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We prove Berry—Esseen bounds for a general class of asymptotically normal statistics which are
functions of N weakly dependent random variables under easily verifiable conditions. In particular, we
show, for some O >0, the validity of the bound O(N~1/21log® N) for U-statistics, studentized means,
functions of sample means, functionals of empirical distribution functions and linear combinations of
order statistics.
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1. Introduction and results

Let Xy, X3, ... be a sequence of random variables taking values in an arbitrary measurable
space (.4, %) which is stationary in the strong sense. We shall assume that the sequence
satisfies an absolute regularity condition with coefficients

ﬁ(m)défsupEsup{|P{A|a[l, k1} — P{A}|: A € o[k + m, o)} — 0,
k=1

as m — oo, where o[a, b] denotes the o-algebra generated by the random variables X; such
that / € [a, b].

The aim of this paper is to prove Berry—Esseen bounds for a sufficiently large class of
statistics of weakly dependent random variables. Let # = #y be real-valued function of N

variables. We shall consider statistics 7 = #( X, ..., Xy) which can be represented as
1 &
T=S+R, where § = — g(X)), (1.1)
\/N; !

for some function g:.2°— R such that Eg(X;) =0 and some remainder term R =
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Ry(X1, ..., Xy). The function g may depend on N; throughout we allow such dependence
without explicitly mentioning it. Decomposition (1.1) is just a notational convention, and we
shall later impose additional conditions on g and R.

Let

N—-1
def A T—
oy TES? =Eg* (X)) +2) (1 - jN HEg(X1)g(X14))
J=1

denote the variance of S, and let p, = E|g(X1)|°.
In the case of independent identically distributed (i.i.d.) random variables X, X», ...,
the linear part S of the statistic 7 is asymptotically normal as N — oo,

P{S<oyx} — O(x),
where ®(x) is the standard normal distribution function, provided that
0%, =32>0, for all N, (1.2)

and supy prs < oo, for some fixed £>0 and 0>0. In the weakly dependent case the
additional condition sup,, m(+90+1/9B(m) < 0o, for some & > 0, ensures the same result (see
Ibragimov and Linnik 1971; Ibragimov 1975; Eberlein 1984). Thus the statistic 7 will be
asymptotically normal provided that in addition R — 0 in probability.

In order to prove Berry—Esseen bounds, some stronger conditions are necessary. It is
known (Tikhomirov 1980) that the conditions

supp; < p<oo (1.3)
N

and
p(m) < Kexp{—pm}, forall m =1, (1.4)

for some K <oo and >0, together imply

sup |[P{S<oyx} — O(x)| < AN"'?1og®? N

with a constant 4 depending on K, 5, £ and p only. We shall extend this estimate for general
nonlinear statistics.

Let 0°[j, k] denote the c-algebra generated by X; such that /¢ [j, k] and 1 < /< N. In
the case k<j, set o°[j, k] = o(X1, ..., XN).

Theorem 1.1. Assume that (1.2)—(1.4) hold. Let
Rj,k = Rj,k(Xb e Xj*la Xk+15 e XN)

denote any o°[j, k]-measurable random variables such that R;; = R, for all 1 < j <N,
and let

y < max {E*?|R; s — Ry % |j— k| < log* N and 1 < j < k < N}.
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Then
sup |P{T <o yx} — ®(x)| < AN'?*log® N + AE|R| + Ayv/N log® N

with a constant A depending only on K, 8, = and p. If the function g is independent of N and

0?® lim 0} = Eg"(X1) +2 ) Eg(X1)g(X1+))>0,
—00 j:l

then supy |P{T <ox} — ®(x)| satisfies the same estimate with a constant A depending on K,
B, o and p only.

For the proof of the result we apply a modification of the method used by Stein (1972)
and Tikhomirov (1980), among others. Theorem 1.1 seems to be the first Berry—Esseen
bound for a general class of statistics of dependent samples. In Section 2 we apply Theorem
1.1 to functions of sample means, functionals of the empirical distribution functions,
studentized means, U-statistics and linear combinations of order statistics. In all these
applications the estimation of E|R| and y in Theorem 1.1 is quite simple and reduces to the
estimation of certain moments. The random variables R;; may be obtained by the simple
rule: ‘remove all terms of R involving random variables X; with / such that j < /=< k’.

