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A central limit theorem for normalized
functions of the increments of a diffusion
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Let X be a one-dimensional diffusion process. For each n>1 we have a round-off level a,, > 0 and
we consider the rounded-off value X, = a,[X,Ja,,). We are interested in the asymptotic behaviour of
the processes U(n, @), =13, <i<pgpX %5‘1)1)/,,, Vo n(X((ﬁ-;fﬁ,fX(,(f"{),,,,) as n goes to +oo: under suitable
assumptions on ¢, and when the sequence «,,, /7 goes to a limit 3 € [0, co), we prove the convergence of
U(n, ¢) to a limiting process in probability (for the local uniform topology), and an associated central
limit theorem. This is motivated mainly by statistical problems in which one wishes to estimate a
parameter occurring in the diffusion coefficient, when the diffusion process is observed at times i/n and is
subject to rounding off at some level a,, which is ‘small’ but not ‘very small’.
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1. Introduction

Let us consider a one-dimensional diffusion process X, solution to the equation
dX, = a(X,)dt + o(X,)dW,, (L.1)

where I is a standard Brownian motion, and ¢ and ¢ are smooth enough functions on R.
The behaviour of functionals of the form

[n1]
%Zw(X(i_l)/n,\/ﬁ(Xt/n — X(i-1)/)) (1.2)
iz
as n — oo is known (see, for example, Jacod 1993), and it is crucial for instance in
estimation problems related to diffusion models when one observes the process X at
times i/n, i > 1.
Now, in practical situations not only do we observe the process at ‘discrete’ times, but
also each observation is subject to measurement errors, one of these being the round-off
effect: if @ > 0 is the accuracy of our measurement, we replace the true value X, by ka when

*To whom correspondence should be addressed.

1350-7265 © 1997 Chapman & Hall



2 S. Delattre and J. Jacod

ka < X, < (k+ 1)a with k € Z. The object of this paper is to study the limiting behaviour
of functionals like (1.2) when Xj ), is substituted with its rounded-off value.

More precisely, we are given a sequence «,, of positive numbers, where «,, represents the
accuracy of measurement when the discretization times are i/n. With each real x we
associate its integer part [x] and fractional part {x} = x — [x], and for every real x we
denote by x(*) = q, [x/c,] its rounded-off value at level «,. Instead of (1.2) we consider
processes such as

[nt]
! () (@) _ ylew)
U(”> ‘P)r = ZZ ‘P(X(,;U/m \/ﬁ(Xi/,, - X(,;l)/n)% (1-3)
i=1
perhaps with ¢ replaced by a well-behaved sequence (, of functions.
In fact, the asymptotic behaviour of (1.3) and of other similar processes will be deduced
from the behaviour of the following:

[n1]
V(n,fo): = %an(X(i—l)/na { X1y /s Vu(Xin — Xi21yn)) (1.4)
i=1

where f, are functions on R x [0, 1] x R. The interest of (1.4) is that it simultaneously
encompasses (1.2) and (1.3), and gives additional results for functions of the fractional
parts {Xj/,/c,} which may have independent interest (see Section 3).

Throughout this paper we will assume that 3, = «,+/n converges to a limit ( in [0, c0).

In Section 2 we state the main results about processes V(n,f,). They are twofold: first
convergence in probability; then an associated central limit theorem for the normalized and
compensated processes. In Section 3 we deduce from this the behaviour of processes like
(1.3).

In Section 4 we give an example of a statistical application: the process under observation
is (1.1) with a(x) = 0, o(x) = 0 and X, = 0, that is X; = oW,, and we wish to estimate o’
from the observation of the rounded-off values X i(/i") fori=1,...,n. This simple example
allows us to exhibit the main features of estimation in the presence of round-off. The
statements of Section 4 can be read without the whole arsenal of notation of Sections 2 and 3,
and corresponding results concerning general diffusion processes will be developed elsewhere.

The rest of the paper is organized as follows. In Section 5 we prove some (more or less
well-known) results about the semigroups of the process X. In Section 6 we introduce the
fundamental tool, which is that if a real-valued random variable Y admits a smooth
density, then for p > 0 the variable {Y/p} is ‘almost’ independent of Y and uniformly
distributed on [0, 1) (the ‘almost’ being controlled by powers of p): this is related to results
due to Kosulajeff (1937) and Tukey (1939). In Section 7 we study the functions which occur
in the limits of our processes. In Section 8 we introduce a fundamental martingale. This
martingale is constructed, approximately, as the martingale used in the proof of the central
limit theorem for a triangular array of stationary mixing sequences of random variables, the
‘stationary sequence’ here being the fractional parts {X;/,/a, }. Finally, Section 9 is devoted
to proving the main theorems.

The assumption that (§, goes to a finite limit is restrictive, although for statistical
purposes it should be a natural assumption.
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If 8, — oo and still a,, — 0, we have seen in Jacod (1996) for the Brownian motion case
(i.e. a=0, o =1) that U(n,p),/B, converges in probability to #,/2/n for the function
o(x,y) = y?. More generally if ¢, has the form ©n(x,¥) = 9, (x)|y[l it is possible to prove
convergence in probability of 81 P U (n,¢,), as well as a corresponding central limit theorem
(these results will be developed elsewhere): this implies that for arbitrary functions ¢, the
normalizing factors should depend on ¢, in a rather complicated way.

When a,, goes to a limit « > 0 (for example, if a,, = a > 0 for all n), the situation is quite
different: again in the Brownian case and if p(x,y) = y?, then U(n,p)/\/n converges in
probability to a multiple of the sum 3 ;< L*, where L® is the local time of X at level a.
Presumably a similar result holds here, but the limit is random here and a central limit
theorem, if it holds at all, would be of a different nature.

2. Statement of the main results
We first present our assumptions. First, for the process X, we assume the following:

Hypothesis H. The functions a and o are of class C° and o > 0 identically, and for each
starting point the process X is non-explosive.

We denote by P, the law of the process X starting at X, = x, on the canonical space
= C(R,,R) endowed with the canonical filtration (), .

Next, let f, : R x [0,1] x R — R be a sequence of functions satisfying the following for
r=1lorr=2:

Hypothesis K.. The functions f, are C" in the first variable, and for all g > 0 there are
constants Cg,r, such that, for 0 <i <r,n>1:

o', ,

o hun)| S G orl <a eh)
Furthermore, there is a function f : R x [0,1] x R — R such that for all x € R, f,(x,u,y)
converges du ® dy-almost everywhere to f(x,u,y).

Recall that 8, = a,v/n — 8 € [0,00), and V(n,f,) is given by (1.4).

For the first theorem, we need some notation. Denote by /4, the density of the normal law
A7(0,5%), and h = h;. For any function f on R x [0, 1] x R satisfying (2.1) for i = 0, we set
(ois asin (1.1)):

'l
/(e = [ OV (o), MPG0) = [ mf 22)

0
Note that Mf is locally bounded.

Theorem 2.1. Under the hypotheses H and K;, the processes V(n,f,) converge in P.-
probability, locally uniformly in time, to the process [y Mf(X,)ds.

We next give a ‘central limit theorem’ associated with the previous result. Here again we
need to introduce a number of functions. Let W be a standard Brownian motion on a space
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(2,9, P), generating the filtration (9,),-,. If 1 is a function of polynomial growth on
[0,1] xR, forall o > 0, p > 0, u € [0, 1] we set (for i > 1):

1
moblu) = B o), Myt = || mtu)du (23)
Uil/J(Ua Ps u) = 1/1({” + UWifl/p}7 U( Wi - W,',])) - Mcrwv (24)
eiw(aa P L[) = E(’]ﬂP(Uv Ps u)) (25)

We will prove later (see Section 7) that the series Lt = ) ;- ¢; 1 is absolutely convergent,
and we can introduce square-integrable random variables by writing (note that ;¢ (o, p, u)
does not depend on p):

X¢(07 P u) = 771¢(U’ Ll) + LW@ Ps {u + oW, /P}) - L¢(0a Ps Ll) (26)

Finally, if ¢ is another function of the same type as 1, we set

1
Onsl0,p.0) = E(ol,pbloup)), Bulon) = [ Soulopidn @)
Equations (2.4)—(2.7) make no sense when p = 0. However, we set, for p = 0:

Aw,’(b(av O) = Ma(Sm/f) - MUQDMUwa (28)

and will prove (again in Section 7) that A, ; is continuous on (0, 00) x [0, c0), while for all
p=>0:

A¢'-,¢(O-’ p) > [MJ(/‘/}@U)]2> (29)

where @, (u, v) = y/o.
The connection between (2.2) and (2.3) is as follows, where f, (1, ) = f(x, u, y):

mf(x, u) = mo(x)fx(u)’ Mf(x) = Ma(x)fxa (2]0)
and we introduce in a similar fashion (with ¢, (u, y) = y/o again):
A(fy g)(X,p) = Afv,gvx(a(x)vp)v Rf(X) = MO'(X)(]:’C()OO'(X))' (211)
For further reference, we also set:
~ _ a(x)  30'(x) ;5 o' (x)
f(xu,y) =f(x,u,y) (y (J(x)2 - 20(x)> + za(x)3>' (2.12)

where ¢’ is the first derivative of o.

