prove that M ~f �x� � Rf �x� � 0. In view of (2.11) and (2.12), it is

enough to prove that Mg�x� � 0 if g�x; u; y� � f �x; u; y�k�x; y� where k�x; y� � A�x�y or

k�x; y� � A�x�y
3

for an arbitrary function A. But (3.3) and the assumption of ' yield that

g�x; u; y� � ÿg�x; 1ÿ u;ÿy� for du
 dy-almost all �u; y�. Since the measure

du
 h
��x��y�dy is invariant by the map �u; y� ! �1ÿ u;ÿy�, we deduce Mg�x� � 0 from

(2.2). h
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The processes (3.6) and (3.7) are not ®t for statistical applications, since they involve not

only the `observed' valuesX
��n�

i=n
, but also the `non-observed' path s! Xs in the case of (3.6),

or the non-observed values Xi=n in the case of (3.7). To circumvent this problem, we can

state the following result, the proof of which is postponed until Section 9.

Theorem 3.4. Assume that the hypotheses H and L2 hold.

(a) The processes

���

n
p

U�n; 'n�t ÿ
1

n

X

�nt�

i� 1

ÿ'n X
��n�

�iÿ1�=n
�

�n

2

; �n

� �

�

�n

n

X

�nt�

i� 1

~

ÿ'
0

n X
��n�

�iÿ1�=n
; �n

� �

 !

�3:9�

converge stably in law to the process (2.14), with f given by (3.3).

(b) If, further, '�x; y� � '�x;ÿy� identically, then the processes

1

���

n
p

X

�nt�

i� 1

'n X
��n�

�iÿ1�=n
�

�n

2

;

���

n
p

X
��n�

i=n
ÿ X

��n�

�iÿ1�=n

� �� �

ÿ ÿ'n X
��n�

�iÿ1�=n
�

�n

2

; �n

� �� �

�3:10�

converge stably in law to the process
�

t

0

�� f ; f ��Xs; ��
1=2

dBs, where f is given by (3.3) and B

is a standard Brownian motion independent of W .

Remark 3.2. As for Theorem 3.2, if � � 0 we can replace the process (3.9) by

���

n
p

�U�n; 'n�tÿ

1

n

P

�nt�

i� 1

ÿ'n�X
��n�

�iÿ1�=n
�

�n

2
; �n��, and even by

���

n
p

�U�n; 'n�tÿ
1

n

P

�nt�

i� 1

ÿ'n�X
��n�

�iÿ1�=n
; �n��

because jÿ'n�x� �n=2; �n� ÿ ÿ'n�x; �n�j � g�x��n � g�x��n=
���

n
p

for some locally bounded

function g.

Remark 3.3. Other versions of (3.9) are possible: for example, we can replace

ÿ'n�X
��n�

�iÿ1�=n
�

�n

2

; �n� by ÿn'n�X
��n�

�iÿ1�=n
; �n�, where

ÿn'n�x� �

�

1

0

du

�

1

0

dv

�

h�y�'n�x� �nv; �n�u� y��x�=�n��dy:

We can also replace

~

ÿ'
0

n�X
��n�

�iÿ1�=n
; �n� by

~

ÿ'
0

n�X
��n�

�iÿ1�=n
�

�n

2

; �n�.

Remark 3.4. As in Corollary 3.3, if ' is even in the second variable, the limit in Theorem

3.4 is

�

t

0

�� f ; f ��Xs; ��
1=2

dBs.

Remark 3.5. As in Section 2, these results admit a multidimensional version, when each 'n

takes values in R
d
. We leave the details to the reader.

Finally we give some very simple applications to the processes

U
n

t �p� �
1

n

X

�nt�

i� 1

fXi=n=�ng
p
: �3:11�

where p 2 R
�
.

Theorem 3.5. Assume that the hypothesisH holds. Then the processes U
n

t �p� converge locally

uniformly in time, in L
q
�Px� for all q, to the function t=�p� 1�. Furthermore, the processes
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���

n
p

�U
n

t �p� ÿ t=�p� 1�� converge stably in law to
�

t

0�� f ; f ��Xs; ��
1=2

dBs, where

f �x; u; y� � u
p
and B is a standard Brownian motion independent of W .

Note that if � � 0, then �� f ; f ��x; 0� � 1=�p
2

� 1� ÿ �1=�p� 1��
2

, so the limit above is

again a homogeneous Brownian motion, independent of W . If � > 0, then �� f ; f ��x; ��

depends on x and the limit in not independent of W .

Proof. We only have to notice that U
n

t �p� � V�n; f �t � fX
�nt�=n=�ng

p
=n, where f is as

above: we have the hypothesis K
2

for fn � f , and we can apply Theorems 2.1 and 2.2, and

check that Rf �x� �M ~f �x� � 0 and that Mf �x� � 1=�p� 1�. h

4. A simple statistical application

In this section we consider the following statistical problem: the process X is X � �W ,

where W is a standard Brownian motion, and � > 0 is unknown. We wish to estimate

# � �
2

, from the observation of X
��n�

i=n
for i � 1; . . . ; n. The estimation will be based on the

discretized quadratic variation, calculated from these rounded-o� values, i.e. the variables

~V
n
�

X

n

i� 1

X
��n�

i=n
ÿ X

��n�

�iÿ1�=n

� �

2

; �4:1�

since it is well known that without round-o� error (i.e. �n � 0),

~V
n
is (in all possible senses)

the best estimator of #, and that

���

n
p

�
~V
n
ÿ #� converges in law ton�0; 2#

2

� if the true value

of the parameter is #.

First, the following result, easily deduced from Theorem 3.1, has already been proved in

Jacod (1996). Below, P
#

denotes the law of X for the value # of the parameter.

Theorem 4.1. The variables ~V
n
converge in P

#

-probability to the number


��; #� �

�

1

0

du

�

h�y��
2

u�
y
���

#

p

�

" #

2

dy if � > 0

# if � � 0.

8

>

<

>

:

�4:2�

Proof. Setting '�x; y� � y
2

, it is enough to observe ®rst that

~V
n
� U�n; '�, and second

that 
��; #� � ÿ'�x; �� with the notation of (3.4) since ��x� �
���

#

p

. h

It can be shown that 
��; #� > # if � > 0: hence the estimators

~V
n
are consistent if � � 0,

but are not consistent if � > 0.

Furthermore, the function � ! 
��; #� is twice di�erentiable, and we can prove that

@
�0; #�=@� � 0 and @
2


��; #�=@�
2

�
1

3

. Then when � � 0, it follows from Theorem 3.2

(applied to 'n�x; y� � y
2

, so that

~

ÿ'
0

n�x; �n� � 0) that

���

n
p

�
~V
n
ÿ #� converges in law to

n�0; 2#
2

� if

���

n
p

�
2

n ! 0, whereas it explodes when

���

n
p

�
2

n !1, and it converges to a non-

centred normal variable if

���

n
p

�
2

n converges to a limit in �0;1�: this means that, unless �n

goes to 0 very fast (i.e. n
3=4

�n ! 0), then

~V
n
does not go to # at the rate 1=

���

n
p

.
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So there is a need for better estimators. In fact, the function #! 
��; #� is an increasing

bijection from R
�
into R

�
, whose inverse is denoted by 


ÿ1

��; #�. We then have the

following result.

Theorem 4.2. The estimators ^#n, de®ned by
^

#n � 

ÿ1
��n;

~V
n
�, are consistent, and

���

n
p

�
^

#n ÿ #�

converges in law under P
#

ton�0;���; #��, for some ���; #� satisfying ��0; #� � 2#
2
.

This implies that if � � 0, then the

^

#ns are e�cient since they achieve the same bound as if

the true values Xi=n were observed. When � > 0 they achieve at least the best rate 1=

���

n
p

(we

do not know whether they are e�cient in this case, relative to the observed s-®elds).

Proof. The continuity of the function 
 and Theorem 4.1 yield that 

ÿ1

��n;
~V
n
� !



ÿ1

��; 
��; #�� � # in P
#

-probability, hence the consistency.

Let���; #� be the quantity�� f ; f ��x; ��with f associated with '�x; y� � y
2

by (3.3) and

��x� �
���

#

p

(clearly this does not depend on x).