In the literature only special classes of (nonlinear) statistics of weakly dependent samples
have so far been considered: Yoshihara (1976) proved asymptotic normality for a class of U-
statistics; Denker (1982) and Denker and Keller (1983) proved the asymptotic normality and
functional limit theorems for classes of U-statistics and von Mises statistics and obtained
Berry-Esseen bounds; Yoshihara (1984) obtained a Berry—Esseen bound for U-statistics; for
results concerning sums see, for example, a review of Sunklodas (1991). Edgeworth
expansions for statistics of dependent samples were considered by Goétze and Hipp (1983;
1994). The aim of the present paper is to develop a method to prove sufficiently precise
Berry—Esseen bounds for a sufficiently general class of statistics such that the previous
results are included as particular cases, thus avoiding further extensions for specific statistics.

Our result is similar to a Berry—Esseen bound described by van Zwet (1984) for
symmetric statistics of independent samples. In the independent case more precise estimates
are known; see, for example, Friedrich (1989), Bolthausen and Gétze (1993), Bentkus and
Gotze (1996) and, for lower estimates, Bentkus et al. (1994). We could improve the moment
conditions for the nonlinear part of the statistic combining methods developed for
independent random variables and those of the present paper, but detailed proofs would
require a large amount of routine work. Furthermore, the dependence on log N in Theorem
1.1 can be improved using modifications of our proofs. In order to avoid technicalities, we
do not formulate and prove bounds with better powers of log N. The question whether the
log N factors in Theorem 1.1 are unavoidable remains open. Recently Rio (1996) obtained
an O(N~'/?) result for sums in the case of ¢-mixing stationary bounded sequences.
Whether Rio’s result for sums holds for the S-mixing case, remains open.

The mixing condition (1.4) is relatively weak. For example, solutions of the It6 equations
in Euclidean spaces satisfy this condition and do not satisfy conditions with other stronger
(e.g., uniformly) mixing coefficients; see Veretennikov (1987). Heinrich (1992) found a
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clear and simple condition yielding (1.4) for stationary renewal processes. Condition (1.4) is
also fulfilled when the similar condition holds for y-mixing coefficients 1(m) or for ¢-
mixing coefficients ¢(m) since f(m) < ¢(m) < yp(m). We have chosen [-mixing as the
weakest mixing condition such that the decoupling inequality (1.5) for the distance in the
variation holds. The exponential decay of the mixing coefficients in (1.4) is imposed in
order to simplify the technicalities.

Let A4, A1, A, ... denote generic constants which may depend on parameters of interest,
such as K, 3, p, a, ... . Let m denote a natural number such that for a sufficiently large
generic constant 4, m ~ Alog N, for example, m = [4log N].

Let 7, 71, T2, ... denote a sequence of i.i.d. random variables uniformly distributed on
[0, 1], and independent of all other random variables. By E; we shall denote the conditional
expectation given all random variables but 7.

Let &€ denote an independent copy of the random variable &, which is also independent of
all other random variables appearing in the specific context.

We shall often use the following simple decoupling inequality which allows us to get rid
of dependence problems. Assume that & is 0(—oo, k]-measurable, that  is o[k + m, c0)-
measurable and that the random variables £ and # take values in a Polish space. If
sup,.s |@(u, v)| < D, then

|E@(&, n) — E(&, )| < DB(m). (1.5)

Weaker measures of dependence such as a-dependence will not allow inequalities of type
(1.5) which we need to treat nonlinear statistics.

2. Applications

In this section we shall apply Theorem 1.1 to various special statistics to show that in fact the
conditions can be easily verified. Similar examples were considered in the independent case
by Bentkus et al. (1997).

