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1. Introduction

Let X � fXt : t 2 Tg be a stationary symmetric �-stable �S�S� process, where 0 < � < 2

and T � Z or R. It is well known that X has a stochastic integral representation

fXt; t 2 Tg �
d

�

S

ft dM; t 2 T

� �

; �1:1�

where M is an independently scattered S�S random measure on some Lebesgue space

�S;B; �� and f ftgt2T is the orbit of a one-parameter group fUgt2T of linear isometries on a

subspace of L
�
�S;B; ��, i.e. ft � U

t
f for some f 2 L

�
�S;B; �� (see Hardin 1982; or

Samorodnitsky and Taqqu 1994). The symbol `�
d
' means `equal in distribution'.

Furthermore, it was shown in RosinÂ ski (1995) that one can choose ft s of the form

ft � at
d�� � �t�

d�

� �

1=�

f � �t; t 2 T; �1:2�

where at : S ! fjz j � 1g �at 2 fÿ1; 1g if X is real) satis®es the equation at1�t2 �

at2 � at1 � �t2 �-almost everywhere for every t1; t2 2 T, �t : S ! S is a non-singular ¯ow

on �S;B; ��, and f 2 L
�
�S;B; ��. It is easy to see that in the case T � Z one has �t � V

t
, for

some non-singular map V : S ! S, and the at are determined by a1 and V .

Since the theory of non-singular ¯ows on measure spaces is so well developed, an obvious

direction of research for probabilists with an interest in stable processes is to study the way

the properties of the ¯ow determine the properties of the corresponding stable process as

well as to identify ¯ows which generate speci®c classes of stable process. Our goal here is to
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relate the ergodic properties of the stationary stable process to the properties of the

underlying ¯ow.

The study of ergodic properties of stationary stable processes (in fact, of general in®nitely

divisible processes) begins with Maruyama (1970), who showed that the mixing property

for such processes is equivalent to weak convergence of the two-dimensional distributions

of the process to a limit with independent marginals, when the time-lag increases to in®nity.

Apparently unaware of this work, Cambanis et al. (1987) suggested another, somewhat

more complicated, set of necessary and su�cient conditions for mixing (and ergodicity) of

stationary stable processes. Treating ergodicity has become easier since the result of

PodgoÂ rski (1992) showing that ergodicity and weak mixing are equivalent. Finally,

Gross (1994) has simpli®ed the necessary and su�cient conditions for mixing of stationary

stable processes even further by showing that for those one does not even need to check all

of Maruyama's assumptions. It is the work of Gross that served as the starting point for the

present research. One should mention that Gross's results for stable processes have been

extended to the general stationary in®nitely divisible processes by RosinÂ ski and _Zak (1995).

Obviously one can assume that the smallest set supporting all ft s in (1.1) is S, i.e.

supp f ft : t 2 Tg � S �ÿ a:e: �1:3�

Otherwise, we can just reduce the space of integration accordingly. Assumption (1.3) will

simplify our formulations considerably, so it will be in e�ect throughout this paper, unless

mentioned otherwise.

Any stationary S�S process can be decomposed in the form

X�
d
X

1
� X

2
� X

3
�1:4�

(see RosinÂ ski 1995), where X
1
, X

2
and X

3
are mutually independent stationary S�S

processes such that X
1
is a superposition of moving averages (or a mixed moving average

process), X
2
is harmonizable and X

3
does not admit moving average or harmonizable

components. The process X
1
is generated by a dissipative ¯ow, while the other two

processes in the above decomposition are generated by in®nitely recurrent ¯ows. Further-

more, the harmonizable process X
2
is essentially generated by the identity ¯ow. Process X

3

itself has a stochastic integral representation of the form (1.1)±(1.2) and the ¯ow f�tg in this

case is in®nitely recurrent and does not have ®xed points (RosinÂ ski 1995). It turns out that

X
1
is always mixing (Surgailis et al. 1993) and X

2
is never mixing, provided X

2
6� 0

(Maruyama 1970). In fact, this corresponds perfectly well to our intuition, because the fact

that mixed moving averages are generated by dissipative ¯ows implies that the observations

of the process X
1
at remote instances of time are generated by integration over nearly

disjoint sets ± and the random measure M in (1.1) is independently scattered. Therefore,

one feels that these observations are nearly independent, and so expects mixing. On the

other hand, in®nitely recurrent ¯ows produce processes for which integration over the same

sets plays an important role for time-points far apart, and so the process `remembers' much

from its past. The extreme case is, of course, that of the identity ¯ows, and that is why it is

not surprising that harmonizable processes are not even ergodic ± the latter is true in every

in®nitely divisible non-Gaussian case by a result of Maruyama (1970).