By construction 
��n;
^

#n� �
~V
n
, so Corollary 3.3 yields that the variables

���

n
p

�
��n;
^

#n� ÿ 
��n; #�� converge in law to n�0;���; #�� (recall that here

~

ÿ' � 0).

Using the fact that #! 
��; #� is continuously di�erentiable with a positive derivative,

the consistency and Taylor's formula yield that

���

n
p

�
^

#n ÿ #� converges in law to

n�0;���; #�=�@
��; #�=@#�
2

). Finally (4.2) gives @
�0; #�=@# � 1, while (2.8) yields

��0; #� � 2#
2

, hence the ®nal result. h

5. Preliminaries

The ®rst aim of this section is to prove that we can replace the hypotheses H and Kr by the

following:

Hypothesis H
0

. a and � are C
5

b

functions, and infx��x� > 0.

Hypothesis K
0

r . f and fn are as in hypothesis Kr, and there are constants p 2 N, K > 0, such

that for 0 � i � r and all n; x; y; u:

@
i

@xi
fn�x; u; y�

�

�

�

�

�

�

�

�

� j f �x; u; y�j � K�1� jyj
p
�: �5:1�

Assume that the hypothesesK andKr hold, and suppose for a moment that the processX

is de®ned on the canonical space of the Brownian motionW and starts at X
0

� x
0

. Also, let

A � sup�n.

For all q � jx
0

j there are functions �aq; �q� satisfying H
0

, such that aq�x� � a�x� and

�q�x� � ��x� if jxj � q� A. There are also functions � f
q

n; f
q
� satisfying K

0

r and such that

f
q

n �x; u; y� � fn�x; u; y� and f
q
�x; u; y� � f �x; u; y� if jxj; jyj � q� A.

Denote by X
q
the solution of (1.1) with the coe�cients aq; �q, and set Tq � inf�t : jXtj �

q� A�. Obviously X
q
� X and X

q��n�
� X

��n�

on �0;Tq�, so all processes associated with

�X ; fn; f � or with �X
q
; f

q

n ; f
q
� as in Section 2 coincide on �0;Tq�. Since Tq !1 almost surely

because X is non-explosive, it is clearly enough to prove all results for all triples

�X
q
; f

q

n ; f
q
�, q � jx

0

j.
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Hence we can and will assume throughout the rest of this paper that H
0

and K
0

r are in

force.

Since all results are `local' in time, we will also ®x an arbitrary time interval �0;T �, with

T 2 N. All constants below may depend on the coe�cients �a; ��, on T , and on the

constants �K ; p� of (5.1), and also on the sequence ��n�, but they do not depend otherwise

on fn, f , or on n or !.

Now we come back to the canonical space �
;f;Px� with the canonical process X . We

construct a standard Brownian motion W , simultaneously for all measures Px, by the

formula

Wt �

�

t

0

1

��Xs�

dXs ÿ

�

t

0

a�Xs�

��Xs�

ds:

Let �ft�t� 0

be the ®ltration generated by X , or equivalently by W .

Now we recall some results concerning the densities �pt�x; y� : x; y 2 R�t> 0

of the

transition semigroup of the process X , under H
0

. Some of these are more or less well

known, some seem to be new.

First, we recall an `explicit' form of pt in terms of a standard Brownian bridge denoted in

this section by B � �Bt�t2 �0;1�. Set

S�x� �

�

x

0

1

��y�
dy; b � a=�

2

ÿ �
0

=2�;

H�x� �

�

x

0

b�y�dy; c � ÿ

1

2

��
2

b
2

� ��
0

b� �
2

b
0

� � S
ÿ1

�x�;

Vt�x; y� � t

�

1

0

c��1ÿ u�S�x� � uS�y� �
��

t
p

Bu�du; rt�x; y� � E�e
Vt�x;y�

�:

Then (see, for example, Dacunha-Castelle and Florens-Zmirou 1986):

pt�x; y� �
1

��y�
�������

2pt
p rt�x; y� exp H�y� ÿH�x� ÿ

�S�y� ÿ S�x��
2

2t

( )

: �5:2�

We also set qt�x; y� � pt�x; x� y�, so that y! qt�x; y� is the density of Xt ÿ X
0

under Px.

Recall that hs is the density of the lawn�0; s
2

� and h � h
1

, and we set

g�x; y� � y
a�x�

��x�
2

ÿ

3�
0

�x�

2��x�

 !

� y
3

�
0

�x�

2��x�
3

: �5:3�

We also recall that t � T (the constants below may depend on T ).

Lemma 5.1. There are constants C;L > 0 such that (with g as in (5.3)):

@
i� j

@xi
@yj

pt�x; y�

�

�

�

�

�

�

�

�

� Ch
L
��

t
p
�yÿ x� 1�

yÿ x

Lt

�

�

�

�

�

�

i� j

�t
ÿ�i� j �=2

� �

if i � j � 3; �5:4�
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@
i

@xi
qt�x; y�

�

�

�

�

�

�

�

�

� Ch
L
��

t
p
�y��1� �y

2

=Lt�
i
� if i � 3; �5:5�

jyj � t
1=3

) jqt�x; y�ÿ�1�
��

t
p

g�x; y=
��

t
p

��h
��x�

��

t
p
�y�j � Ct�1� �y=

��

t
p

�
8

�h
��x�

��

t
p
�y�: �5:6�

Proof. H and S are C
3

functions, with all derivatives of order 1; 2; 3 bounded. Next,

Vt�x; y; !� are C
3

b

functions of �x; y�, with bounds on the functions and their partial

derivatives independent of !, hence rt are C
3

b

functions and 1=rt � C. Elementary

calculations show that

@
i� j

@xi
@yj

pt�x; y�

�

�

�

�

�

�

�

�

� Cpt�x; y� 1�

yÿ x

t

�

�

�

�

�

�

i� j

�t
ÿ�i� j �=2

� �

if i � j � 3:

Since H and S are Lipschitz and infx 6� y j
S�x�ÿS�y�

xÿy
j > 0, another simple computation shows

the existence of L > 0 with pt�x; y� � Ch
L
��

t
p
�yÿ x�, hence (5.4). A third calculation shows

that

@
i

@xi
qt�x; y�

�

�

�

�

�

�

�

�

� Cqt�x; y��1� �y
2

=t�
i
� if i � 3;

while qt�x; y� � ChLt�y�: so we have (5.5).

Write

��x; y� � H�x� y� ÿH�x� ÿ
1

2t
�S�x� y� ÿ S�x��

2

ÿ

y
2

��x�
2

 !

;

so that (5.2) yields

qt�x; y� � h
��x�

��

t
p
�y�

��x�

��x� y�
rt�x; x� y�e

��x;y�
:

We have jS�x� y� ÿ S�x� ÿ y=��x� � y
2

�
0

�x�=2��x�
2

j � Cy
3

and jH�x� y� ÿH�x�ÿ

yb�x�j � Cy
2

, hence

��x; y� ÿ yb�x� ÿ y
3

�
0

�x�

2t��x�
3

�

�

�

�

�

�

�

�

�

�

� C�y
2

� y
4

=t�:

So if jyj � t
1=3

it follows that

e

��x;y�
ÿ 1ÿ yb�x� ÿ y

3

�
0

�x�

2t��x�
3

�

�

�

�

�

�

�

�

�

�

� C�y
2

� y
6

=t
2

�:

Next, jVtj � C yields jrt�x; x� y� ÿ 1j � Ct. Finally j��x� y� ÿ ��x� ÿ y�
0

�x�j � Cy
2

,

while infx ��x� > 0, hence

��x�

��x� y�
ÿ 1� y

�
0

�x�

��x�

�

�

�

�

�

�

�

�

� Cy
2

:

Putting all these results together immediately yields (5.6). h
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Since

�

h
L
��

t
p
�y�jyj

q
dy � Cqt

q=2
, we easily deduce from (5.4) and (5.5) that

�

@
i� j

@xi
@yj

pt�x; y�

�

�

�

�

�

�

�

�

dy � Ct
ÿ�i� j �=2

if i � j � 3; �5:7�

�

@
i

@xi
qt�x; y�

�

�

�

�

�

�

�

�

jyj
q
dy � Cqt

q=2
if i � 3: �5:8�

Recall the following well-known upper bounds, under H
0

:

Ex�jXt ÿ X
0

j
p
� � Cpt

p=2
; Ex�jXt ÿ X

0

ÿ ��X
0

�Wtj
p
� � Cpt

p
: �5:9�

Lemma 5.2. There are constants Cr such that, for all t > 0 and all functions f having

j f �x�j �M�1� jx=
��

t
p

j
r
�, we have

jEx� f �Xt ÿ x�� ÿ Ex� f ���x�Wt��j � CrM
��

t
p

; �5:10�

jEx� f �Xt ÿ x�� ÿ Ex� f ���x�Wt��1�

��

t
p

g�x; ��x�Wt=

��

t
p

��j � CrMt: �5:11�

Proof. We ®rst prove (5.11). Denote the left-hand side of (5.11) by A � j

�

�qt�x; y�ÿ

h
��x�

��

t
p
�y���1�

��

t
p

g�x; y=
��

t
p

��f �y�dyj. We have A � B� B
0

, where

B �

�

jyj � t1=3
�qt�x; y� ÿ h

��x�
��

t
p
�y��1�

��

t
p

g�x; y=
��

t
p

��f �y�dy

�

�

�

�

�

�

�

�

B
0

�

�

jyj> t 1=3
�qt�x; y� ÿ h

��x�
��

t
p
�y��1�

��

t
p

g�x; y=
��

t
p

��f �y�dy

�

�

�

�

�

�

�

�

:

First, (5.6) yields

B � CrMt

�

h
��x�

��

t
p
�y��1� jy=

��

t
p

j
8�r
�dy � CrMt:

Second, by (5.5) and the hypothesis H
0

we have h
��x�

��

t
p
�y� � ChLt�y� and

qt�x; y� � ChLt�y��1� y
2

=Lt� for some L > 0. Further, in view of (5.3) and H
0

, we also

have j

��

t
p

g�x; y=
��

t
p

�j � Cjyj�1� y
2

=t�; thus

B
0

�MC

�

jyj> t 1=3
h
L
��

t
p
�y��1� jy=

��

t
p

j
r
��1� jyj�1� y

2

=t��dy � CrMt:

These two majorations yield (5.11).

Now let A
0

be the left-hand side of (5.10). We have A
0

� A� A
00

, where

A
00

�M

�

h
��x�

��

t
p
�y��1� jy=

��

t
p

j
r
�jyj�1� y

2

=t� � CrM
��

t
p

: h

Finally, we give a simple result on Riemann approximations.

Lemma 5.3. Let A
n

t �
1

n

P

�nt�

i� 1
f �X

�iÿ1�=n� ÿ

�

t

0

f �Xs�ds, where f is a function on R.
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(a) If f is di�erentiable and M � supx�j f �x�j � f
0

�x�j�, then

Ex�sup

t�T

jA
n

t j
2

� ! 0: �5:12�

(b) If f is twice di�erentiable and M � supx�j f �x�j � j f
0

�x�j � j f
00

�x�j�,

Ex sup

t�T

jA
n

t j
2

� � CM
2

=n
2

: �5:13�

Proof. (a) Set �
n

i �

�

i=n

�iÿ1�=n
� f �Xs� ÿ f �X

�iÿ1�=n�ds and �
n

t � ÿ

�

t

�nt�=n f �Xs�ds. Then

A
n

t � �
n

t ÿ

P

�nt�

i� 1

�
n

i . Furthermore, j�
n

t j �M=n, and if wT�#� denotes the modulus of

continuity of t! Xt on �0;T � we have j�
n

i j �Mw�1=n�=n. Thus supt�T jA
n

t j �

M�1=n� wT �1=n��, and Ex�wT�1=n�
2

� ! 0 as n!1 (because wT�1=n� ! 0 and

wT�1=n� � 2 supt�T jXtj 2 L
2

�Px� under H
0

), and we get (5.12).

(b) If f is twice di�erentiable, ItoÃ 's formula yields �
n

i � �
n

i � �
n

i , where

�
n

i �

�

i=n

�iÿ1�=n

ds

�

s

�iÿ1�=n

� f
0

���Xr�dWr ;

�
n

i �

�

i=n

�iÿ1�=n

ds

�

s

�iÿ1�=n

� f
0

a�
1

2

f
00

�
2

��Xr�dr:

We have j�
n

t j �M=n and j�
n

i j � CMn
ÿ2

. Thus in order to obtain (5.13) it su�ces to prove

that, if B
n

i �

P

i

j� 1

; �
n

j , we have Ex�supi� nT �B
n

i �
2

� � CM
2

=n
2

. But �B
n

i �i2N is a martingale

relative to the discrete-time ®ltration �fi=n�i2N, so by Doob's inequality it su�ces to prove

that Ex�

P

nT

j� 1

��
n

j �
2

� � CM
2

=n
2

, or even that E���
n
�
2

� � CM
2

=n
3

. But, by the Cauchy±

Schwarz inequality, we obtain

Ex���
n

i �
2

� �

1

n

�

i=n

�iÿ1�=n

dsEx

�

s

�iÿ1�=n

� f
0

��
2

�Xr�dr

� �

� CM=n
3

: h

6. The fractional part of a random variable

We begin with a fundamental result.

Lemma 6.1. There are universal constants CN such that for all � > 0, and all Borel functions k

on R and f on R� �0; 1� such that x! g�x; y� :� k�x�f �x; y� is of class C
N
�N � 1�, we have:

�

R

k�x�f x;
x

�

� �� �

dxÿ

�

R

k�x�dx

�

1

0

f �x; u�du

�

�

�

�

�

�

�

�

� CN�
N

�

R

dx

�

1

0

@
N

@xN
g�x; u�

�

�

�

�

�

�

�

�

du: �6:1�

When k is the density of a random variable Y , the left-hand side of (6.1) is

jE�f �Y ; f
Y

�
g�� ÿ E�

�

1

0

f �Y ; u�du�j: we thus re®ne some old results of Kosulaje� (1937)

and Tukey (1939).
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Proof. First, let ' be a C
N
function on �a; a� ��. Taylor's formula yields, for k � N ÿ 1

and z 2 �a; a� ��:

'�z� �

X

Nÿ 1

k� 0

'
�k�
�a�

�zÿ a�
k

k !
�

�

z

a

'
�N�
�v�

�zÿ v�
Nÿ1

�N ÿ 1�!

dv;

�

a��

a

'
�k�
�u�du �

X

Nÿ 1

`� k

'
�`�

�a�
�
`�1ÿk

�`� 1ÿ k�!
�

�

a��

a

'
�N�
�z�

�a� �ÿ z�
Nÿk

�N ÿ k�!
dz:

Introduce the polynomials Pk given by

�i � 1�x
i
�

X

i

k� 0

�i � 1�!

�i � 1ÿ k�!
Pk�x�:

(Then P
0

�x� � 1 and Pk is of degree k.) We obtain

�'�a� �y� ÿ

X

Nÿ1

k� 1

Pk�y��
k

�

a��

a

'
�k�
�u�du � A� B;

where

A �

X

Nÿ1

k� 0

'
�k�
�a�

�
k�1

y
k

k !
ÿ

X

Nÿ1

`� k

Pk�y�
�
`�1

�`� 1ÿ k�!
'
�`�

�a�

 !