2.1. Functions of sample means

Assume for this subsection only that X, X5, ... take values in a real separable Banach space
%. Consider the statistic
T = VN(H(X) — H(0))

for a function H:.% — R, where the sample mean )_(d;fN’l(Xl + -4 Xy).
We shall use Taylor’s expansion for sufficiently smooth functions f: .7 — R (see, for
example, Cartan 1971),

fx+h)=fO)+ f'(X)h +-- -+ % PR+ %ET(I — )k D (x 4 ThyR* T,

where fU)(x)h/ denotes the jth Fréchet derivative of f at point x in the direction #.
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Assummg that H is Fréchet differentiable and using Taylor’s expansion, we may write

g(x) "1 (0)x, and

REVN(H(X) — H(0) — H'(0)X) = VNE/(1 — ) H"(tX)X”.

The function g is independent of N, and
>y
=—=) gWX)+R
N

Denote

def
M= Zsup 1HD ).

1x€

Theorem 2.1. Assume that the mixing condition (1.4) is fulfilled. Let

EX; =0, p¥E|xP <o

Assume that 02> 0. If M3 <oo then there exists a constant A depending only on .7, K, j3,

0, M5 and o such that
def

oy = sup |P{T <ox} — ®(x)| < CN"?log* N.

If the Banach space .7 is of type 2 then the smoothness condition M3 < oo may be relaxed

to M, <oo.

Remark. A Banach space % is of type 2 if there exists a constant C = C(.%) such that

B[N, 7> < ¢N E|Yi|?, for any independent centred random variables
dimensional spaces, Hilbert spaces and L,, /,, 2 < p <oo, are of type 2.

Proof of Theorem 2.1. We shall derive the result from Theorem 1.1.

.. Finite-

The verification of |[(ox/0) — 1| < A/N is easy. Therefore it is sufficient to prove that

E|R| < AmN~'/?

and that
E[Rjx — Riu1[? < A(m/NY?,
where
Rix & VN(H(Xy9) — HO) — H'(0)X (1),
and

XynEX-N1Y X,

i€[j,k]

@.1)

2.2)
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While proving (2.1) and (2.2) we may assume that || X;|| =< N? with probability 1. Otherwise
we may replace X; by X;1{|X;| = N*} — EX;1{|X;| < N?}. For example, in the case of
(2.1), by such a replacement the error is bounded from above by

N
AN B = N = AVNE[X{]lxG || = N7 < a2,
Jj=1
Indeed, we may split X; = X;1{||X;|| <= N?} + X;1{| X;||> N?}, use the representation R =
VN(H(X) — H(0) — H'(0)X), apply |H(u)— H(v)| < M|lu—v|| and use the triangle
inequality.

Let us prove (2.1). Note that |R| < M,+/N|X|?>. Thus, in the case of the Banach space
7 of type 2, the bound (2.1) is a consequence of Lemma 3.1 below. The proof of (2.1)
without the type 2 assumption is shghtly more comphcated (see Section 3).

Let us prove (2.2). Notice that X k=11 = X[+ N~ 1 X, and that

|Rjk — Rjk—1| = \/*]\7|H(X[j,k71]) — H(X(x) — H'(ON ' Xy
Expanding in powers of N~!X;, we see that instead of (2.2) it is sufficient to show that
E|H' (X Xi — H' (0) X [? < Am®> N34, (2.3)

Let us write )_( i,k = U+ A, where U is the sum of terms N -1x ,7in the sum X [;,k such that
|l — k| > m, and where A denotes the remalnmg part of the sum X|; ;. Expanding in powers
of A and using (a; + - - - + a,)?? < \/_(a1 -+ a3/?), we reduce (2.3) to

E|HWU)X; — H' (O)Xk|3/2 < Am??N73/4, (2.4)

Using (1.5), we may replace X in (2.4) by an independent copy, say X . An expansion in
powers of U and an application of the Holder inequality show that (2.4) follows from

E(H"(tU)UX ) < Am*N~". (2.5)

If the Banach space is of type 2, we may apply Lemma 3.1 (below) in order to estimate
E||U|?, and (2.5) implies the result. Let us continue the proof of (2.2) for arbitrary Banach
spaces. Expanding the square in (2.5), we see that (2.5) is a consequence of