After this long list of notation, we also recall that if V), is a sequence of random variables
on (Q, 7, P,), taking values in a Polish space E, we say that V, converges stably in law to a
limit ¥ if ¥ is an E-valued random variable defined on an extension (2, %, P,) of the space
(Q,7,P,) and if E.(Yf(V,)) — E.(Yf(V)) for every bounded random variable Y on
(Q,7,P,) and every bounded continuous function f/ on E (see Renyi 1963; Aldous and
Eagleson 1978; or Jacod and Shiryaev 1987). This is obviously a (slightly) stronger mode of
convergence than convergence in law.
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We will apply this to processes, so E is the Skorokhod space D(R_). The extension
(Q, .7, P,) is such that it accomodates another standard Brownian motion B independent
of W, and we consider the process (recall that A(f,f)(x,p) > Rf(x)2 by (2.9) and (2.11)):

!
B = [ (A8 - R P, (213)
0
Theorem 2.2. Assume that the hypotheses H and K, hold. The processes /n(V(n,f,), —
Jo Mf,(X)ds) and ~/n(V(n,f,), — ,['f, Mf,(X(i—1ym)) converge stably in law to
the fol/owzng process (with B’ ana’f gzven by (2.13) and (2.12)):
J MF(X, )dH—J RF(X,)dW, + B.. (2.14)

Corollary 2.3. Assume that the hypotheses H and K, hold, and associateﬂ with f, by (2.12).
The two sequences of processes

ﬁ(V(n, ), — JMf,,( )dv—%J Mf,(X,)d >

\/_< afn Zan (i-1)/n _n73/2Zan (i— l/n)>

z*l i=1

converge stably in law to the process fo Rf (X, )dW, + B,.

Remark 2.1.  Another way of characterizing the process B’ is as follows: it is a process on
the extension (£, %, P,) such that, conditionally on the o-field &, it is a continuous
Gaussian martingale null at # = 0, with (deterministic) bracket

(BB, = [ (AU 000) = RACK))as (2.15)

Remark 2.2. There is, of course, a version of these results for d-dimensional functions
fo= D) 1<i<a all of whose components satisfy hypothesis K. Then the processes V'(n,f,)
and functions Mf and Rf are d-dimensional as well, as the results are exactly the same as in
Theorem 2.2 and Corollary 2.3, provided we describe the d-dimensional process
B' = (B 'i)lgig,,, conditionally on %, as a continuous Gaussian martingale null at 1 =0,
with the following brackets:

(B7.8%), = [ (A7)~ BRI (X)) (2.16)

The proof is exactly the same as for the one-dimensional case. Another description of B’ as
the stochastic integral with respect to a d-dimensional Brownian motion independent of W
is, of course, possible, and involves a square root of the symmetric non-negative matrices

AT (x, B) = RF(X)RF (X)) 1<, j<a-
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3. Some applications

We consider here the processes U(n, ¢) of (1.3). More precisely, let ¢, be a sequence of
functions on R?, satisfying the following assumption (for r = 1 or r = 2):

Hypothesis L.. The functions p, are C" in the first variable, continuous in the second
variable, and for all g > 0 there are constants C,, r, such that, for 0 <i<r,n>1:

S C(L+l™)  for X[ <q. (3.1)

8[
‘W (Pn(xvy)
Furthermore, @, converges pointwise to a function .
Since X, = X, — a,{X, /v, }, we have U(n, ,) = V(n,f,), where
fn(xwhy) :Spn(x_anu>/6n[“+y/ﬁnb~ (32)

Furthermore, we have the following lemma.

Lemma 3.1. If 8, — B the hypothesis L, implies that the sequence (f,) defined by (3.2)
satisfies K., with the limiting function [ given by
_ [ex,Bluty/B]) i B>0
f(xa uay) -

o(x,) if3=0. 33)

Proof. Property (2.1) is obvious. Recall that «,, — 0, while 3,[u + y/(,] converges to y if
B =0, and to Blu+ y/3] for du ® dy — almost all (u, y) if 8 > 0. Hence the continuity of ¢,
yields Spn(xvﬂn[u""y/ﬁn]) _QOH(XJ}) —0 if =0, and @n(x_an%ﬁn[u"’_y/ﬁn})_
ou(x,Bu+y/p)) -0 if [F>0. Since ¢,—¢ we deduce that f,(x,.)—
f(x,.)du ® dy — almost everywhere. O

In order to translate the results of Section 2 into the present setting, we introduce some
more notation. For any function ¢ on R’ satisfying (3.1) for i = 0, set

el
| |, @ [ Oete -+ s Dy it p >0

Le(x, p (3.4)

0005 a0y it o0,

Theorem 3.1. Under the hypotheses H and L; the processes U(n,p,) converge in P.-
probability, locally uniformly in time, to the process ff) Tp(X;, B)ds.
Proof. 1t suffices to observe that I'p(x, 8) = Mf(x) with f as in (3.3). O

In a similar way to (3.4), we set, for p > 0:

1
Fip(x,p) = | [ Yot plu+ o) /. (3.5)

For all ¢, we also write ¢, (x,y) = d¢,(x,y)/0x.
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Theorem 3.2. Assume that the hypotheses H and L, hold. The processes

\/ﬁ(U(H, Pn)i — J; Lo, (X5, By)ds + a, J; T (X, ﬂn)dS> ; (3.6)

[nt]
\/ﬁ< ZFWn /naﬂn %Z X(l 1)/naﬁn)> (37)

1—1 =

converge stably in law to the process (2.14), with f given by (3.3).

Proof. Set ~,(x) = Mf,(x) — Tp,(x, 8,) + a,Tp,(x). The processes (3.6) and (3.7) are
respectively equal to /n(V(n,f,), — [ Mf,(X;)ds) + /n [§v,(X,)ds and /n(V(n,f,),—
;ZE’LM}‘H( (i—ym)) 1 I/QZE”_t]lfyn(X(, 1/,,) Therefore, the result will follow from
Theorem 2.2 if we prove that

sup Vn|vy,(x)] =0  forall 4 > 0. (3.8)

x:|x|< A4

We have

1
() = j dujh(yxsan(x — Bl + o)/ B]) — 0, Bl + o)/ B])

+ oy (x, Byl + o(x)y/B,]))dy
Since aﬁ\/ﬁ — 0, (3.8) is deduced from hypothesis L. O

Remark 3.1. 1f 3 = 0, then o,,\/n — 0, while T}, (x, 3,) is locally bounded in x, uniformly
in n: therefore we can replace (3.6) and (3.7) by the processes

\/E<U(i’l, San)t - J:) F@n(Xya ﬂn)dv> and \/E<U( 9011 ngon X(z l)/nﬁn))

Very often in applications, the functions ¢, will be even in the second variable. The
results then take a simpler form, as follows.

Corollary 3.3. Assume that the hypotheses H and L, hold, and also that o(x,y) = o(x, —y)
identically. The processes (3.6) and (3.7) converge stably in law to the process
ff)A(f,f)(Xs,ﬁ)]/Zst, where [ is given by (3.3) and B is a standard Brownian motion
independent of W.