By the same token, one would not expect that many of the processes of type X
3
were
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mixing. Indeed, Gross (1994) has shown that a large class of processes of this type

consisting of the so-called doubly stationary process with ®nite control measure � are

not mixing (nor ergodic). This is clear also because such processes share with the

harmonizable ones the property of being a non-trivial mixture of stationary processes

(via their series representation), and so they cannot be ergodic. However, this implies that

the class of mixing S�S processes of type X
3
is rather small, and until now it was not even

known whether or not this class was not empty, for the only examples of mixing (or ergodic)

S�S processes known so far were superpositions of moving averages, i.e. processes of

type X
1
.

In this paper we introduce a new class of mixing S�S processes, consisting of processes of

type X
3
. This class is obtained by considering Markov ¯ows f�tg in (1.2) with in®nite

stationary initial distributionsm (see Section 3). A typical example of such a ¯ow is the shift

transformation for a symmetric recurrent random walk on R starting from a point chosen

according to the Lebesgue measure. This establishes an interesting connection between

Markov and stable processes. In the case of recurrent Markov chains in®nite invariant

measures correspond to null recurrence, or Markov chains for which expected return time

to the initial state is in®nite. We will see that, in general, a conservative ¯ow corresponding

to an ergodic stable process must take an expected in®nite time to return to sets of ®nite

positive measure.

In Section 2 we will show that mixing and ergodicity of S�S processes are entirely

determined by properties of the ¯ow f�tg in (1.2). We identify these properties and

provide some conditions characterizing mixing and ergodicity in terms of �t and �, which

complement conditions in Gross (1994).

2. Conditions for mixing and ergodicity

Recall that a stationary process X is said to be ergodic if

lim
�!1

1

�

�

�

0

P�A \ S
t
B� dt � P�A�P�B�;

for any A;B 2 FX, where FX is the s-®eld generated by X and S
t
is the corresponding shift

transformation (in discrete time, the integral is replaced by a sum). X is said to be mixing if

lim
t!1

P�A \ S
t
B� � P�A�P�B�;

for any A;B 2 FX. X is said to be weakly mixing if the above limit holds with t restricted

to a set of density one which may depend on A and B. Alternatively, X is weakly

mixing if

lim
�!1

1

�

�

�

0

jP�A \ S
t
B� ÿ P�A�P�B�j dt � 0

for any A;B 2 FX, which shows that weak mixing is an intermediate property between

ergodicity and mixing (see Petersen 1983). However, for S�S processes ergodicity and weak

mixing are equivalent by PodgoÂ rski (1992). It is also known that there are non-mixing
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ergodic (and thus weakly mixing) stationary S�S processes (see Gross and Robertson

1993).

In this section we will establish a one-to-one correspondence between ergodic properties

of a stochastic process X and certain asymptotic properties of the ¯ow f�tg in (1.2). We will

need the following de®nitions. A measurable ¯ow f�tgt2T on a ®nite measure space

�S;B; �� is said to be asymptotically singular if, for all � > 0, there is a value t0 such that

for all jt j > t0, there exists an A � A�t; �� 2 B such that

��A� < � and ���t A� > ��S � ÿ �: �2:1�

It is trivial that an asymptotically singular ¯ow is not �-preserving; moreover, there cannot

be any ®nite �t-preserving measure � equivalent to �. The usual tool in a study of

singularity/regularity of measures is the Hellinger integral. This is de®ned for ®nite

measures � and � by

H��; �� �

�

S

�������������

d�

d�

d�

d�

r

d�; �2:2�

where � is a ®nite measure such that �� � and � � �. A convenient (but somewhat loose)

way of writing (2.2) is

H��; �� �

�

S

������������

d� d�
p

:

It is easy to show that f�tgt2T is asymptotically singular with respect to � if and only if

lim
j t j!1

H��; � � �t� � 0: �2:3�

We will need the following characterization.