NS S EH' U)X X H (U)X X 4| < Am?, (2.6)

i
where the sums »_; and ), are taken over the indices i and [ in the sum U. By the triangle
inequality we may remove in (2.6) summands with |i — /| < m. Next we may remove from

the sum U summands with indices near to i or /. An application of (1.5) will complete the
proof. O

2.2. Functionals of empirical distribution functions

The results of this subsection are obvious extensions of those for functions of sample means.
Throughout this subsection we shall use the following notation. Let 7, 72, ... denote a
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sequence of real random variables stationary in the strong sense. Let F denote the
distribution function of #,, and let Fy be the empirical distribution function corresponding
to the sample #y, ..., y. Define the random processes X;(¢), t € R, | <i =< N, by
X 1{n: < 1} = F().
Finally, let
ExEVN(Fy = F)= (X, + - - -+ Xy)/VN

denote the empirical process.
Assume that a functional H takes real values and that H(F) and H(Fy) are well defined.
Define the statistic

T VN(H(Fy) — H(F)).

We may write Fy — F = Ey/ VN =X. Introducing the functional

Gr(h) < H(F + h),

we have
T = VN(Gr(X) — Gp(0)).

Let us define derivatives of H via derivatives of Gr as H®(F +x)d§fG(,f§)(x). In order to

define derivatives of G, introduce a Banach space .77, which may depend on F and should

be chosen in dependence on H and the particular problem. We shall assume that Gr: . % — R

admits Fréchet derivatives, and we shall require that . contains the sample functions X;(¢)

almost surely. Furthermore, we assume that X;, X are well-defined and take values in .%.
Denote

S
M, EN sup [ HO).
=1 xeB

Theorem 2.1 implies the following result.

Theorem 2.2. Assume that the sequence 11, 12, . .. satisfies the mixing condition (1.4). Let

EX, =0, pYE|X [P <co.

Define g(x)difH/(F)x and assume that 6> >0. If M3 <oo, then there exists a constant A
depending only on .5, K, 5, p, M5 and o such that

sup |P{T <ox} — ®(x)| < CN~/?log* N.
X

If the Banach space .73 is of type 2 then the condition M3 <oo may be relaxed to M, < oo.
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2.3.Linear combinations of order statistics

We will apply the result for functionals of empirical distribution functions using the notation
of Section 2.2.
Consider the statistic

def N

ef /-1

In=N E CiNNiN
i=1

where 7.y < - - =<mnyny denote the order statistics of #;,...,7ny, and coefficients
cin, ---, cyn are generated by a weight function J: [0, 1] — R,

def i/N
N = NJ J(u) du.
(i~1)/N

Define
T VN(ly — w),

where
u= J, xJ(F(x))dF(x).

If E|n;|<oo, the boundedness of J is sufficient for the following representation (see
Govindarajulu and Mason 1983):

Iy — = j [W(Fy(0) — WF@)]di,
where
1

Y(x)= J J(u) du.

Therefore we may write
Iy — p= H(Fy) — H(F),

where

0 00
H(h) = J [W(h(1)) — W(0)] dt +J W(h(1)dt.
oo 0
Let ||-|, denote the norm of the space L”(R). Let B be the Banach space of functions
with norm
[xll = llxlly + lxllz + ll]s.

If the function J is smooth, then the functional & — T(P+ h): B— R is Fréchet
differentiable and
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s—1
M, <Ly 2Y sV, s<3.
=0

It is easy to verify that the random process X (see Section 2.2) satisfies

EllX0[, < e(p, )Em[? + Elm]*?), forall p=1,5>0.

Theorem 2.3.fAssume that a stationary sequence 11, 12, - .. satisfies the mixing condition
(1.4). Let pdé E|n > <co. Define ay = 1, ajdé 2, for j >0,

2 d;fJRZJ(F(t))J(F(s)) S alP{m <1, m14; <s} — F()F(s)]dsdr
7=0

and assume that 0> > 0. If L, < oo then there exists a constant A depending only on K, B, L,
and o such that

sup |P{T <ox} — ®(x)| < CN"/?1log* N.
The condition Ly <oo may be relaxed to L < co.