Proof. 1t suffices to prove that Mf(x) = Rf(x) = 0. In view of (2.11) and (2.12), it is
enough to prove that Mg(x) =0 if g(x,u,y) = f(x,u, y)k(x,y) where k(x,y) = A(x)y or
k(x,y) = A(x)y* for an arbitrary function 4. But (3.3) and the assumption of ¢ yield that
glx,u,y) = —g(x,1 —u,—y) for du®dy-almost all (u,y). Since the measure
du ® h,(y)(y)dy is invariant by the map (u,y) — (1 —u, —y), we deduce Mg(x) =0 from
2.2). O
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The processes (3.6) and (3.72 are not fit for statistical applications, since they involve not
only the ‘observed’ values X’ l(/" but also the ‘non-observed’ path s — X in the case of (3.6),
or the non-observed values X;/, in the case of (3.7). To circumvent this problem, we can
state the following result, the proof of which is postponed until Section 9.

Theorem 3.4. Assume that the hypotheses H and L, hold.
(a) The processes

f( ) ——ern( S B) + ir (X /,,,ﬁ,,)> (3.9)

i=1
converge stably in law to the process (2.14), with f given by (3.3).
(b) 1If, further, o(x,y) = w(x, —y) identically, then the processes

Vi Z( (X 5 VA = X)) = Do (X 58)) (:10)

converge stably in law to the process [ A(f,f ) (X, ﬂ)l/des, where f is given by (3.3) and B
is a standard Brownian motion independent of W .

Remark 3.2.  As for Theorem 3.2, if 3 = 0 we can replace the process (3.9) by v/n(U ( S On)i—

E?il F(pﬂ( (la”l>)/n +%> n))a and cven by \/E(U(l’l, ) Egn_,l F(pn( a” /naﬁn))
because [T, (x + @, /2, 8,) — T (x, 8,)] < g(x)a, < g(x)B,/+/n for some locally bounded
function g.

Remark 3.3. Other versions of (3.9) are possible: for example, we can replace
D, (X(™) )+ % B) by Dupa(X(™), 0 B,), where

1 1
Luanlo) = [, duj do [0 x + o B+ yo ) /By
We can also replace f‘go,’,( (i—1)/n> Bn) DY T ( (“">>/n +%5, B)-

Remark 3.4. Asin Corollary 3.3, if ¢ is even in the second variable, the limit in Theorem
3.4is [{A(f./)(X,,8)/*dB,.

Remark 3.5. Asin Section 2, these results admit a multidimensional version, when each ¢,
takes values in R?. We leave the details to the reader.

Finally we give some very simple applications to the processes
[nr
Z{Xl/n/an} (3.11)
1 =1
where p € R,

Theorem 3.5. Assume that the hypothesis H holds. Then the processes U/'(p) converge locally
uniformly in time, in (P, for all q, to the function t/(p + 1). Furthermore, the processes
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Va(U!'(p) — t/(p+1)) converge stably in law 1o [} A(f.f)(Xs, 3)V2dB,,  where
f(x,u,y) = u” and B is a standard Brownian motion independent of W.

Note that if 8 = 0, then A(f,f)(x,0) = 1/(p> + 1) — (1/(p + 1))?, so the limit above is
again a homogeneous Brownian motion, independent of W. If 8 > 0, then A(f,f )(x, 5)
depends on x and the limit in not independent of IW.

Proof. We only have to notice that U/ (p) = V(n,f ), + { Xjuy/n/cn}” /n, where f is as

above: we have the hypothesis K, for f, = f, and we can apply Theorems 2.1 and 2.2, and
check that Rf(x) = Mf(x) = 0 and that Mf(x) =1/(p + 1). O

4. A simple statistical application

In this section we consider the following statistical problem: the process X is X = oW,
where W is a standard Brownian motion, and o > 0 is unknown. We wish to estimate

¥ = o, from the observation of X,ﬁ”) fori=1,...,n. The estimation will be based on the
discretized quadratic variation, calculated from these rounded-off values, i.e. the variables
N~ (o) _ yple) )
n ay Qp
V= Z(Xi/n _X(i—l)/n> ) (4.1)

since it is well known that without round-off error (i.e. a, = 0), V" is (in all possible senses)
the best estimator of 9, and that \/n(¥" — ) converges in law to .47(0,209?) if the true value
of the parameter is ¢.

First, the following result, easily deduced from Theorem 3.1, has already been proved in
Jacod (1996). Below, P” denotes the law of X for the value ¥ of the parameter.

Theorem 4.1. The variables V" converge in Pﬂ-probabilily to the number

! 2 y\/gz
+(8,9) = Ld“JWW N

9 if B=0.

u-+

dy if B3>0 (4_2)

Proof. Setting p(x,y) = y2, it is enough to observe first that V" = U(n, ), and second
that v(8,19) = T'yp(x, §) with the notation of (3.4) since o(x) = V1. O

It can be shown that y(3,9) > ¢ if 3 > 0: hence the estimators V" are consistent if 3 = 0,
but are not consistent if 5 > 0.

Furthermore, the function § — ~(5,1) is twice differentiable, and we can prove that
0v(0,4)/06 = 0 and 827(5, 19)/852 = % Then when g =0, it follows from Theorem 3.2
(applied to ¢, (x,y) =y, so that T'p.(x,3,) = 0) that /n(V" — ) converges in law to
A7(0, 2192) if \/ﬁﬁ,% — 0, whereas it explodes when \/ﬁﬂg — 00, and it converges to a non-
centred normal variable if \/r_zﬂﬁ converges to a limit in (0, c0): this means that, unless «,,
goes to 0 very fast (i.c. n3/4an — 0), then V" does not go to ¥ at the rate 1/\/n.
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So there is a need for better estimators. In fact, the function ¥ — (3, ) is an increasing
bijection from R, into R,, whose inverse is denoted by v '(8,9). We then have the
following result.

Theorem 4.2. The estimators 1, defined by 9, = y! (B, V"), are consistent, and \/ﬁ(ﬁ” — )
converges in law under P’ to A7(0,3(8,1)), for some X(3,19) satisfying ¥(0,9) = 2097,

This implies that if 5 = 0, then the 1§ns are efficient since they achieve the same bound as if
the true values X/, were observed. When 3 > 0 they achieve at least the best rate 1//n (we
do not know whether they are efficient in this case, relative to the observed o-fields).

Proof. The continuity of the function v and Theorem 4.1 yield that 'y*l(ﬁn, 17”) —
7*1(6, v(B,9)) =¥ in P”-probability, hence the consistency.

Let A(8,9) be the quantity A(f,f)(x, 3) with f associated with ¢(x, y) = y? by (3.3) and
o(x) = V9 (clearly this does not depend on x).

By construction ~(8,,9,) = V", so Corollary 3.3 vyields that the variables
\/ﬁ(fy(ﬂn,zén) —4(B3,,9)) converge in law to .4°(0,A(3,9)) (recall that here Ty = 0).
Using the fact that ¢ — (3,9) is continuously differentiable with a positive derivative,
the consistency and Taylor’s formula yield that \/ﬁ(ﬁn — ) converges in law to
N(0,A(B,9)/(8~(3,0)/89)%). Finally (4.2) gives 9v(0,9)/09 = 1, while (2.8) yields
A(0,9) = 297, hence the final result. O

5. Preliminaries

The first aim of this section is to prove that we can replace the hypotheses H and K, by the
following:

Hypothesis H'. a and o are C{ functions, and inf,o(x) > 0.

Hypothesis K,. f and f, are as in hypothesis K,, and there are constants p € N, K > 0, such
that for 0 <i<randalln,x,y,u:

‘%fn(x,u,y)‘ + | f(xu,p)| < K(1+ ). (5.1)

Assume that the hypotheses K and K, hold, and suppose for a moment that the process X
is defined on the canonical space of the Brownian motion W and starts at X, = x,. Also, let
A =sup a,,.

For all ¢ > |x,| there are functions (a,,0,) satisfying H', such that a,(x) = a(x) and
0,(x) = o(x) if |x| < g + A. There are also functions (f7, f ) satisfying K, and such that
ﬁ;](xv uvy) = fu(xX,u, ) andfq(x7u>y) :f(xa u,y) if |X|, ly‘ <q+A.

Denote by X'¢ the solution of (1.1) with the coefficients a,, o, and set T, = inf(z : | X,| >
g+ A). Obviously X = X and X4 = x) on [0, T,], so all processes associated with

(X, fo,f) or with (X, f,7, f) as in Section 2 coincide on [0, T, ]. Since 7, — oo almost surely
because X is non-explosive, it is clearly enough to prove all results for all triples

(Xq7 nq7fq)n q > |X0|.
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Hence we can and will assume throughout the rest of this paper that H' and K, are in
force.