Proposition 2.1. Let X � fXtgt2T be a stationary S�S process with representation f ftgt2T

satisfying (1.1). X is mixing if and only if for some (equivalently, any) � 2 �0; 1�,

lim
t!1

�

S

j f0j
��
j ftj

��1ÿ� �
d� � 0: �2:4�

Proof. We start by recalling that X is mixing if and only if

�f f0 2 K; j ftj > �g ! 0; �2:5�

for every compact setK � R bounded away from 0 and � > 0. This follows from the general

description in Theorem 5 of RosinÂ ski and _Zak (1995), and in the stable case it has been

known since a result of Gross (1994, Theorem 2.7).

Suppose that X is mixing. We have for any � 2 �0; 1� and � > 0 (to be chosen later)
�

S

j f0j
��
j ftj

��1ÿ� �
d� �

�

j f0j 2 ��; �
ÿ1
�; j ftj>�

j f0j
��
j ftj

��1ÿ� �
d��

�

j f0j 62 ��; �
ÿ1
�

j f0j
��
j ftj

��1ÿ� �
d�

�

�

j f0j 2 ��; �
ÿ1
� ; j ftj � �

j f0j
��
j ftj

��1ÿ� �
d�

� I1 � I2 � I3:
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By HoÈ lder's inequality,

I2 �

�

j f0j 62 ��; �
ÿ1
�

j f0j
�
d�

� �

� �

S

j ftj
�
d�

� �

1ÿ�

;

hence, by choosing � su�ciently small, we make I2 small uniformly in t. Since

I3 � ���
ÿ1
�
��1ÿ� �

�

S

j f0j
�
d�;

we can choose � small to make I3 small uniformly in t. Having ®xed � and �, we obtain by

HoÈ lder's inequality and (2.5),

lim sup
t!1

I1 � lim
t!1

�

j f0j 2 ��; �
ÿ1
� ; j ftj>�

j f0j
�
d�

� �

� �

S

j ftj
�
d�

� �

1ÿ�

� 0:

This completes the proof of (2.4). To prove the converse, we notice that Markov's

inequality and (2.4) imply (2.5) for t!1. Since
�

S

j f0j
��1ÿ� �

j f
ÿtj

��
d� �

�

S

j f0j
��
j ftj

��1ÿ� �
d�;

the same argument gives (2.5) when t! ÿ1. The proof is complete. h

Remark 2.1. Alternatively, one can derive Proposition 2.1 directly from Theorem 2 of

Cambanis et al. (1987). However, that way seems to be more tedious than a simple use of

(2.5) above.

The following theorem characterizes the ¯ows on ®nitemeasure spaces generating mixing

S�S processes.

Theorem 2.1. Let X � fXtgt2T be a stationary S�S process with representation (1.1)±(1.3).

Assume ��S � <1. Then the following conditions are equivalent:

(a) X is mixing;

(b) f�tgt2T is asymptotically singular.

Proof. Since � � �t and � are mutually absolutely continuous, we can take � � � in (2.2),

thus

H��; � � �t� �

�

S

d�� � �t�

d�

� �

1=2

d�:

We will use Proposition 2.1 with � �
1

2
. Since for every r; t

�

S

j fr fr� tj
�=2

d� �

�

S

j f0 ftj
�=2

d�;

we obtain from (2.4)

lim
t!1

�

S

j fr ftj
�=2

d� � 0 for each r: �2:6�

369Classes of mixing stable processes



By (1.3) and the ®niteness of �, for every � > 0 there exists a ®nite set t1; . . . ; tn 2 T and

� > 0 such that

��Sn [ fj fti j > �g� < �: �2:7�

Consider

g �

X

j fti j;

and

gt �

X

j fti� tj �

d�� � �t�

d�

� �

1=�

g � �t:

From (2.6) we obtain

lim sup
t!1

�

S

jggtj
�=2

d� �

X

i; j

lim
t!1

�

S

j fti ftj� tj
�=2

d� � 0:

Let A � fjg j > �g; by (2.7), ��S ÿ A� < �. We obtain

H��; � � �t� �

�

A\�ÿ1
t
A

d�� � �t�

d�

� �

1=2

d��

�

Ac

d�� � �t�

d�

� �

1=2

d��

�

�ÿ1
t
Ac

d�� � �t�

d�

� �

1=2

d�

� �
ÿ�

�

S

jggtj
�=2

d�� 2��A
c
�
1=2

��S �
1=2

:

Thus

lim sup
t!1

H��; � � �t� � 2��S �
1=2

�
1=2

;

proving (b) after letting � go to zero.