;

B � �

�

a��y

a

'
�N�
�v�

�a� �yÿ v�
Nÿ1

�N ÿ 1�!

dvÿ

X

Nÿ1

k� 0

Pk�y��
k

�

a�p

a

'
�N�
�z�

�a� �ÿ z�
Nÿk

�N ÿ k�!
dz;

while the de®nition of Pk yields A � 0. The existence of a universal constant CN such that

the following holds for all y 2 �0; 1� is obvious:

�'�a� �y� ÿ

X

Nÿ1

k� 0

Pk�y��
k

�

a��

a

'
�k�
�u�du

�

�

�

�

�

�

�

�

�

�

� CN�
N

�

a��

a

'
�N�
�v�

�

�

�

�

�

�

dv: �6:2�

Now set A �

�

k�x�f �x; f
x

�
g�dx. We have:

A �

X

j 2Z

�

� j�1��

j�

k�u�f �u; u=�ÿ j �du �

X

j 2Z

�

1

0

�g��j � �y; y�dy: �6:3�

with g�x; y� � k�x�f �x; y�. Also set g
�`�

�x; y� � @
`

g�x; y�=@x
`

, G
`

i �x� �
�

1

0

g
�`�

�x; y�y
i
dy

and 

`
�

�

R dx
�

1

0

jg
�`�

�x; y�jdy. Clearly,

�

R jG
`

i �x�jdx � 

`
, and we assume 
N <1,

otherwise there is nothing to prove. If u
`
�

P

j 2Z

�

� j�1��

j�
dx
�

1

0

P
`
�y�g

�`�

�x; y�dy we

obtain, by (6.2) and (6.3):

Aÿ

X

0� `�Nÿ1

�
`

u
`

�

�

�

�

�

�

�

�

�

�

� CN�
N

N :

Since P
0

� 1 we have u
0

�

�

R k�x�dx
�

1

0

f �x; y�dy. If ` � 1, u
`
is a linear combination

of the numbers

�

RG
`

i �x�dx for 0 � i � `. Now, G
`

i and G
`ÿ1

i are integrable, and

G
`

i � @G
`ÿ1

i =@x, hence
�

R G
`

i �x�dx � 0 and therefore u
`
� 0 if ` � 1: we thus deduce the

result. h
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As a particular case, there is a constant C such that, for all � > 0, all Borel sets I in �0; 1�

of Lebesgue measure `�I� and all random variables Y with C
1

density k, we have (apply

(6.1) to f �x; y� � 1I �y�):

P
Y

�

� �

2 I

� �

� `�I� 1� C�

�

R

jk
0

�x�jdx

� �

: �6:4�

7. The function �

The aim of this section is to study the functions�
 ; 

de®ned in (2.7), and also to prove (2.9)

and the following estimate on the functions of (2.5):

j`i ��; �; u�j �
C if i � 1

C��=��
3

�i ÿ 1�
ÿ3=2

if i � 2.

�

�7:2�

Below we consider functions  on �0; 1� � R, satisfying (as in (5.1)):

j �u; y�j � K�1� jyj
p
�: �7:2�

We also assume that 1=K
0

� � � K
0

and � � K
0

for some K
0

<1. When the function

��x� is used, it is assumed to satisfyH
0

. The constantsC below will depend only on p;K ;K
0

and on the constants occurring in H
0

.

The basic relation relates `i�1 with `1 and is as follows for i � 1:

`i�1 ��; �; u� � E�`
1

 ��; fu� �Wi=�g�� �7:3�

(note that `
1

 ��; u� � m
�
 �u� ÿM

�
 does not depend on �). Observe that under (7.2) we

have j`
1

 j � C and

�

1

0

`
1

 ��; u�du � 0, so (7.3) and (6.1) with N � 3, along with

k�x� � h�yÿ �u=�� and f �x; y� � `
1

 ��; y�, readily yield (7.1). If we set

L ��; 0; u� � `
1

 ��; u��, and since � � 1=K
0

, we obtain, for all � � 0 (by integration of

(7.3), and Fubini's theorem for (7.5) below):

jL ��; �; u�j � C; jL ��; �; u� ÿ L ��; 0; u�j � C�
3

; �7:4�

�

1

0

L ��; �; u�du � 0: �7:5�

Using (2.7), (2.8) and the fact that E�j�
1

 ��; u�j
2

� � C, we deduce:

j�
 ;  

��; �; u�j � C; j�
 ; 

��; ��j � C: �7:6�

Lemma 7.1. We have (2.9), and the following (with '
�
�u; y� � y=��:

L'
�
��; �; u� � m

�
'
�
�u� �M

�
'
�
� 0; �

'
�
;'
�

��; �� � 1; �7:7�

�

 ;'
�

��; �� �M
�
� '

�
�: �7:8�
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Proof. That m
�
'
�
�u� �M

�
'
�
� 0 is obvious, so �i'���; �; u� �Wi ÿWiÿ1 and thus

L'
�
��; �; u� � 0 for all � � 0. Then �'

�
��; �; u� �W

1

and the last part of (7.7) is also

obvious. Equation (7.8) is obvious if � � 0. If � > 0 we have

�
 ; '

�

��; �; u� � E� �u; �W
1

�'
�
��W

1

�� � E�W
1

L ��; �; fu� �W
1

=�g��;

and thus (7.8) follows from (7.5).

Let us de®ne

�


 � 
� �0; 1�,
�g � g
b��0; 1��, �P�d!; du� � P�d!�du. If we set

�� �
�; �
�!; u� � � ��; �; u��!� if � > 0 and �� �

�;0
�!; u� � �

1

 ��; u��!�, it follows from

(2.7) and (2.8) that �

 ; 
��; �� �

�

E�j�� �
�; �
j
2

� for all � � 0. Thus (7.7) yields

�

 ;  
��; ��

1=2

�
�

E��� �
�; �
��'

�
�
�; �
� �

�

1

0

E�� ��; �; u�W
1

�du by the Cauchy±Schwarz

inequality. But (2.6) and (7.5) give

�

1

0

E�� ��; �; u�W
1

�du �

�

1

0

E�� �u; �W
1

� ÿM
�
 �W

1

�du �

�

1

0

E�� '
�
��u; �W

1

��du

which equals M
�
� '

�
�, and (2.9) is proved. h

In the next lemma we are given a family � x�x2R of functions satisfying (7.2), such that

x!  x�u; y� is di�erentiable and each @ x�u; y�=@x also satis®es (7.2).

Lemma 7.2. Under the above assumptions, x! �
 x;  x

���x�; �; u� is di�erentiable and, for

0 < � � K
0

:
@

@x
�
 x;  x

���x�; �; u�

�

�

�

�

�

�

�

�

� C: �7:9�

Proof. (a) Let f : R� R! R be di�erentiable in the ®rst variable, with f �x; :� and

@f �x; :�=@x satisfying (7.2), and F�x� � E� f �x; ��x�W
1

�� �

�

1

��x�
h�

z

��x�
�f �x; z�dz. Since

h
0

�z� � ÿzh�z�, we obtain by Lebesgue's theorem:

F
0

�x� �

�

h�z�
@

@x
f �x; ��x�z� �

�
0

�x�

��x�
�z

2

ÿ 1�f �x; ��x�z�

� �

dz:

Therefore jF�x�j � jF
0

�x�j � C (recall H
0

).

(b) Applying this to f �x; y� �  x�u; y� gives that x! m
��x� x�u� and thus x!M

��x� x

are bounded with bounded derivatives. Hence g�x; u� :� `
1

 x���x�; u� also satis®es

jg�x; u�j � C and j@g�x; u�=@xj � C.

By (7.3),

`i� 1

 x���x�; �; u� �

�

�

��x�
��

i
p h

�z

��x�
��

i
p

 !

g�x; fu� zg�dz:

Di�erentiate again under the integral sign to obtain

@

@x
`i� 1

 x���x�; �; u� �

�

h zÿ
�u

��x�
��

i
p

 !

@

@x
g�x; fzg�dz

�

�

h zÿ
�u

��x�
��

i
p

 !

zÿ
�u

��x�
��

i
p

 !

2

ÿ1

 !

�
0

�x�

��x�
g�x; fzg�dz:
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Then we can apply (6.1) twice withN � 3, taking into account the fact that

�

1

0

g�x; u�du � 0

and thus

�

1

0

@

@x
g�x; u�du � 0, and obtain j

@

@x
`i� 1

 x���x�; �; u�j � Ci
ÿ3=2

(recall that � � K
0

here). Hence j
@

@x
L x���x�; �; u�j � C.

Now (2.6) yields � x���x�; �; u� � f �x; ��x�W
1

� if we set

f �x; y� �  x�u; y� ÿM
��x� x � L x���x�; �; fu� y=�g� ÿ L x���x�; �; u�:

What precedes shows that the function f (hence f
2

as well) satis®es the requirements of (a).

Since �
 x;  x

���x�; �; u� � E� f
2

�x; ��x�W
1

��, the result follows from (a). h

Nowwe consider a sequence  n of functions satisfying (7.2), and a sequence �n of positive

numbers. We assume that

 n !  du
 dy-almost surely, �n ! � 2 �0;1�;

where  is another function (satisfying (7.2) as well, of course).