Since all results are ‘local’ in time, we will also fix an arbitrary time interval [0, T], with
T € N. All constants below may depend on the coefficients (a,0), on T, and on the
constants (K, p) of (5.1), and also on the sequence (a,), but they do not depend otherwise
onf,, f,oronnorw.

Now we come back to the canonical space (2, #, P,) with the canonical process X. We
construct a standard Brownian motion W, simultaneously for all measures P,, by the

formula
1 "a(Xy)
s STl s ot

Let (#,);>¢ be the filtration generated by X, or equivalently by W.

Now we recall some results concerning the densities (p,(x,y):x,y € R),., of the
transition semigroup of the process X, under H'. Some of these are more or less well
known, some seem to be new.

First, we recall an ‘explicit’ form of p, in terms of a standard Brownian bridge denoted in
this section by B = (B,),co,1]- Set

= XL = 0'2—0'l loa
SW = | s b=aei—o0

H(x) :J b(y)dy, = f%(a2b2+oa'b+azb/) oS '(x),
0

1
W@JV”JdG*mﬂ@+w%W+ﬁ&Mm ri(x,y) = B(e").
0
Then (see, for example, Dacunha-Castelle and Florens-Zmirou 1986):

2
mmw=aﬁ%ﬁnmww%Hw—Hm—9Q%§@l} (52)

We also set ¢,(x,y) = p,(x,x + y), so that y — ¢,(x, ) is the density of X, — X, under P,.
Recall that /; is the density of the law .47(0, s2) and h = h;, and we set

2(x,») =y<a(x) —300,()6)) +y° o) (5.3)

20(x)*

We also recall that 1 < T (the constants below may depend on 7).

Lemma 5.1. There are constants C, L > 0 such that (with g as in (5.3)):

0" Y= X[ L D)) i
Wﬁr(%)’) < Chy (v —x) 1*’ 7 ‘ + ifi+j<3, (5.4)
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’a l,qr(x V| < Ch i)+ P/ i i<3, (5.5)
| < 7 = 1g,(x,9) = (L4 Vig(x, 3/V )y i) < CHL + 0/ VO iy i (). (5.6)

Proof. H and S are C° functions, with all derivatives of order 1,2,3 bounded. Next,
V,(x,y,w) are C¢ functions of (x,y), with bounds on the functions and their partial
derivatives independent of w, hence r, are le functions and 1/r, < C. Elementary
calculations show that

9iti
Ox'9y/

Since H and S are Lipschitz and inf, “ci‘ > 0, another simple computation shows
the existence of L > 0 with p,(x,y) < Ch; ;(y — x), hence (5.4). A third calculation shows

that

y—X

l+]+[(i+j)/2:| lfl+] S 3

o Di(x ,y)‘ < Cpy(x,9) [1 +‘

o' o e
)| < Catell+ 0701 i<,

while ¢,(x,y) < Chy,(y): so we have (5.5).
Write

2
Ax.y) = Hx+y) = H(x) =3, (<S<x +3) - S -2 2>,
so that (5.2) yields

o\xX .
ql(xay) - ho’(x)\/;(y) ( ( ) rt(x’x+y)eA(> ,))'

o(x+Y)
We have [S(x+y) —S(x) — y/o(x) + 20/ (x)/20(x)*| < Cy* and |H(x+y)— H(x)—
yb(x)| < Cy?, hence

o'(x)

siotay] = V0

A(x,y) — yb(x) = y°

So if |y| < /3 it follows that
3 0'(x)
y 3
2to(x)

Next, |V,| < C yields |r,(x,x+y) — 1] < Ct. Finally |o(x 4 y) — o(x) — yo'(x)| < Cy?,
while inf, o(x) > 0, hence

A) < COP+y0/1).

e — yb(x) —

ox) |, 7w
o(x+y) T+y a(x)

Putting all these results together immediately yields (5.6). O

< Oy”
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Since [ h; ;(v)|yl?dy < quq/z, we easily deduce from (5.4) and (5.5) that

i+j o
ﬂfia,p,(x,w‘dy <CrUHIR i <3, (5.7)
X' Oy-
o' g s o
Wq,(x,y) ylfdy < C,t ifi <3. (5.8)

Recall the following well-known upper bounds, under H':

E (X, = Xol") < " El(|X, = Xy — o(X)Wi|") < Cpt”. (5.9)

Lemma 5.2. There are constants C, such that, for all t >0 and all functions f having
|£(x)| < M(1+ |x//1]"), we have

[E(f(X: = x) = E(f(e(x)W))| < C,MV1,  (5.10)
[EL(f (X, = x)) = El(f (0(x) W) (1 + Vig(x, o (x)W,/V1))| < C, M. (5.11)

Proof. We first prove (5.11). Denote the left-hand side of (5.11) by 4 = | [(¢,(x,y)—
By i) (1 + Vig(x,¥/V1))f (v)dy|. We have 4 < B+ B, where

B = Jy|<tl/3 (Qr(xvy) - ho’(v)\/;(y)(l —+ \/Eg(x’y/\/i))f(y)dy’
5= JV|>,1/3 (4:(,) = ho i (V) (1 + \/?g(x’y/\/?))f(y)dy’-

First, (5.6) yields
B< C,MtJh(,(xM(y)(l + VA < €M

Second, by (5.5) and the hypothesis H' we have hg(x)\/;(y) < Chy,(y) and
q,(x,y) < Chy,(»)(1 + y*/Lt) for some L > 0. Further, in view of (5.3) and H', we also

have |[V/ig(x, y/v1)| < Cly|(1 +y?/1); thus

B'< MCJ hy i) (L /YD (L [YI(1+ 2 /1)dy < oM.

[y|>13

These two majorations yield (5.11).
Now let 4’ be the left-hand side of (5.10). We have 4" < A4 + A", where

A" = 3 [y )1+ VDAL +3/0) < CMVE 0
Finally, we give a simple result on Riemann approximations.

Lemma 5.3. Let A" = 151" (Xi—1ym) — [0/ (X,)ds, where f is a function on R.

n i=1
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(a) If f is differentiable and M = sup. (| f(x)| + f'(x)|), then
E,(sup |47]*) — 0. (5.12)
t<T

(b) If f is twice differentiable and M = sup,. (| f(x)| + |f'(x)] + | f " (x)]),
E, sup |[A7]*) < CM?/n*. (5.13)
(<T

Proof. (a)_Set &' = [ (X) = f(X_rymds and & = — [{,1,,/(X,)ds. Then
Al =R/ — Zl,lgl. Furthermore || < M/n, and if wp(9) denotes the modulus of
contmulty of t— X, on [0,7] we have |{'| < Mw(1/n)/n. Thus sup,.r|4]| <
M(1/n+wr(1/n)), and E ((wr(1/n)?) =0 as n— oo (because wy(1/n) — 0 and
wr(1/n) < 2sup, <7 |X,| € L*(P,) under H'), and we get (5.12).

(b) If / is twice differentiable, 1t6’s formula yields &' = n/" + ¢/, where

i/n s
n = J dsj (/o) (X)W,
(i—1)/n (i=1)/n

i/n s 1

¢ = J dsJ (f'a+=f"0?)(X,)dr.
(i—1)/n i—1)/n 2

We have |k,'| < M /nand |('] < CMn™2. Thus in order to obtain (5.13) it suffices to prove

that,if B/’ = > _,7/", we have Ex(sup,<nT(B”)2) < CM?/n*. But (B!');cy is a martingale

relative to the discrete-time filtration (F;/,);cn, S0 by Doob’s 1nequallty it suffices to prove

that E.(3°7%(n})*) < CM?/n?, or even that E((n")*) < CM*/n’. But, by the Cauchy—
Schwarz inequality, we obtain

1 i/n S
B <] dE(j (f'U)z(Xr)dr) < M/, O
n ) i-1y/m (i-1)/n

6. The fractional part of a random variable

We begin with a fundamental result.