The converse is easy. For any M > 0 we have

�

S

j f0 ftj
�=2

d� �

�

j f0j>M

j f0 ftj
�=2

d��

�

j f0 ��tj>M

j f0 ftj
�=2

d��M
�

�

S

d�� � �t�

d�

� �

1=2

d�

� 2

�

j f0j>M

j f0j
�
d�

� �

1=2 �

S

j f0j
�
d�

� �

1=2

�M
�

�

S

d�� � �t�

d�

� �

1=2

d�:

Taking M su�ciently large and then letting t!1 we prove (2.4), and so (a). h

Remark 2.2. Assumption (1.3) is not needed for the implication �b� ) �a�: asymptotic

singularity gives mixing.

Despite the fact that one can always choose a representation (1.1) with ®nite measure �,

in certain cases the natural representation for an S�S process involves an in®nite measure,

and so it is useful to have conditions for mixing when � is arbitrary.

Theorem 2.2. Let X � fXtgt2T be a stationary S�S process with representation (1.1)±(1.3).

Then the following conditions are equivalent:
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(a) X is mixing;

(b) for every A � S of ®nite measure �,

lim
t!1

�

A\�t A

d�� � �t�

d�

� �

1=2

d� � 0;

(c) there exist Ak % S such that for each k � 1,

lim
t!1

�

Ak \�t Ak

d�� � �t�

d�

� �

1=2

d� � 0:

Moreover, the implication �c� ) �a� holds without assumption (1.3).

Proof. Choose h > 0 such that
�

S h
�
d� � 1 and de®ne

f
�

t �

ft

h
:

f f
�

t g is another representation of X with respect to a random measure M
�

with control

measure �
�

such that d�
�

� h
�
d�. Since ft is given by (1.2),

f
�

t � at
d��

�

� �t�

d��

� �

1=�

f
�

� �t:

Thus, by Theorem 2.1, X is mixing if and only if f�tg is asymptotically singular with

respect to the probability measure �
�

. Assume (a) and let A be such that ��A� <1. We

have

�

A\�t A

d�� � �t�

d�

� �

1=2

d� �

�

S

�1A h
ÿ�=2

���1A h
ÿ�=2

� � �t�
d��

�

� �t�

d��

� �

1=2

d�
�

�

�

hÿ�=2 >M

�1A h
ÿ�=2

���1A h
ÿ�=2

� � �t�
d��

�

� �t�

d��

� �

1=2

d�
�

�

�

hÿ�=2 ��t >M

�1A h
ÿ�=2

���1A h
ÿ�=2

� � �t�
d��

�

� �t�

d��

� �

1=2

d�
�

�M
2

�

S

d��
�

� �t�

d��

� �

1=2

d�
�

� 2��A \ fh
ÿ�=2

> M g�
1=2

��A�
1=2

�M
2

�

S

d��
�

� �t�

d��

� �

1=2

d�
�

:

Letting t!1 and then M !1, we complete the proof of (b).

Obviously �b� ) �c�. Assume (c) (and (1.1)±(1.2), but not (1.3)). Using the fact that �
�

is
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a probability measure, we obtain for each k � 1,

�

S

d��
�

� �t�

d��

� �

1=2

d�
�

�

�

Ak \�t Ak

d��
�

� �t�

d��

� �

1=2

d�
�

�

�

Ac

k

d��
�

� �t�

d��

� �

1=2

d�
�

�

�

�t A
c

k

d��
�

� �t�

d��

� �

1=2

d�
�

�

�

Ak \�t Ak

d��
�

� �t�

d��

� �

1=2

d�
�

� 2�
�

�A
c

k�
1=2

:

Letting t!1 and then k!1 gives (b) of Theorem 2.1. This implies (a) by Remark 2.2

and ends the proof. &

Probably the most interesting case of Theorem 2.2 is when � is an in®nite measure

invariant under f�tg. Since the Radon±Nikodym derivative equals 1, we obtain the

following corollary, equivalent to Theorem 4.1 of Gross (1994).

Corollary 2.1. Under the assumptions of Theorem 2.2, suppose that � is invariant under

f�tgt2T. Then the following conditions are equivalent:

(a) X is mixing;

(b) for every A � S of ®nite measure �,

lim
t!1

��A \ �t A� � 0;

(c) there exist Ak % S such that for each k � 1,

lim
t!1

��Ak \ �t Ak� � 0:

Moreover, the implication �c� ) �a� holds without assumption (1.3).