Lemma 7.3. Under the previous hypotheses, �
 n;  n

��; �n� ! �

 ;  
��; ��.

Note that by Lemmas 7.2 and 7.3, ��; �� ! �

 ; 
��; �� is continuous on �0;1� � �0;1�.

By the bilinearity of �';  � ! �

'; 
��; �� and the polarization principle, �

'; 
is also

continuous on �0;1�� �0;1� if ' and  satisfy (7.2).

Proof. (a) Consider �
�


;
�g; �P� as de®ned in the proof of Lemma 7.1, and �n�!; u� �

� n��; �n; u��!�. We have seen that �
 n;  n

��; �n� �
�

E��
2

n �. By (2.6), we have �n � fn � kn,

where

fn�!; u� �  n�u; �W1

�!�� ÿM
�
 n ÿ L n��; �n; u�

� L n��; �n; fu� �W
1

�!�=�ng� ÿ L ��; �; fu� �W
1

�!�=�ng�;

kn�!; u� � L ��; �; fu� �W
1

�!�=�ng�:

(b) From (2.3) we clearly have that m
�
 n ! m

�
 du-almost surely, henceM

�
 n !M

�
 

and `
1

 n��; :� ! `
1

 ��; :� du-almost surely. Then (7.3) yields, for i � 1:

`i�1 n��; �n; u� �

�

�n

�

��

i
p h

z�n

�
��

i
p

 !

`
1

 n�fu� zg�dz:

If � > 0 and if u is ®xed, then `
1

 n�fu� zg� ! `
1

 �fu� zg� for dz-almost all z, hence

`i�1 n��; �n; u� ! `i� 1

 ��; �; u�. Using (7.1) and Lebesgue's theorem, we deduce that

L n��; �n; u� ! L ��; �; u� for all u if � > 0, and also for � � 0 since L ��; 0; u� � `
1

 ��; u�.

By Egoro�'s theorem, for all " > 0 there is a Borel set A
"
in �0; 1� such that

�

1

0

1A
"

�u�du � " and �n :� supu =2A
"

jL n��; �n; u� ÿ L ��; �; u�j ! 0. Then if

f �!; u� �  �u; �W
1

�!�� ÿM
�
 ÿ L ��; �; u�; �7:10�

for all u we have lim supn j fn�!; u� ÿ f �!; u�j1
ffu� �W

1

�!�=�ng =2A"
g
� 0 P-almost surely. Since

(6.4) yields P�fu� �W
1

=�ng =2A"
� � C" and since j fn�!; u�j � C�1� jW

1

�!�j
p
�, and since

" > 0 is arbitrary, it follows that

fn ! f in L
2

�
�P�: �7:11�
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(c) Now we suppose that � > 0. We have �

 ;  
��; �� �

�

E��
2

�, where

��!; u� :� � ��; �; u��!�, and � � f � k, where k�!; u� � L ��; �; fu� �W
1

�!�=�g� (use

(2.6)). In view of (7.11) and jknj � C, the result will follow if we prove

�

E�k
2

n � !
�

E�k
2

�;
�

E�kn f � !
�

E�kf �: �7:12�

For the ®rst property above, observe that

�

E�k
2

n � �

�

1

0

du

�

�n

�

h
z�n

�

� �

L ��; �; fu� zg�
2

dz;

which clearly converges to

�

E�k
2

�. Similarly E�L ��; �; fu� �W
1

=�ng�� ! E�L ��; �; fu�

�W
1

=�g��, so in view of (7.10), in order to prove the second property in (7.12) it is enough to

prove that for all u:

E� �u; �W
1

�L ��; �; fu� �W
1

=�ng�� ! E� �u; �W
1

�L ��; �; fu� �W
1

=�g��: �7:13�

For all " > 0 there is a C
1

b

function '
"
on R such that E�j �u; �W

1

� ÿ '
"
��W

1

�j� � ". We

also have

E�'
"
��W

1

�L ��; �; fu� �W
1

=�ng�� �

�

�n

�

h
z�n

�

� �

'
"
�z�n�L ��; �; fu� zg�dz;

which converges to E�'
"
��W

1

�L ��; �; fu� �W
1

=�g�� because '
"
is continuous and

bounded and L is bounded. Since " > 0 is arbitrary, we deduce (7.13), hence (7.12) and

the lemma is proved when � > 0.

(d) All that then remains is to consider the case � � 0. Recall that

L ��; 0; u� � m
�
 �u� ÿM

�
 , hence f �!; u� �  �u; �W

1

�!�� ÿm
�
 �u� by (7.10), and a

simple computation shows that

�

E� f
2

� �M
�
� 

2

� ÿ

�

1

0

m
�
 �u�

2

du. Using (6.1) for N � 1

and for the functions k�x� � h�xÿ u�n=�� and f �x; y� � '�xÿ u�n=��L ��; 0; y�
i
(where

' 2 C
1

b

and i � 1; 2) yields

E�'��W
1

�L ��; 0; fu� �W
1

=�ng�
i
� ÿ E�'��W

1

��

�

1

0

L ��; 0; y�
i
dy

�

�

�

�

�

�

�

�

� C�n ! 0: �7:14�

Since

�

1

0

L ��; 0; y�
2

dy �
�

1

0

m
�
 �u�

2

duÿ �M
�
 �

2

, we deduce that

�

E�k
2

n � !
�

1

0

m
�
 �u�

2

duÿ �M
�
 �

2

. In view of (2.8) and (7.11), it remains to prove that

�

E�knf � ! 0. Because of (7.14) for i � 1 and ' � 1 and from (7.5) (valid also for � � 0),

it remains to prove that E� �u; �W
1

�L ��; 0; fu� �W
1

=�ng�� ! 0. Exactly as in (c), we

can replace  �u; :� by a C
1

b

function '
"
, and (7.14) for i � 1 and ' � '

"
and (7.5) give the

result. h

8. Some auxiliary results

We assume below that the hypotheses H
0

and K
0

r hold for r � 1 or r � 2. In addition to
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(2.2) and (2.3), for all functions ' satisfying (5.1) for i � 1 we set

mn'�x; u� �

�

q
1=n�x; y�'�x; u; y

���

n
p

�dy; Mn'�x� �

�

1

0

mn'�x; u�du;

�mn'�x� � mn'�x; fx=�ng� ÿMn'�x�; �m'�x� � m'�x; fx=�ng� ÿM'�x�:

9

>

=

>

;

�8:1�

In the following all constants, denoted by C, may depend on T , on K and p in (5.1), on the

coe�cients a; � and on the sequence ��n�.

Lemma 8.1. Under K
0

r we have the upper bounds

@
i

@xi
mnfn

�

�

�

�

�

�

�

�

�

@
i

@xi
mfn

�

�

�

�

�

�

�

�

� jmnf j � jmf j � C for 0 � i � r �8:2�

jmnfn ÿmfnj � j �mnfn ÿ �mfnj � C=
���

n
p

�8:3�

jmnfn ÿmfn ÿm~fn=
���

n
p

j � C=n; �8:4�

where ~fn is given by (2.12).

Proof. Property (8.2) readily follows from K
0

r and (5.8). Observing that mfn�x; u� �
�

h
���x�=n�y�fn�x; u; y

���

n
p

�dy, (8.3) and (8.4) follow from (5.10) and (5.11) applied to the

function f �y� � fn�x; u; y
���

n
p

�. h

Next we set for i; n; k 2 N
�

:

�
n

i � fn�X�iÿ1�=n; fX�iÿ1�=n=�ng;

���

n
p

�Xi=n ÿ X
�iÿ1�=n� ÿMnfn�X�iÿ1�=n� �8:5�

�
n

i �k� �

X

i� kÿ 1

j� i

�Ex��
n

j jfi=n� ÿ Ex��
n

j jf�iÿ1�=n�� �8:6�

M
n

t �k� � n
ÿ1=2

X

�nt�

i� 1

�
n

i �k�: �8:7�

Due to K
0

r , along with (5.9) and (8.2), every �
n

i �k� is square-integrable, henceM
n
�k� is a

locally square-integrable martingale on �
;f; �f
�nt�=n�t� 0

;Px�.