Lemma 6.1. There are universal constants Cy such that for all p > 0, and all Borel functions k
onRandf onR x [0,1) such that x — g(x,y) := k(x)f (x,y) is of class C¥ (N > 1), we have:

(R ) o R M R K

(%C—Ng(x’ u)
When k is the density of a random variable Y, the left-hand side of (6.1) is
|[E(f(Y, {%})) — E([6f(Y,u)du)|: we thus refine some old results of Kosulajeff (1937)
and Tukey (1939).

du. (6.1)
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Proof. First, let p be a C" function on [a,a + p). Taylor’s formula yields, for k < N — 1
and z € [a,a + p):

_ k N—1
(z— a) r ™) (z—wv)
= T ¢ dv,
E:O a (N-1)!
a+p —1 (+1—k a+p _ \N-k
p W)y (@a+p—2)
L Z: £+1—k)!+L ) T 9
Introduce the polynomials P, given by
. P o= (1)
Dx' =Y ———L_P(x).
(i+1)x 1;)(1'4—1—@! ()
(Then Py(x) = 1 and Py, is of degree k.) We obtain
+p
ola+py) Z P(y J o™ (u)du = 4 + B,
where
N-— ik N 041
LRI . o )
K (¥) v (a) |,
Z( S
5 Ja+/’y <N>(q))( +py—v ZP J (N)(Z) (CZ—F/)—z)kadZ
S P (N K07 | N—kp &

while the definition of P, yields 4 = 0. The existence of a universal constant C such that
the following holds for all y € [0, 1) is obvious:

a+p a-+p
at py) - ZP,C ] < o [ e wlan 62
Now set 4 = [k(x)f(x, {3})dx. We have:
(j+1)p ) 1 )
A= Z J e(u)f (u,ufp — j )du = ZJ pg(pj + py, y)dy. (6.3)
jez e jezd0
with g(x,y) = k(x)f (x, ). Also set g(x,y) = 0€g(x,y)/5x/, Gi(x) = [0g"(x,y)y'dy

and v, = [gdx [} 129 (x,)|dy. Clearly, [ &G/ (x)|dx < 4, and we assume vy < 00,
otherwise there is nothing to prove. If u, = Zjezjjﬁl)pdxf(l)P/;(y)g(f)(x,y)dy we
obtain, by (6.2) and (6.3):

0</<N-1

< CypM .

Since Py =1 we have uy = [ k(x)dox [6f (x,y)dy. If K >1, u 1s a linear combination
of the numbers J"R )dx for 0 <i</. Now, G/ and G/~' are integrable, and
= dG{ " /dx, hence IR x)dx = 0 and therefore u, = 0 if £ > 1: we thus deduce the
result O
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As a particular case, there is a constant C such that, for all p > 0, all Borel sets 7 in [0, 1]
of Lebesgue measure ¢(1) and all random variables ¥ with C' density k, we have (apply

(6.1) to f(x,y) = 1,(»)):

P({%} € 1) =10 (1 + CpJR |k’(x)|dx>. (6.4)

7. The function A

The aim of this section is to study the functions A, ,, defined in (2.7), and also to prove (2.9)
and the following estimate on the functions of (2.5):

ifi=1
(p/o)(i—1?  ifi>2.
Below we consider functions ¢ on [0, 1] x R, satisfying (as in (5.1)):

[(u, p)| < K(1+ [y]”). (7.2)

We also assume that 1/K' <o < K’ and p < K’ for some K’ < oco. When the function
o(x) is used, it is assumed to satisfy H'. The constants C below will depend only on p, K, K’
and on the constants occurring in H'.

The basic relation relates ¢;,; with ¢, and is as follows for i > 1:

Ciz1(a, pu) = E(C(o, {u+ oWi/p})) (7.3)

(note that ¢,y (o, u) = m,(u) — M1 does not depend on p). Observe that under (7.2) we
have |¢;¢| < C and féﬁﬂ/}(o—, u)du=0, so (7.3) and (6.1) with N =3, along with
k(x)=h(y —pu/o) and f(x,y) =0¢(0,y), readily yield (7.1). If we set
Ly(c,0,u) = £13p(o,u)), and since o > 1/K’, we obtain, for all p > 0 (by integration of
(7.3), and Fubini’s theorem for (7.5) below):

[li(o, pu)| < { g (7.2)

|Lip(o, pu)| < C, | Lip(o, p,u) — Lap(o,0,u)| < Cp?, (7.4)

1
Jo Ly(o, p,u)du = 0. (7.5)

Using (2.7), (2.8) and the fact that E(|n;¢(o, u)|2) < C, we deduce:
|6¢‘L/)(0-7 Ps I/l)| <C, |Az/),1£7(0—1 p)| <C. (76)

Lemma 7.1. We have (2.9), and the following (with p,(u,y) = y/o):

Lo, (0, p,u) = myp,(u) = Myp, =0, A, o (0,p) =1, (7.7)

Alﬁ‘hw”(07 p) = M(r(d}@(r) (78)
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Proof. That m,p,(u) = M, p, =0 is obvious, so 0y, (o, p,u) = W; — W;_; and thus
Lo, (o, p,u) =0 for all p > 0. Then x¢,(o,p,u) = W, and the last part of (7.7) is also
obvious. Equation (7.8) is obvious if p = 0. If p > 0 we have

61/1,<p”(0a P u) = E(d}(ua UWI)QDU(UWI)) =+ E(Wle(Ua P {u + UWl/p}))a
and thus (7.8) follows from (7.5).

Let us define Q=Qx[0,1], ¥=9%®%([0,1]), P(dw,du) = P(dw)du. If we set
(), 1) = x9(0,p,1)(@) I > 0 and (x)golse,) = (o, (), it Follows from
(2.7) and (2.8) that Aw ( ) (\(Xw)(, p| ) for all p>0. Thus (7.7) yields
Ay (o, p)/? > E((X¥)s, )(X5)o. ) = [oE(x%(0, p,u)W,)du by the Cauchy-Schwarz
1nequallty But (2.6) and (7.5) give

1 | 1
jo E(x(0, pyu) W, )du = J B((4(u, 0 W,) — M) W, )du = j E((Ypo) (W) du

which equals M, (1, ), and (2.9) is proved. O

In the next lemma we are given a family (v, ) g of functions satisfying (7.2), such that
x — 1, (u,y) is differentiable and each 9, (u, y)/0x also satisfies (7.2).

Lemma 7.2. Under the above assumptions, x — by, (0(x), p,u) is differentiable and, for
0<p< K': 5
aéwwwx(a(x),p, u)| < C. (7.9)

Pl oof. (a) Let f:R xR — R be differentiable in the first variable, with f(x,.) and
Of (x,.)/0x satisfying (7.2), and F(x) = E(f(x,o(x)W)) :Jﬁﬁh(ﬁ)f(x, z)dz. Since

h'( ) = —zh(z), we obtain by Lebesgue’s theorem:
"(x) = [h(z g x,0(x)z Ul(x)zz— x,0(x)z) |dz
P = [1) g tnoz) + 226 = Do) g

Therefore |F(x)| + |[F'(x)| < C (recall H').

(b) Applying this to f(x,y) = ¥, (u,y) gives that x — m,)h, () and thus x — M9,
are bounded with bounded derivatives. Hence g(x,u):=¢¢(o(x),u) also satisfies
lg(x,u)| < C and |dg(x, u) /x| < C.

By (7.3),
o P = 1 i X, iu+z dZ
giJrl'l/)x( (x)’ 71/{) J (x)\/;l< (x)\/i)g( 7{ })

Differentiate again under the integral sign to obtain

Sl o). ) = [ ( S w) Sl (=)dz

__ 2 2— o'(x) x,{z})dz
—|—Jh<z J(X)\/f) << a(x)ﬁ) 1) o(x) glx. {z})d




18 S. Delattre and J. Jacod

Then we can apply (6.1) twice with N = 3, taking into account the fact that [ § g(x, u)du = 0
and thus [ § 2 g(x,u)du = 0, and obtain | 2, , 19, (o(x), p,u)| < Ci ' (recall that p < K
here). Hence | 2 L1, (o(x), p,u)| < C.
Now (2.6) yields xt(o(x), p,u) = f(x,o(x) W) if we set
f(xvy) = %(“J) - Mrr(x)wx + L’l/)x(O'(X), Ps {u +y/p}) - LLZJX(O'()C), P u)
What precedes shows that the function f (hence 2 as well) satisfies the requirements of (a).
Since 6,y (o(x), p,u) = E(f%(x,0(x)W,)), the result follows from (a). O

Now we consider a sequence 1), of functions satisfying (7.2), and a sequence p,, of positive
numbers. We assume that

1, — du ® dy-almost surely, Pn — p € [0,00),
where 1) is another function (satisfying (7.2) as well, of course).