Under the condition L, <oo, the proof of Theorem 2.3 requires a straightforward
application of Theorem 2.2 only. The weaker condition L; <oo implies an inequality for
the empirical processes Ey like that characterizing type 2 spaces. Hence, Theorem 2.3
again follows from Theorem 2.2 (cf. Bentkus er al. 1997) in this case as well.

2.4. Studentized sample means

In this subsection we shall assume that random variables in the stationary sequence
X1, Xo, ... take real values and satisfy the mixing condition (1.4). Assume as well that
EX; =0 and EX‘I1 < p4 < 0. Denote

X=N'Xi+ - -+Xxy, SYVNX, % =ES

. def . .
and assume that limy_, . 0%, = g2 >(. Consider the estimator

N
2=13 Y
szl Llj—l<m

of 0. It is consistent an% tz‘asymptotically unbiaseddgrovided m =~ Alog N, for a sufficiently
large constant A. Put s= /52 if s> =0, and s= 0 if s?><0. Introduce the studentized
statistic ¢,
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Theorem 2.4. There exists a constant A = A(K, f3, 0, ps) such that
sup |P{t<x} — ®(x)| < AN"?10g’? N.

Proof. We shall derive the result from Theorem 1.1. Without loss of generality, we shall
assume that 02 = 1.
Notice that

P{|s? — 1| = e} < de 'm??N7'/2, for any & > 0. 2.7

Indeed, by Chebyshev’s inequality, it is sufficient to estimate E|s> — o?| < E|s*> — Es?| +
|Es? — 1|, and to show that

|Es? — 1] < Am*N !, E(s> —Es® < m’ N\ (2.8)

While proving (2.8) we may assume that |X;| < N. Otherwise we may replace X;
by X;1{|X;| < N} —EX;1{|X;| < N}. By the triangle inequality, the error is bounded
by Am/N. Let us prove, for example, the second inequality in (2.8). By the triangle
inequality,

2
m N—s
E(s> B2 <mN 2> E(Y Zis| . 2 E XX — EXX
s=0 Jj=1
The sequence X; X, j=1,2,..., is stationary and satisfies the mixing condition with

coefficients S(m — s), for m = s. Thus we may apply Lemma 3.1 (with 2m instead of m) and
get E(Zjv: 'Z;5)* < AmN. Collecting the estimates, we obtain (2.8).
Introduce a C* function such that

2 x=<0

1 1 3
H(X)d;f ﬁ E$X$§

0 x=2

Due to (2.7)
sup |P{t<x} — P{SO(s*) <x}| < Am*’*N~'/2,
X
and it is sufficient to prove that
sup |P{SO(s%) <x} — ®(x)| < AmN /2, (2.9)

While proving (2.9) we may assume that |X;| < N?, for 1 < j < N. Otherwise we may
replace the X; by their truncated and centred versions because € is a bounded function such
that |0(u) — O(v)| < A|lu —v|.
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Write

TS0 =S+R ~ with R 5(0(s2) - 1).

In order to apply Theorem 1.1 we have to verify that
E|R| < Am*N~'/?, B[R — Ris 1% < am’/*N32, (2.10)
for |j — k| < log® N, with

def

Rk & 8540053, — 1),
where §;; denotes the sum S without the summands N~ 12X, j<i<k, and s "k denotes
the sum s? but without the summands N~'X,X; such that at least one of i, 1€{j, ..., k}.

Using 6(1) =1 and |6(u) — O(v)| < A|lu — v|, we have
E|R| < AE|S||s* — 1| < Am*N~'/2,
and the bound for E|R| follows provided we apply Holder’s inequality, then Lemma 3.1 to
bound ES? < Am'/?, and use (2.8).
Let us prove the second inequality in (2.10). It is sufficient to show that
E|(Sjx = Sia-0(O(s7,) — DIY* and E[S;41(6(s7 ) — 6(s5 ) 2.11)

are bounded by Am9/4N 3/2, Let us estimate the ﬁrst expectation in (2.11). Notice that
ISik — Sjk-1] = 1/2|Xk| and that we may represent sj « = 4k + Ajx, where A denotes
the sum of terms N~'X,X; of the sum s2 %k such that i or [ is near to k. Using
|6(u) — O(v)| < A|lu —v|*/® and the triangle 1nequa11ty, we may neglect Aj, and it is
sufficient to show that