For further reference, we also deduce from (8.6) and (8.7) that

�
n

i �k� � �
n

i � �mnfn�Xi=n� ÿ �mnfn�X�iÿ1�=n� ÿ

�

p
�kÿ1�=n�X�iÿ1�=n; y� �mnfn�y�dy

�

X

kÿ2

j� 1

�

�pj=n�Xi=n; y� ÿ pj=n�X�iÿ1�=n; y�� �mnfn�y�dy; �8:9�

M
n

t �k� � n
ÿ1=2

X

�nt�

i� 1

�
n

i � n
ÿ1=2

�mnfn�X�nt�=n� ÿ �mnfn�X0

� �

X

kÿ2

i� 1

�

�pi=n�X�nt�=n; y�

 

ÿpi=n�X0

; y�� �mnfn�y�dyÿ

X

�nt�ÿ1

i� 0

�

p
�kÿ1�=n�Xi=n; y� �mnfn�y�dy

!

: �8:10�
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We presently give some estimates of �
n

i �k� and M
n

t �k�. We ®rst set

�
n
�k; x� � Ex�j�

n

1

�k�j
2

�; �8:11�

H
n

t �k� �M
n

t �k� ÿ n
ÿ1=2

X

�nt�

i� 1

�
n

i : �8:12�

Lemma 8.2. We have, for j � nT:

�

pj=n�x; y� �mnfn�y�dy �
C=

��

j
p

under K
0

1

C=j under K
0

2

(

�8:13�

�

�pj=n�x; y� ÿ pj=n�x
0

; y�� �mnfn�y�dy � Cjxÿ x
0

j

���

n
p

j 3=2
under K

0

2

: �8:14�

Proof. For (8.13) it is enough to apply (6.1) to k�y� � pj=n�x; y� and f �y; u� � mnfn�y; u�ÿ

Mnfn�y� with N � 1 (N � 2) and � � �n, and to use (5.7) and (8.2) and the facts that

sup��n=

���

n
p

� <1 and j � nT . Observing that

�

�pj=n�x; y� ÿ pj=n�x
0

; y�� �mnfn�y�dy �

�

x
0

x

dz

�

@

@z
pj=n�z; y� �mnfn�y�dy;

we similarly deduce (8.14) from (6.1) with k�y� �
@

@z
pj=n�z; y� and f as above and N � 2, by

using (5.7) and (8.2) again. h

It follows from (8.2), (5.9), (8.9) and Lemma 8.2 that

2 � k � nT ) Ex�j�
n

1

�k�j
4

� �

Ck
2

under K
0

1

C under K
0

2

.

(

�8:15�

By (5.9), (8.9) and Lemma 8.2 we also have, under K
0

2

and for 2 � k
0

� k � nT , that

Ex�j�
n

1

�k� ÿ �
n

1

�k
0

�j
2

� � C�k
ÿ2

� k
0ÿ2

� k
0ÿ1

� � C=k
0

;

and this, together with (8.13) and the Cauchy±Schwarz inequality, gives

2 � k
0

� k � nT and K
0

2

) j�
n
�k; x� ÿ �

n
�k

0

;x�j � C=

�����

k 0

p

: �8:16�

Similarly, (8.10), (8.2) and (8.13) yield

2 � k � nT ) jH
n

t �k�j �
C

��������

n=k
p

under K
0

1

C�
���

n
p

=k� �log k�=
���

n
p

� under K
0

2

:

(

�8:17�

Finally, recalling (2.7), we prove the following lemma.

Lemma 8.3. Under K
0

2 and if fn; x�u; y� � fn�x; u; y�, we have, for 16 � k � nT:

j�
n
�k; x� ÿ �f

n; x 0
fn; x
���x�; �n; fx=�ng�j � Ck

ÿ1=8

: �8:18�
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Proof. Recall the notation used in (8.1) and (2.3), and also set

�m
0

fn�x; x
0

� :� mfn�x; fx
0

=�ng� ÿMfn�x� � m
��x�fn; x�fx

0

=�ng� ÿM
��x�fn; x:

Note that �mfn�x� � �m
0

fn�x; x�. From the proof of Lemma 7.2, x! �m
0

fn�x; x
0

� has a

bounded derivative, hence by (8.3):

j �m
0

fn�x; x
0

� ÿ �mnfn�x
0

�j � C�n
ÿ1=2

� jxÿ x
0

j�: �8:19�

Let us set k
0

� �k
1=4

�, hence 2 � k
0

� k � nT . We also set

b
n

k 0 �x� � �mnfn�x� �

X

k
0

ÿ2

j� 1

�

pj=n�x; y� �mnfn�y�dy;

c
n

k 0 �x; x
0

� � �m
0

fn�x; x
0

� �

X

k
0

ÿ2

j� 1

�

h
��x�

�����

j=n

p
�yÿ x

0

� �m
0

fn�x; y�dy:

Then (8.9) can be written as

�
n

1

�k
0

� � �
n

1

� b
n

k 0 �X
1=n� ÿ b

n

k 0
�1
�X

0

�: �8:20�

Since �m
0

fn is bounded, we deduce from H
0

that

�

h
��x�

�����

j=n

p
�yÿ x

0

� �m
0

fn�x; y�dyÿ

�

h
��x 0

�

�����

j=n

p
�yÿ x

0

� �m
0

fn�x; y�dy

�

�

�

�

�

�

�

�

� Cjxÿ x
0

j:

Next, (5.10) and (8.2) yield

�

pj=n�x
0

; y� �mnfn�y�dyÿ

�

h
��x 0

�

�����

j=n

p
�yÿ x

0

� �mnfn�y�dy

�

�

�

�

�

�

�

�

� C

�������

j=n

p

:

Finally,

�

h
��x 0

�

�����

j=n

p
�yÿ x

0

�jyÿ xjdy � jxÿ x
0

j � C
�������

j=n
p

, hence (8.19) yields

�

h
��x 0

�

�����

j=n

p
�yÿ x

0

�j �mnfn�y� ÿ �m
0

fn�x; y�jdy � C�

�������

j=n

p

� jxÿ x
0

j�:

Putting all these upper bounds together, and using (8.19) once more, we obtain

jb
n

k 0 �x
0

� ÿ c
n

k 0 �x; x
0

�j � C�k
03=2

n
ÿ1=2

� k
0

jxÿ x
0

j�: �8:21�

We also set ��
n
� fn�X0

; fX
0

=�ng;

���

n
p

�X
1=n ÿ X

0

�� ÿMfn�X0

�, so that, in view of (8.3) and

(8.5), we have j�
n

1

ÿ ��
n
j � C=

���

n
p

. Therefore, if

��
n
�k

0

� � ��
n
� c

n

k 0 �X
0

;X
1=n� ÿ c

n

k 0
�1
�X

0

;X
0

�; �8:22�

we deduce from (5.9), (8.20) and (8.21) that Ex�j�
n

1

�k
0

� ÿ ��
n
�k

0

�j
2

� � C�k
0 3

=n� k
0 2

=n� �

Ck
0 3

=n � Cn
ÿ1=4

, because k
0

� Cn
1=4

. This, the Cauchy±Schwarz inequality and the

second part of (8.15) yield

jEx�j�
n

1

�k
0

�j
2

� ÿ Ex�j��
n
�k

0

�j
2

�j � Cn
ÿ1=8

: �8:23�
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We now consider a function  on �0; 1� � R satisfying (7.2). Using the notation (2.4) and

(2.5), we set Lk 0  �

P

k
0

i� 1

`i and

� �k
0

���; �; u� � �
1

 ��; �; u� � Lk 0
ÿ1
 ��; �; fu� �W

1

=�g� ÿ Lk 0 ��; �; u�: �8:24�

Since jL ��; �; u� ÿ Lk 0 ��; �; u�j � C�1� ��=��
3

�k
0ÿ1=2

by (7.1), we obtain

j� ��; �; u�j � j� ��; �; u�j � C�1� ��=��
3

�;

j� ��; �; u� ÿ � �k
0

���; �; u�j � C�1� ��=��
3

�k
0ÿ1=2

:

In particular,

j�
 ;  

��; �; u� ÿ E�j� �k
0

���; �; u�j
2

�j � C�1� ��=��
3

�k
0ÿ1=2

: �8:25�

We now ®x n and x, and set  �u; y� � fn�x; u; y�, � � ��x�, � � �n. Note that

`
1

 ��; �; u� � �m
0

fn�x; �nu� and `i� 1

 ��; �; u� � E�`
1

 ��; �; fu� �Wi=�g�� �

�

h
��x�

�����

i=n

p

�zÿ �nu� �m
0

fn�x; z�dz. Hence c
n

k 0 �x; x
0

� � Lk 0
ÿ 1

 ��; �; fx
0

=�ng� and (8.22) yields that,

Px-almost surely,

��
n
�k

0

� �  �fx=�ng;
���

n
p

�X
1=n ÿ x�� � Lk 0

ÿ1
 ��; �; fX

1=n=�ng� ÿ Lk 0 ��; �; fx=�ng�:

In other words, ��
n
�k

0

� � 'n�X1=n� for a function 'n satisfying j'n�y�j � C�1� �y
���

n
p

�
p
�

and (5.10) shows that if ��
0 n
�k

0

� � 'n�x� ��x�W
1=n� we have

jE�j��
n
�k

0

�j
2

� ÿ E�j��
0 n
�k

0

�j
2

�j � C=
���

n
p

: �8:26�

But by (8.24), the variables � �k
0

���; �; fx=�ng� under P and ��
0 n
�k

0

� under Px have the

same distribution: then a combination of (8.23), (8.25) and (8.26) gives

j�
n
�k

0

; x� ÿ �fn;x; fn; x
���x�; �n; fx=�ng�j � C�k

0ÿ1=2

� n
ÿ1=8

�

Using (8.16), along with k
0

� �k
1=4

� and k � nT , gives the result. h

9. Proofs of the main theorems

In this section we prove the theorems of Section 2 and Theorem 3.4. As said in Section 5, we

can and will assume that the hypothesesH
0

and K
0

r are in force. We also use the notation of

Section 8: �
n

i , �
n

i �k� and M
n

t �k� of (8.5)±(8.7) and H
n

t �k� of (8.12). We set

U
n

t �

1

n

X

�nt�

i� 1

Mfn�X�iÿ1�=n�;
~U
n

t �

1

n

X

�nt�

i� 1

M ~fn�X�iÿ1�=n�;

�U
n

t �

1

n

X

�nt�

i� 1

Mnfn�X�iÿ1�=n�;

so that we have, for all k:

V�n; fn� ÿU
n
�M

n
�k�=

���

n
p

� �
�U
n
ÿU

n
� ÿH

n
�k�=

���

n
p

���

n
p

�V�n; fn� ÿU
n
� �M

n
�k� � ~U

n
�

���

n
p

�
�U
n
ÿU

n
ÿ

~U
n
=

���

n
p

� ÿH
n
�k�

�9:1�
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Proof of Theorem 2.1. We assume K
0

1

and take kn � �n
1=3

�.

Since M
n
�kn� is a square-integrable martingale, we have by Doob's inequality and

expressions (8.7) and (8.15):

Ex�sup

t�T

jM
n

t �kn�j
2

� � 4Ex�jM
n

T�kn�j
2

� �

4

n

X

nT

i� 1

Ex�j�
n

i �kn�j
2

� � Cn
1=3

:

Expression (8.17) yields jH
n

t �kn�
���

n
p

j � Cn
ÿ1=6

, and (8.3) yields supt�T jU
n

t ÿ
�U
n

t j � C=
���

n
p

,

so that by (9.1) we obtain

sup

t�T

jV�n; fn�t ÿU
n

t j ! 0 in L
2

�Px�: �9:2�

Now, (8.2) and (5.12) imply that supt�T jU
n

t ÿ

�

t

0

Mfn�Xs�dsj ! 0 in L
2

�Px�. We can

easily check from (2.2) (using K
0

1

again) that Mfn !Mf pointwise, and jMfnj � C,

hence we also have supt�T jU
n

t ÿ

�

t

0

Mf �Xs�dsj ! 0 in L
2

�Px�. This and (9.2) yield the

result. h

Remark 9.1. Supose that K
0

1

holds, except that the sequence fn does not converge to a limit

f . The previous proof for (9.2) remains valid.

Proof of Theorem 2.2. We assume K
0

2

and take kn � �n
3=4

�.

(a) In view of (8.2) and (5.13), the processes

���

n
p

�U
n

t ÿ

�

t

0

Mfn�Xs�ds� converge in law

to 0, so it is enough to prove the stable convergence in law of

���

n
p

�V�n; fn� ÿU
n
�. By

(8.4), j

���

n
p

�
�U
n

t ÿU
n

t ÿ
~U
n

t =

���

n
p

j � C=
���

n
p

, while by (8.24) we have jH
n

t �kn�j � Cn
ÿ1=4

. By

(5.14), supt�T j
~U
n

t ÿ

�

t

0

M ~fn�Xs�dsj ! 0 in L
2

�Px�, and we deduce that supt�T j
~U
n

t ÿ
�

t

0

M ~f �Xs�dsj ! 0 in L
2

�Px� exactly as in the previous proof. Therefore,

sup

t�T

j
~U
n

t �

���

n
p

�
�U
n

t ÿU
n

t ÿ
~U
n

t =

���

n
p

� �H
n

t �kn� ÿ

�

t

0

M ~f �Xs�dsj ! 0 in L
2

�Px�:

It is known that if a sequence of processes Z
n
converges stably in law to some limit Z and

if another sequence of processes Y
n
converges locally uniformly in probability to Y , then

the sums Y
n
� Z

n
converge stably in law to Y � Z. Thus, in view of (9.1), it remains to

prove that (with the notation of (2.13))

M
n
�kn� ! U :�

�

�

0

Rf �Xs�dWs � B
0

stably in law: �9:3�

(b) The processU of (9.3) is a martingale on an extended space, which is characterized by

its brackets

Bt :� hU;Wit �

�

t

0

Rf �Xs�ds; Ct :� hU;Uit �

�

t

0

��f ; f ��Xs; ��ds �9:4�
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(use (2.13)). On the other hand, ifW
n

t �W
�nt�=n, both processesW

n
andM

n
�kn� are square-

integrable martingales with respect to the ®ltration �f
�nt�=n�t� 0

, with brackets

B
n

t :� hM
n
�kn�;W

n
it �

1

n

X

�nt�

i� 1

EX
�iÿ1�=n

��
n

1

�kn�
���

n
p

W
1=n� �9:5�

C
n

t :� hM
n
�kn�;M

n
�kn�it �

1

n

X

�nt�

i� 1

EX
�iÿ1�=n

��
n

1

�kn�
2

�: �9:6�

Now, following Genon-Catalot and Jacod (1993, Section 5.c), as soon as the following

convergences in Px-probability (for all t) hold:

B
n

t ! Bt; C
n

t ! Ct; n
ÿ2

X

�nt�

i� 1

EX
�iÿ1�=n

��
n

1

�kn�
4

� ! 0; �9:7�

we have convergence in law under Px of the pair �M
n
�kn�;W

n
� to the pair �U;W�, whereU

is as in (9.3). Since W
n
converges locally uniformly in time for all ! to W , we also have

convergence in law of �M
n
�kn�;W� to �U;W�, and thus Ex���M

n
�kn��	�W�� !

�

Ex���U�	�W�� for all continuous bounded functions �;	 on the Skorokhod space

D�R
�
;R�. But any bounded random variable Z on �
;f

1
;Px� is the L

1

-limit of a

sequence of variables of the form 	p�W� with 	p continuous, uniformly bounded in p: it

readily follows that Ex���M
n
�kn��Z� !

�

Ex���U�Z�, that is we have (9.3).

Due to (8.15), the third expression in (9.7) is smaller than C=n, so it remains to prove the

®rst two convergences in (9.7).