Lemma 7.3. Under the previous hypotheses, A, ., (0, p,) — Ay, (0, p).

Note that by Lemmas 7.2 and 7.3, (0, p) — Ay, 4(o, p) is continuous on (0, c0) x [0, 00).
By the bilinearity of (¢,v) — A, (0, p) and the polarization principle, A, , is also
continuous on (0, 00) X [0, 00) if ¢ and ¢ satisfy (7.2).

Proof. (a) Consider (Q,%,P) as defined in the proof of Lemma 7.1, and x,(w,u) =
XUn(0, py, u)(w). We have seen that A, ,, (0, p,) = E(x}). By (2.6), we have x,, = f, + k;,,
where

fﬁ(wa u) = %(U’UWl (w)) - M, — L%(@ Pns u)
+ L%(U, Pn> {u + UWI (w)/pn}) - L1/1(0, P {u + JWI (w)/pn})a

kn(wa u) = L¢(07 P {u + oW, (w)/pn})
(b) From (2.3) we clearly have that m,1, — m 1 du-almost surely, hence M 1), — M
and ¢(v,(0,.) — £19(0,.) du-almost surely. Then (7.3) yields, for i > 1:

éiJrlwn(o'a Pn> Ll) = J P h (an ) len({u + Z})dZ.
cr\/z CT\/,"
If p> 0 and if u is fixed, then ¢;¢,({u+z}) — £1p({u + z}) for dz-almost all z, hence
b1, (o, ppyut) — L 10(o, p,u). Using (7.1) and Lebesgue’s theorem, we deduce that
Ly, (o, pp,u) — Lip(o, p,u) for alluif p > 0, and also for p = 0 since Ly (o,0,u) = ¢1¢(o, u).
By Egoroff’s theorem, for all ¢ >0 there is a Borel set 4, in [0,1] such that
f(l) 1, (u)du < e and n, = sup,¢ 4_|Lv, (0, py, u) — Lip(o, p,u)| — 0. Then if

f(w’ u) = 1/](% UWI (w)) - MH/) - L’l/J(O', Ps “)7 (710)

for all u we have lim sup,, | £, (w, u) — f(w, )1y + oW, @)/} ¢ 4.3 = O P-almost surely. Since
(6.4) yields P{u+ oW, /p,} ¢ A.) < Ce and since | f,(w, u)| < C(1 4+ |W,(w)|?), and since
e > 0 is arbitrary, it follows that

fo—f  inL2(P). (7.11)
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() Now we suppose that p>0. We have A, (0,p) = E(x?), where
x(w,u) :== xp(o, p,u)(w), and x = f + k, where k(w,u) = Li)(o, p, {u + oW (w)/p}) (use
(2.6)). In view of (7.11) and |k,| < C, the result will follow if we prove

E(k;) — E(k?),  E(k,f)— E(kf). (7.12)

For the first property above, observe that

1
2y _ Pny (2Pn 2
B?) = | au | 220(2) Lton . u-+ =),
which clearly converges to E(k?). Similarly E(Ly(c, p, {u+ oW, /p,})) — E(Li)(o, p, {u+
oW1/p})), soin view of (7.10), in order to prove the second property in (7.12) it is enough to
prove that for all u:

E(I/)(u’ UWl)Lz/J(U? Ps {u + UWl/pn})) - E(l/)(”a UWl)L¢(Ua P, {LI + UWl/p}))' (713)

For all ¢ > 0 there is a Cp, function ¢, on R such that E(|¢)(u, cW;) — @.(cW)]) < e. We
also have

B0 W) Lol {u+ oW pa))) = | 225(22) o (em) Lo p fu + 2))dz,
which converges to E(p.(cW;)Ly(o,p,{u+ cW;/p})) because ¢, is continuous and
bounded and Lt is bounded. Since € > 0 is arbitrary, we deduce (7.13), hence (7.12) and
the lemma is proved when p > 0.

(d) All that then remains is to consider the case p=0. Recall that
Lip(o,0,u) = myap(u) — My, hence f(w,u) = p(u,c W (w)) — myip(u) by (7.10), and a
simple computation shows that E(f?) = M, (¢?) — f(l)mgw(u)zdu. Using (6.1) for N =1
and for the functions k(x) = h(x — up,/o) and f(x,y) = p(x — up,/c)L(0,0,y)" (where
¢ € Clandi=1,2) yields

E(SD(JWI)Lw(O—a Oa {Ll + UWI /pn})l) - E(QD(O—WI)) JO L1/J(U, an)[dy‘ < Cpn — 0. (714)

Since [ Li(0,0,y)*dy = [y m,p(u)*du — (M,4p)*,  we deduce that E(k)) —
fémgqb(u)zdu — (M, )% In view of (2.8) and (7.11), it remains to prove that
E(k,f) — 0. Because of (7.14) for i = 1 and ¢ = 1 and from (7.5) (valid also for p = 0),
it remains to prove that E(¢(u, o W) La)(0,0,{u+ cW;/p,})) — 0. Exactly as in (c), we
can replace ¥ (u,.) by a C} function ¢_, and (7.14) for i = 1 and ¢ = ¢_ and (7.5) give the
result. O

8. Some auxiliary results

We assume below that the hypotheses #’ and K, hold for r = 1 or r = 2. In addition to
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(2.2) and (2.3), for all functions ¢ satisfying (5.1) for i = 1 we set
1
M) = [aae e Vidy, M0 = | myelxwde

myp(x) = m(x, {x/a,}) = Myp(x),  mp(x) =mp(x,{x/a,}) — Mep(x).
In the following all constants, denoted by C, may depend on 7', on K and p in (5.1), on the
coefficients a, 0 and on the sequence (a,).

(8.1)

Lemma 8.1. Under K, we have the upper bounds

i

‘8’ Myfu| + a ol Tl fl+mf| < € for0<i<r (8.2)
|mnfn —-—m 11| + |mnf;1 - ﬁ’l}%‘ S C/\/ﬁ (83)
|y, = mfy, = mf,/\/n| < C/n, (8.4)

where f, is given by (2.12).

Proof. Property (8.2) readily follows from K, and (5.8). Observing that mf,(x,u) =
S oot n)fa(x, 4, y1/n)dy, (8.3) and (8.4) follow from (5.10) and (5.11) applied to the

function f(y) = f,(x, u, yv/n). O
Next we set for i,n,k € N*:
:f;z(X(i—l)/na{X(i—l)/n/an}a\/ﬁ(Xi/n - /n) - izfn( /n) (85)
i+k—1
Z 77/ |/p1/n - (77/ |/ /n)) (86)

Jj=i

n —1/2 ZN (87)

Due to K/, along with (5.9) and (8.2), every /' (k) is square-integrable, hence M" (k) is a
locally square-integrable martingale on (€, 7, (% [u)/u): >0 Px)-
For further reference, we also deduce from (8.6) and (8.7) that

pi' (k) = i + mfo(Xign) — mufu(Xi1)/m) _Jp(kfl)/n(X( 1)/ns ) nfn(v)dy

k-2
+ Z J(pj/n(Xi/my) - p_//n(X(ifl)/nvy))mnfn(y)dyv (89)
Jj=1

k=2

[n1]
M (k) =n""" Zm" +n ' (myﬁ(X[m]/n) — muf,(Xo) + Z J(Pi/n(X[m]/my)

i=1 i=1
[nf]—1

_pi/n(X07 mrJrn J Pk— l/n I/nvy)mnfn(y)dy> (810)

i=0
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We presently give some estimates of y;'(k) and M/' (k). We first set
8" (k, x) = Ex(|pf (b)), (8.11)

[n?]
H'(k) = M () =™ . (8.12)
i=1

Lemma 8.2. We have, for j < nT:

~ C/\j under K|
Jpj/n(va’)m; (r)dy < , , (8.13)
C/j under K,
_ ., n
i) =yl sty < =155 wnder K (8.14)

Proof. For (8.13) it is enough to apply (6.1) to k(y) = p;/,(x,y) and f (v, u) = m,f,(y,u)—
M., f,(y) with N=1 (N =2) and p = «,, and to use (5.7) and (8.2) and the facts that
sup(a,/+/n) < oo and j < nT. Observing that

. e i
i) =t opmfeay = [ a2 [ pytzymds .

we similarly deduce (8.14) from (6.1) with k(y) = O%pj/n (z,y) and f as above and N = 2, by
using (5.7) and (8.2) again. O

It follows from (8.2), (5.9), (8.9) and Lemma 8.2 that

Cck? under K|

} (8.15)
C under K,.