E[Xu(0(q2,) — 1)/ < am®*N 73/,
Using (1.5), we may replace X by its independent copy, and it remains to show that
E|0(¢%,) — 1% < AE|q%, — 1]/> < Am*/*N 3/,

But this bound may be proved like (2.8).
In order to estimate the second expectation in (2.11) notice that the difference s e
; ,_; may contain at most 4log N summands N~'X.X; and proceed similarly. O

2.5. U-statistics

For notational simplicity we shall consider U-statistics of second order only, that is
U=S+R, with § = —— Zg(X) R=N7P 3" X, X)),
1=<i<jsN

where the function y: .22 — R! is symmetric, y(x, ) = ¥(y, x), and Ey(x, X;) = 0, for all
x € .2 (functions g and ¥ may depend on N).
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Theorem 2.5. Assume that the conditions (1.2)—(1.4) are fulfilled and that

sup sup E(X), X))+ sup By (X1, X;) < L<oo.
N 1<I<jsN N

Then

On défsup |P{U <xoy} — ®(x)| < AN~ log’/? N,
X

where the constant A may depend on K, 5, p, £ and L only.

Corollary 2.6. Assume that the conditions of Theorem 2.5 hold and let g be independent of
N. Assume that the variance o? is positive. Then

o & sup|P{U < ox} — D(x)| < AN"*1og"2 N,

where the constant A may depend on K, 3, p, 0 and L only.

Remark. Yoshihara (1984) proved the bound 8%y = O(N~V/ *log? N) assuming that g and 1
are independent of N and that sup;<; E[p(X;, X))]> + Elp(X, Xo) <oc.

Proof of Theorem 2.5. We shall apply Theorem 1.1. It is sufficient to show that

E[R| < AmN~'?*  and  y<4ymN7!, (2.12)
with
R ENT2 N yx,, X)),
BN, k=@
where the sum is taken over all two-point subsets B = {i, I} C {l,..., N} such that

BnN[j, k] = . Notice that

Rix— Ry = N7 Z P( Xk, X))
IE[LNN\[):4]

Therefore the inequalities (2.12) follow from

El ) w(X:, X))| < AmN (2.13)
1<i<j<N
and
3/2
El ) X X)| < A(mN)* (2.14)
IE[LN\L.A]

While proving (2.13) and (2.14) we may and shall assume that [y(x, y)| < 4N3. Indeed,
otherwise we may replace ¥(x, y) by
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Wi MH[Y, )| < N*} = x) = A(y) + EA(X),

with A(x) & Ey(x, XD y(x, Xp)| < N}

Lemma 3.2, together with the Holder inequality, yields (2.13).

Let us prove (2.14). By the triangle inequality, we may remove from the sum in (2.14) all
summands with indices / such that |/ — k| < m. Using (1.5), we may replace X; by its
independent copy X. Thus, by the Holder inequality, (2.14) follows from

2
<Z P(X s, X») Xy | < 4mn,
where the sum is taken over all / such that |/ — k| >m and [ € [1, N]\[j, k]. An application
of Lemma 3.1 concludes the proof of (2.14) and of the lemma O

3. Auxiliary results

Lemma 3.1. Assume (1.4) and let the random variables X; take values in a Banach space .5
of type 2. Let EX; =0 and P{|X,| < D} =1, for all 1 <i< N, for some D<oo. Then

2 N
<2Cn Y E|X| +28(n)D’N?,
i=1

for any natural n.