(c) With the notation of (8.11), we have C
n

t �
1

n

P

�nt�

i� 1

�
n
�kn;X�iÿ1�=n�. Setting

~

�
n
�x; u� � �fn; x ; fn;x

���x�; �n; u�, we can apply (8.18) to get

jC
n

t ÿ

1

n

X

�nt�

i� 1

~

�
n
�X

�iÿ1�=n; fX�iÿ1�=n=�ng�j � Cn
ÿ3=32

:

Next, (7.6) and (7.9) show that the functions �x; u; y� ! ~

�
n
�x; u� satisfy K

0

1

, except for the

convergence of

~

�
n
to a limit, and M~

�
n
�x� � �� fn; fn��x; �n� by (2.2), (2.7) and (2.11). So

Remark 9.1 implies that

sup

t�T

1

n

X

�nt�

i� 1

�
~

�
n
�X

�iÿ1�=n; fX�iÿ1�=n=�ng� ÿ��fn; fn��X�iÿ1�=n; �n��

�

�

�

�

�

�

�

�

�

�

! 0

in L
2

�Px�. Finally, the functions �x; u; y� ! ��fn; fn��x; �n� also satisfy K
0

1

, with the limiting

function �x; u; y� ! �� f ; f ��x; �� by Lemma 7.3 and (2.11). Hence Theorem 2.1 implies

that

sup

t�T

1

n

X

�nt�

i� 1

�� fn; fn��X�iÿ1�=n; �n� ÿ

�

t

0

�� f ; f ��Xs; ��ds

�

�

�

�

�

�

�

�

�

�

! 0

in L
2

�Px�. Therefore the second convergence in (9.7) takes place.
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(d) Let us denote by ~�
n

i �k� the variable de®ned by (8.6), with the function fn substituted

by f
0

�x; u; y� � y=��x� (the stationary sequence �f
0

� also satis®esK
0

2

, with possibly di�erent

constants K ; p), and set

~B
n

t �

1

n

X

�nt�

i� 1

EX
�iÿ1�=n

��
n

1

�kn�~�
n

1

�kn��:

Denote also by C
�; n

(or C
ÿ; n

) the processes de®ned by (9.6), except that fn is substituted by

f
�

n � fn � f
0

(or f
ÿ

n � fn ÿ f
0

). If f
�

� f � f
0

and f
ÿ

� f ÿ f
0

, (b) above implies that

C
�; n

t !

�

t

0

�� f
�

; f
�

��Xs; ��ds in Px-probability. Now, �� f ; f
0

� �
1

4

��� f
�

; f
�

�ÿ

�� f
ÿ

; f
ÿ

�� and
~B
n
�

1

4

�C
�; n

ÿ C
ÿ; n

�, so we deduce that

~B
n

t !

�

t

0

�� f ; f
0

��Xs; ��ds in Px-probability:

Since �� f ; f
0

��x; �� � Rf �x� by (2.11) and (7.8), if we prove that

~B
n

t ÿ B
n

t ! 0 in Px-probability; �9:9�

we will have the ®rst convergence in (9.7), and Theorem 2.2 will be proved.

(e) With f
0

in place of fn, we get �
n

i � 

n

i ÿ Ex�

n

i jf�iÿ1�=n�, where



n

i �

���

n
p

�Xi=n ÿ X
�iÿ1�=n�=��X�iÿ1�=n� (see (8.1) and (8.5)). Therefore ~�

n

1

�kn� �



n

1

ÿ EX
0

�

n

1

�. Then (5.9) yields ®rst jEx�

n

1

�j � C
���

n
p

and then Ex�j��
n

1

�kn� ÿ
���

n
p

W
1=nj

2

� �

C=n. Using (8.15), we deduce that

jEx��
n

1

�kn�~�
n

1

�kn�� ÿ Ex��
n

1

�kn�
���

n
p

W
1=n�j � C=n:

This readily gives (9.9), and we are done. h

Proof of Corollary 2.3. Since M ~fn !M ~f and jM ~fnj � C (see the previous proofs), both

processes

�

t

0

M ~fn�Xs�ds and
1

n

P

�nt�

i� 1

M ~fn�X�iÿ1�=n� converge locally uniformly in time, in

Px-probability, to the process

�

t

0

M ~f �Xs�ds, and the result immediately follows from

Theorem 2.2. h

Proof of Theorem 3.4. (a) As in Section 5, we can and will assume that in (3.1) the

constants Cq � C, rq � r do not depend on q. Set vn�x� � ÿ'n�x; �n� and

wn�x� �
~

ÿ'
0

n�x; �n�. Due to Theorem 3.2, we only have to show the following convergences

in Px-probability, locally uniform in t:

n
ÿ1=2

X

�nt�

i� 1

�vn�X�iÿ1�=n� ÿ vn�X
��n�

�iÿ1�=n
� �n=2�� ! 0; �9:10�

1

n

X

�nt�

i� 1

�wn�X�iÿ1�=n� ÿ wn�X
��n�

�iÿ1�=n
�� ! 0: �9:11�
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By the change of variable z � y��x� in (3.5), we see that wn is C
1

with jw
0

n�x�j � C, hence

jwn�x� ÿ wn�x
��n�

�j � C=
���

n
p

and (9.11) is obvious. Similarly, (3.4) yields that vn is C
2

with jv
�i�

n �x�j � C for i � 0; 1; 2, hence by Taylor's formula

jvn�x� ÿ vn�x
��n�

� �n=2� ÿ �n�fx=�ng ÿ 1=2�v
0

n�x�j � C=n:

If A
n

t �
1

n

P

�nt�

i� 1

�fX
�iÿ1�=n=�ng ÿ 1=2�v

0

n�X�iÿ1�=n�, to obtain (9.10) it is enough to show that

A
n

t ! 0 locally uniformly in Px-measure. Observe that A
n

t � V�n; �fn�t, where

�fn�x; u; y� � �uÿ 1=2�v
0

n�x� satis®es K
0

1

except for the convergence of

�fn to a limit. In

view of Remark 9.1, we have, by (9.2):

sup

t�T

A
n

t ÿ

1

n

X

�nt�

i� 1

M �fn�X�iÿ1�=n�

�

�

�

�

�

�

�

�

�

�

! 0 in L
2

�Px�:

It remains to observe that M �fn � 0 (see (2.2)), and we have the result.

(b) Suppose now that '�x; y� � '�x;ÿy�. In view of Corollary 3.3, the limiting process

for (3.9) is as described after (3.10). The sequence �'n�x; y� � 'n�x� �n=2; y� also satis®es

L
2

with the same limit function ', so we only have to show that the di�erence between

(3.10) for 'n and (3.9) for �'n goes to 0 in Px-probability, uniformly in time.

First, L
2

implies that ' isC
1

in the ®rst variable, and we have '
0

�x; y� � '
0

�x;ÿy�, so the

same change of variable as in the proof of Corollary 3.3 readily shows that

~

ÿ'
0

�x; �� �
1

2

ÿ'
0

�x; ��. We also have �'
0

n ! '
0

pointwise, so L
2

again yields that

~

ÿ�'
0

n�x; �n� ÿ
1

2

ÿ�'
0

n�xÿ �n=2; �n� converges locally uniformly in x to

~

ÿ'
0

�x; ��ÿ
1

2

ÿ�x; �� � 0. Then

1

n

X

�nt�

i� 1

~

ÿ�'
0

n�X
��n�

�iÿ1�=n
; �n� ÿ

1

2

ÿ�'
0

n X
��n�

�iÿ1�=n
�

�n

2

; �n

� �

� �

! 0

locally uniformly in t. So we can replace the process (3.9) by

���

n
p

U�n; �'n�t ÿ
1

n

X

�nt�

i� 1

ÿ �'n ÿ

�n

2

�'
0

n

� �

X
��n�

�iÿ1�=n
�

�n

2

; �n

� �

 !

: �9:12�

Now, Taylor's formula, (3.4) and L
2

yield

ÿ �'n ÿ

�n

2

�'
0

n

� �

�x; �� ÿ ÿ'n�x; ��

�

�

�

�

�

�

� g�x; ���
2

n

for some locally bounded function g. So we can replace the process (9.12) by

���

n
p

U�n; �'n�t ÿ
1

n

X

�nt�

i� 1

ÿ'n X
��n�

�iÿ1�=n
�

�n

2

; �n

� �

 !

: �9:13�

It remains to observe that the processes (9.13) and (3.10) are the same. h
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