2 <k <nT = El(luf (0)) < {

By (5.9), (8.9) and Lemma 8.2 we also have, under K; and for 2 < k' < k < nT, that
Eo(|uf' (k) = ni (k")) < Ck™2 + k"2 + k") < /I,
and this, together with (8.13) and the Cauchy—Schwarz inequality, gives

2<k'<k<nTand Ky = [6"(k,x) — §"(k',x)| < C/Vk'. (8.16)
Similarly, (8.10), (8.2) and (8.13) yield
/
2 <k <nT = 1K) <4 CVE under K1 g 1)
C(v/n/k + (logk)/+/n) under K,.

Finally, recalling (2.7), we prove the following lemma.

Lemma 8.3. Under K; and if (0, y) = fu(x,u,p), we have, for 16 < k < nT:
16 (e, X) = 67z, (0(x), By {x/ 0 })| < CTE. (8.18)
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Proof. Recall the notation used in (8.1) and (2.3), and also set
m' n(xa )C,) = I’an(x, {x,/an}) - an(x) = ma(x)f;t,x({x,/an}) - Ma(x)fn.x-

Note that mf,(x) = m'f,(x,x). From the proof of Lemma 7.2, x — m'f,(x,x') has a
bounded derivative, hence by (8.3):

i £, (¢, x7) = i fo(x )] < C(n™' % 4 |x = x 7). (8.19)
Let us set k' = [k1/4], hence 2 < k' < k < nT. We also set

k'=2

b (x) = mfy(x) + 3 jp,-/n<x,y>m<y>dy,

Jj=1

)
i) = xS [yl = ' (. p)d.

=
Then (8.9) can be written as
pt' (k") =i + b (X1 /) — b (Xo)- (8.20)
Since m'f;, is bounded, we deduce from H’ that
Uh(,(x)\/jﬁ(y - x')n_a'fn(x,y)dy - Jhn(x’)\/j/_n(y - x/)ﬁl/fn(x,y)dy‘ < C|x - x,|'
Next, (5.10) and (8.2) yield
[ im0 = [0, 0 = 3ty | < €V

dy < |x — x'| + Cy/j/n, hence (8.19) yields

Finally, fh(T(x,)\/j/—n(y —x)y—x

ha(x’)\//'/_n(y - xl)|mnfn(y) - m/fn(xvy”dy < C(\/]/_I’l+ |x - x/|)'

Putting all these upper bounds together, and using (8.19) once more, we obtain
b (x") = efi(x,x")] < C(k™Pn ' + K/ |x — 7). (8.21)

Wealsoset 77" = f,,(Xo, {Xo/ v, }, vVr(Xin — Xo)) — Mf,(Xy), so that, in view of (8.3) and
(8.5), we have |n' — 7"| < C/+/n. Therefore, if

A" (k") = 7" + i (Xo, Xy jn) — i1 (Xo, Xo), (8.22)

we deduce from (5.9), (8.20) and (8.21) that E. (| (k') — a"(k")[*) < C(k"*/n+k'*/n) <
Ck"/n < Cn™'*, because k' < Cn'/*. This, the Cauchy—Schwarz inequality and the
second part of (8.15) yield

E(luf (k)]?) = Eo(|a" (k")) < €', (8.23)
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We now consider a function 1 on [0, 1] x R satisfying (7.2). Using the notation (2.4) and
(2.5), we set Ly o) = S %_, £, and
M¢(kl)(0a P u) = 7711/}(0-7 P u) + Lk’—lq/J((L P {Ll =+ UW] /P}) - L]glﬁ(O', P 14) (824)
Since |Ly(a, p,u) — Lyip(o, p,u)| < C(1+ (p/o)?)k’~"* by (7.1), we obtain

X0, p,u)| < lb(a, p,u)| + C(1 + (p/0)’),
XV (o, p,u) = wib(k') (o, p,u)| < C(1+ (p/) k"2,

In particular,

165,0(0, psu) = E(lo (k") (o, p,u) )] < C(1+ (p/0) )k"1/2. (8.25)
We now fix n and x, and set ¥(u,y) =/f,(x,u,y), 0 =o0(x), p=p0, Note that
511,0(0, P u) = ml.f;1(xa anu) and EH—IQZ)(O—? P u) = E([HZJ(O’, Py {u + UWi/p})) = J‘ha(x)\/,'/_,,
(z — au)m'f,(x,z)dz. Hence ¢} (x,x") = Ly _19(0, p, {x"/a,}) and (8.22) yields that,
P -almost surely,
ﬂn(k,) = w({x/an}, ﬁ(Xl/n - X)) + Lk’flw(0-7 P {Xl/n/an}) - Lk“/)(o—v P {X/Oln})

In other words, ii"(k') = ¢,(X;/,) for a function ¢, satisfying |¢,(y)| < C(1 + (yv/n)?)
and (5.10) shows that if "" (k") = ¢,(x + o(x) W) ,,) we have

[E(Ia"(k")1*) — E(la"" (k")) < C/v/n. (8.26)

But by (8.24), the variables p(k') (o, p, {x/ca,}) under P and ji'"(k') under P, have the
same distribution: then a combination of (8.23), (8.25) and (8.26) gives

16" (k" x) = &, s, (0(x), B {x/B, 1) < CO"' 2 407 1F)
Using (8.16), along with k” = [k'/4] and k < nT, gives the result. d

9. Proofs of the main theorems

In this section we prove the theorems of Section 2 and Theorem 3.4. As said in Section 5, we
can and will assume that the hypotheses H' and K, are in force. We also use the notation of
Section 8: 7/, p'(k) and M, (k) of (8.5)—(8.7) and H/ (k) of (8.12). We set

[n1]

ZMf;(qu)/n)v

il ]
Ul ==Y Mf(Xo-nm), U =-
ni= ni
B 1 [n1]
U,”:Z anﬂ(X(Fl)/n),

i=

so that we have, for all k:
Vin,f,) = U" = M"(k)/\/n+ (U" = U") = H"(k)/v/n

9.1
Va(V(n.f,) = U") = M"(k) + U" +Vn(U" = U" = U"//n) — H" (k) .
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Proof of Theorem 2.1. We assume K| and take k, = [n'/%].
Since M"(k,) is a square-integrable martingale, we have by Doob’s inequality and
expressions (8.7) and (8.15):

nT
E(sup | M} (k,)|”) < 4E.(|M7(k ZE (Juf (k) Py < €',

t<T 171

Expression (8.17) yields |H! (k,)/n| < Cn~"/%, and (8.3) yields sup, -  |U — U?'| < C/+/n,
so that by (9.1) we obtain

sup [V(n.f,), = Ul =0 inL?(Py). 92)

t<T

Now, (8.2) and (5.12) imply that sup,. 7 |U; — [ Mf,(X,)ds| — 0 in L*(P,). We can
easily check from (2.2) (using K| again) that Mf, — Mf pointwise, and |Mf,| < C,
hence we also have sup, 7 |U; — [ Mf(X,)ds| — 0 in L?(P,). This and (9.2) yield the
result. O

Remark 9.1. Supose that K{ holds, except that the sequence f, does not converge to a limit
f. The previous proof for (9.2) remains valid.

Proof of Theorem 2.2. We assume Kj and take k, = [n/%].

(a) In view of (8.2) and (5.13), the processes /n(U; — [ o Mf,(X,)ds) converge in law
to 0, so it is enough to prove the stable convergence in law of f( (n,f,) — U"). By
(8.4), |vu(U! — U — Ut /y/n| < C/v/n, while by (8.24) we have |H}'(k,)| < Cn™'/*. By

(5.14), sup,<T|U, jOan ,)ds| — 0 in L*(P,), and we deduce that sup,.s|U"—
joMf J)ds| — 0 in L*(P,) exactly as in the previous proof. Therefore,

~ — ~ K ~
sup |Uy' + vn(U/' = U/ = U/ [v/n) + H] (k,) — JO Mf(X)ds| =0 inL*(P,).