Remark 2.3. As observed by Gross (1994), restricting t in (2.5) to a set of density one

(which may depend on K and �) gives weak mixing of the process instead of mixing. Since

our computations do not depend on whether t runs over the entire set T or only over its

in®nite subset, we conclude that by adding the phrase `there exists a set D � T of density

one' to the statements characterizing mixing in this section we obtain corresponding results

on ergodicity (and weak mixing) of S�S processes.

The last part of this section (as well as the next) is devoted to S�S processes of type X
3

(recall the decomposition (1.4)). As mentioned in Section 1, for such processes to be mixing

(or even ergodic) it is necessary to be such in spite of the fact that the ¯ow f�tg is in®nitely

recurrent, and so generates `memory' within the process. It turns out that the ¯ow should

not return `too often' to the starting point, and we now start making this statement precise.

The most logical way of doing so is, of course, through the expected return time.

Suppose that � is invariant under f�tg. The return time to a set A 2 B is de®ned by
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�A�s� � inf ft > 0 : �t�s� 2 Ag �s 2 A� and, if ��A� <1,

1

��A�

�

A

�A d�

is the expected return time. To avoid measurability problems, we consider the case T � Z.

Under these assumptions we obtain the following proposition.

Proposition 2.2. Suppose that X
3
is ergodic. Then the expected return time is in®nite for any

set A of a ®nite positive measure.

Proof. Kac's theorem (see Krengel 1985, p. 19) gives

�

A

�A d� � �

[

1

n�0

�
ÿn�A�

 !

: �2:8�

Let � � ��A� > 0. Since, by Corollary 2.1,

��A \ �
ÿn�A�� � ��A \ �n�A�� ! 0;

as n!1, for every � > 0 there is an N such that, for every n � N,

��A \ �
ÿn�A�� < �:

For every k � 1 we have

�

[

1

n�0

�
ÿn�A�

 !

� �

[

k

n�0

�
ÿnN�A�

 !

�

X

k

n�0

���
ÿnN�A�� ÿ

X

k

n�0

X

k

m�n�1

���
ÿnN�A� \ �

ÿmN�A��

� �k� 1���A� ÿ

X

k

n�0

X

k

m�n�1

��A \ �
ÿ�mÿn�N�A��

� �k� 1�� ÿ 2
ÿ1
k�k� 1��:

Letting ®rst �! 0 and then k!1, we see immediately that the right-hand side of (2.8) is

in®nite. h

3. Mixing S�S processes generated by conservative ¯ows

In this section we will show that mixing stationary S�S processes of type X
3
really exist.

For simplicity we assume T � Z, but see the construction at the end of the section.

Consider a bilateral real-valued Markov chain fSngn2Z de®ned on the canonical

coordinate space S � R
Z
with a stationary transition probability function

Q�x;B� � P�Sn�1 2 B jSn � x�:
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Suppose that m is an invariant measure for fSngn2Z. That is, m is a Radon measure on R

such that

m�B� �

�

R

Q�x;B�m�dx�; 8B 2 BR:

Denoting by Q
x
the distribution of fSngn2Z as a random vector in �S;BS� starting from

x 2 R (i.e. Q
x
fS0 � xg � 1), we de®ne a measure � on �S;BS� by

��A� �

�

R

Q
x
�A�m�dx�; A 2 BS: �3:1�

Then, under (possibly in®nite) law �, fSng can be viewed as a stationaryMarkov chain with

the initial `distribution'm. We suppose that fSng ism-recurrent. That is, for all B 2 BR with

m�B� > 0,

Pr �Sn 2 B infinitely often jS0 � x� � 1 for m-almost all x 2 R �3:2�

(see, for example, Orey 1971, p. 4). We have the following proposition.

Proposition 3.1. The shift transformation � on S is measure-preserving, conservative, and the

following are equivalent:

(a) the measure � is in®nite;

(b) the invariant measure m is in®nite;

(c) for all bounded sets B 2 BR

lim
n!1

Pr �Sn 2 B jS0 � x� � 0 for m-almost all x 2 R: �3:3�

Furthermore, under any of the above, the ¯ow �n :� �
n
, n 2 Z satis®es (c) of Corollary 2.1.

Proof. The fact that � preserves measure � follows simply from invariance of the measurem,

while the fact that it is conservative follows from Harris and Robbins (1953).

The equivalence of (a) and (b) is trivial, as is the fact that (c) implies (b). The implication

�b� ) �c� follows from Theorem 7.3 of Orey (1971).