(<T
It is known that if a sequence of processes Z" converges stably in law to some limit Z and
if another sequence of processes Y” converges locally uniformly in probability to Y, then

the sums Y” + Z" converge stably in law to Y + Z. Thus, in view of (9.1), it remains to
prove that (with the notation of (2.13))

M"(k,) — J Rf(X,)dW,+ B’ stably in law. (9.3)

(b) The process U of (9.3) is a martingale on an extended space, which is characterized by
its brackets

B, = (U W), = L RI(X)ds, €= (U, U), = jo AN (X Bds  (94)
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(use (2.13)). On the other hand, if W}' = W),;,,, both processes W" and M"(k,) are square-
integrable martingales with respect to the ﬁltratlon (Z 1nijn) >0, With brackets

[m

B == (M"(k, ZE)((, 1/ (et (K le/n 9.5)

[nt

Ct” = <Mn(kn) ZEX )/n Ml n ) (96)
1 =1
Now, following Genon-Catalot and Jacod (1993, Section 5.c), as soon as the following
convergences in P -probability (for all 7) hold:

[n1]
Bl =B, C'—C, n?Y By (uf(k,)")—0, 9.7)
i=1
we have convergence in law under P, of the pair (M"(k,), W") to the pair (U, W), where U
is as in (9.3). Since W" converges locally uniformly in time for all w to W, we also have
convergence in law of (M"(k,), W) to (U,W), and thus E (®{M"(k,))¥(W)) —
E.(®(U)¥(W)) for all continuous bounded functions ®, ¥ on the Skorokhod space
D(R,,R). But any bounded random variable Z on (Q, % ., P,) is the L'-limit of a
sequence of variables of the form W,(W) with ¥, continuous, uniformly bounded in p: it
readily follows that E (®(M"(k,))Z) — E.(®(U)Z), that is we have (9.3).
Due to (8.15), the third expression in (9.7) is smaller than C/n, so it remains to prove the
first two convergences in (9.7).
(¢) With the notation of (8.11), we have C/ Z l[”_fl 6" (ky, X(i—1y/n)- Setting

5" (x,u) =0, + (0(x),B,,u), we can apply (8.18) to get

[n 1]

|C/ ——25 iy AX iyl ) < Cn R
1*1

Next, (7.6) and (7.9) show that the functions (x,u,y) — 5"()6, u) satisfy K7, except for the
convergence of " to a limit, and M6"(x) = A( £,,/,)(x,3,) by (2.2), (2.7) and (2.11). So
Remark 9.1 implies that

[
Z (X(i—1y/m AXi—tyn/ n}) — A(f;nﬁ,)(X(i—l)/mﬂn))‘ —0

=1

sup|—
(<1

in L?(P,). Finally, the functions (x,u, y) — A(f,,f,)(x, 3,) also satisfy K/, with the limiting
function (x,u,y) — A(f,f)(x,3) by Lemma 7.3 and (2.11). Hence Theorem 2.1 implies
that

[r1]

: ZA 117ﬁz (i— l)/naﬂn) - JO A(f?f)(Xwﬁ)ds

sup |— — 0

t<Tn

in LZ(PX). Therefore the second convergence in (9.7) takes place.
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(d) Let us denote by ;' (k) the variable defined by (8.6), with the function f, substituted
by f'(x,u,y) = y/o(x) (the stationary sequence (f') also satisfies K,, with possibly different
constants K, p), and set

1 [n1]

Bl =2 B, (0l (k)i (k).
i=1

n
Denote also by C™" (or C™") the processes defined by (9.6), except that f, is substituted by

fi=f+f (ot fy =f,—fN. U fr=f+f"and f~ =f—f', (b) above implies that
Co" = [GA(S*,fF)(X,,B)ds in  P.-probability. Now, A(f.f')=3(AU /")~
A(f7.f7))and B" =1(C™" — C"), so we deduce that

- t
B! — J A(f,.f)(X,,8)ds  in P -probability.
0

Since A(f,f")(x,8) = Rf(x) by (2.11) and (7.8), if we prove that

B! —B'—0 in P.-probability, (9.9

we will have the first convergence in (9.7), and Theorem 2.2 will be proved.

() With f’ in place of f,. we get n'=n1"—=E.(%'|% 1)), where
V' = V(X = Xi—ym)/o(X—1yyn)  (see  (8.1) and (8.5). Therefore jif(k,) =
A1 = Ey, (31). Then (3.9) yields first [E,(v/)] < Cv/ and then E (| (k,) — Vil ]') <
C/n. Using (8.15), we deduce that

|Ex(/1'{1(kn)ﬂln(kn)) - Ex(/f“{1(kn)\/’—lWl/n)‘ < C/n
This readily gives (9.9), and we are done. O

Proof of Corollary 2.3. Since Mf,, — Mf and \Mf;| < C (see the previous proofs), both
processes [ Mf,(X,)ds and %Zl@l Mf,,(X(,-,l)/,,) converge locally uniformly in time, in
P, -probability, to the process [ Mf(X,)ds, and the result immediately follows from
Theorem 2.2. U

Proof of Theorem 3.4. (a) As in Section 5, we can and will assume that in (3.1) the
constants C,=C, r,=r do not depend on g¢. Set v,(x)=T¢p,(x,3,) and
w,(x) = T, (x, 3,). Due to Theorem 3.2, we only have to show the following convergences
in P -probability, locally uniform in #

[nt]

w2y a(X1yym) = 0a (X + @ /2)) = 0, (9.10)

i=

=N (X)) — wa(X() ) = 0. (9-11)
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By the change of variable z = yo(x) in (3.5), we see that w, is C' with |w,,(x)| < C, hence
[y (x) —w (XN < C/y/n and (9.11) is obvious. Similarly, (3.4) yields that v, is C>
with |v?(x)| < C for i = 0, 1,2, hence by Taylor’s formula

[0 () = 0a (™) 4+ 0/2) = au({x/ i} = 1/2)v3(x)| < C/n.

If A} = Z i ({X(,-_Wn/a”} — 1/2)v,;(X(i_1)/n), to obtain (9.10) it is enough to show that
A} — 0 locally uniformly in P,measure. Observe that A} = V(n,f,),, where
fu(x,u,y) = (u—1/2)v,(x) satisfies K| except for the convergence of f, to a limit. In
view of Remark 9.1, we have, by (9.2):

[nd]

sup A" ——Z Mf,(Xi 1) =0 inL*(P,).
i=1

It remains to observe that Mf, = 0 (see (2.2)), and we have the result.

(b) Suppose now that ¢(x,y) = ¢(x,—y). In view of Corollary 3.3, the limiting process
for (3.9) is as described after (3.10). The sequence @,(x,y) = ¢,(x + «,/2,y) also satisfies
L, with the same limit function ¢, so we only have to show that the difference between
(3.10) for ¢, and (3.9) for ¢, goes to 0 in P -probability, uniformly in time.

First, L, implies that ¢ is C' in the first variable, and we have ' (x, y) = ¢'(x, —y), so the
same change of variable as in the proof of Corollary 3.3 readily shows that
To'(x,p) =1 Fgo '(x,p). We also have @, — ¢’ pointwise, so L, again yields that
Len(x,6,) — 1 I‘go,,( —a,/2,8,) converges locally uniformly in x to Ty¢'(x,3)—
IT(x,8) = (). Then

[nt]
_Z(F(pn /naﬁn)_ FWH( ((104,,1) n+%aﬁn>) -0

i=1

locally uniformly in 7. So we can replace the process (3.9) by

(- 220) (3 ,ﬁn)) 0.12)

Now, Taylor’s formula, (3.4) and L, yield

1 [n1]
\/’2 U(nv @n)t -

i=1

[r(6n =5t en) (x.p) = Dn(x,p)| < g, )y

for some locally bounded function g. So we can replace the process (9.12) by

nt]

\/ﬁ< @) Z Fwn( X+ %)) (9.13)

It remains to observe that the processes (9.13) and (3.10) are the same. O
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