It remains to show that (3.3) implies (c) of Corollary 2.1. Recall that Sn is the projection

onto the nth coordinate of S and let

Ak � fjS0j � kg:

Then

��Ak \ �nAk� � ���
ÿn
Ak \ Ak�

�

�

�ÿk;k�

Pr �Sn 2 �ÿk; k�jS0 � x�m�dx� ! 0

as n!1 by (3.3), completing the proof. &

As an immediate consequence of Proposition 3.1, we obtain the following class of mixing

stationary S�S processes generated by conservative ¯ows.
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Corollary 3.1. Under the above assumptions, suppose that the invariant measure m is

in®nite. Let f 2 L
�
�S; �� and let an : S ! fÿ1; 1g satisfy an�m � an � am � �

n
�-a.e. Then the

stationary S�S process

Xn �

�

S

an f � �
n
dM; �3:4�

is of type X
3
, and is mixing.

Remarks 3.1

(i) The simplest choice of parameters in Corollary 3.1 that produces a rich class of

processes is to take an � 1, and f �. . . ; x
ÿ1; x0; x1; . . .� � 1�x0 2 A� for a Borel subset A ofR.

(ii) Processes of this form belong to the class of doubly stationary processes (see

Cambanis et al. 1987; Gross and Weron 1994).

(iii) The connection described above between the recurrence properties of a Markov

chain fSng and ergodic properties of the stationary S�S process fXng becomes especially

transparent if the Markov chain is, say, integer-valued. If it is null recurrent, then (3.3)

holds by Theorem 69(b) in Freedman (1983, p. 25), and so the stationary S�S process is

mixing. On the other hand, if the Markov chain is positive recurrent, then the invariant

measure m is ®nite, and then so is the measure �, implying that the S�S process is not even

ergodic, as was observed above. This is another demonstration of the phenomenon

presented in Proposition 2.2: mixing (or even ergodicity) of an S�S process requires the

underlying ¯ows to have in®nite expected return times.

(iv) The simplest case when the conditions for mixing of (3.4) are easy to check is the case

of a random walk fSng. Let F be the common distribution of Sn�1 ÿ Sn. It is then well

known that fSng ism-recurrent (withm being the Lebesgue measure if F is not concentrated

on any lattice Ld � fnd : n 2 Zg, or the counting measure on Ld if F is concentrated on it) if

and only if the characteristic function ^F of F satis®es

lim
s! 1�

�

1

ÿ1

R
1

1ÿ s ^F�u�
du � 1

(see Chung and Fuchs 1951, or Feller 1971, Section XVII.6). If the random walk is actually

concentrated on Ld , then an equivalent condition is

�

1

ÿ1

R
1

1ÿ ^F�u�
du � 1

(Spitzer 1964). If
�

R jx jF�dx� <1, then a more easily veri®able necessary and su�cient

condition for recurrence is
�

R xF�dx� � 0 (see Feller 1971, Section VI.10). Of course, for a

recurrent random walk condition (3.3) follows by the concentration inequality for sums of

independent random variables. Therefore, Markov shifts corresponding to recurrent

random walks generate mixing S�S processes of type X
3
.

Remark 3.1(iv) has an obvious extension to continuous time, T � R. We replace the

random walk by a bilateral LeÂ vy process fStgt2R with stationary independent increments

(for example, a Wiener process) having sample paths in S :� D�R�. In this case the
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invariant initial measure m is either the counting measure on a lattice Ld or the Lebesgue

measure on R, depending on whether Ft :� LfSu�t ÿ Sug, t; u 2 R are all concentrated on

the lattice Ld , or whether the latter condition does not hold. The usual notion of recurrence

in this context means that Pflimt!1
1G�St� � 1g � 1 for every open neighbourhood G of

the origin and transience means that Pflimt!1
jSt j � 1g � 1. It follows from Kingman

(1964) that fStgt� 0 is recurrent (transient) if and only if the discrete random walk fSngn2Z�

is recurrent (transient).

De®ning a measure � on S � D�R� by (3.1), where as before, Q
x
is the distribution on S

of fStgt2R starting from x, one observes, as above, that � satis®es (c) of Corollary 2.1 with

�t de®ned as the shift on S, ��t�s��u � su�t. Therefore, any S�S process given by

Xt �

�

S

at f � �t dM; t 2 R;

is mixing and of type X
3
. Here f 2 L

�
�S; �� and a : S ! fÿ1; 1g satis®es at1�t2 �

at2at1 � �t2 �-a.e., for every t1; t2 2 R.
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