Proof. Let us split {1, ..., N} = AfUAU - - - UA; into the union of disjoint subintervals
A; of length n with s = N/n, for 1 < j < s — 1. Denote

= E Xi, Z = 5 Y2, Z, = E Yot
i€A; Jis2j<s J1s2j+1<s

Then Z 1 X;=Zi+ Z», and it is sufficient to estimate E[Z)[]* and E|Z[]*. We shall
estimate E||21 |2 only. Let Yy, Y5, ... denote a sequence of independent copies of Y;, Ya, ... .
Applying (1.5) and estimating | X;| < D, we have

E|Z\|? = E|Y, + Z, — 11| < E||Y, + Z, — 1| + D*N*B(n).
Repeating this procedure (with Yy, Ys, ... instead of Y;), we obtain

2
> by

ji1=2)=s

E|Z|*<E + D’ N3B(n).

Now the definition of Banach spaces of type 2 and the triangle inequality yield

2 N
Y byl <= cnd ElXiP
i=1

Jl=s2j=ss

E

Collecting the estimates we conclude the proof of the lemma. Il
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Proof of (2.1) for arbitrary Banach spaces. Expanding into a Taylor series, we may write
N —
R=N""PE; Y (H'X)— K (0)X,
i—1

and (2.1) follows from

N
E| ) (H'@X) - H’(O))Xi’ < Am. (3.1)

i=1

Write X; = X — A, where A% NS icti—mi+mX;. Expanding in powers of A, using the
triangle inequality and applying the Holder inequality, we see that instead of (3.1) it is
sufficient to prove

2
N
E (Z E.(H'(tX:) — H’(O))X,«) < Am®. (3.2)
i=1
Expanding the square in (3.2), we arrive at
N N B B
SO E(H'(tX) — H'(O)X{(H'(tX ;) — H'(0)X;] < An?,
i=1 j=1

and it is sufficient to prove that

[B(H'(zX;) — H'(0)X{(H'(tX ;) — H'(0)X;| < AmN~", for [i — jl|<2m,  (3.3)
and

|E(H'(tX;) — H'(O)X,(H'(tX;) — H'(0))X;| < Am*N 2, for |i — j|>2m. (3.4)

_ Let us prove (3.3). Split the sum X; = X;; + A, with A; denoting the sum of N~'X; in

X; such that |/ —j|<m. We may also write a similar expression for X; with A,.
Expanding in powers of A; and of A;, we see that (3.3) follows from

E(H'(tX ) — H'(O)X{(H'(tX;) — H'O)X;| < AmN~',  for |i — j| < 2m.
By (1.5) we may replace the pair % &ef (Xi, X;) by its independent copy, say (X, X ), use the

Taylor expansion and reduce (3.3) to

> EH X)X X H' (112X ) X, X (| < AmN, li—j| <2m,
Lk

where the sum is taken over all / and k present as indices in the sum X ;. A repetition of the
previous arguments concludes the proof of (3.3).

The proof of (3.4) is similar to (although more technical than) that of (3.3), and we omit
it. ]
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Lemma 3.2. Assume the mixing condition (1.4). Let supy. , |y(x, y)| < D and Ey(x, X;) =0,
for all x. Then

Isi<jsN

2
JYE < S X)) < Am’N*L + AD* N*B(m),
where LdéfmaxngjgN Ey?(X;, X)).

Proof- We may write J defE(ZBw(X,, X; ))2 where the sum is taken over all two-point
subsets B = {i, j} such that B c{l,..., N}. Let B, denote the m-neighbourhood of
BcC{l,..., N}, that is, By, { E{l L N} [i—S|<mor |j—s| < m}. Let d(B)%

|i — j| be the diameter of B. Then J < 2J1 + 25, where

' <E (Z w(x,,X)> and  /,TE ( 3 w(X,,X)>

d(B)y=m d(B)>m
The number of two-point subsets B C {1, ..., N} such that d(B) < m does not exceed mN.
Thus (a; + - - -+ a;)* < s(a? + - - - + a?) implies J; < Am*N?L. Furthermore,
J2 = Z E’l/}(Xla X])W(Xka Xl)>

d(B)>m,d(D)>m

where B = {i, j} and D = {k, I} denote two-point subsets of {1, ..., N}. The number of
pairs of sets B and D such that D C B, is bounded from above by Am?* N2, Therefore, it is
sufficient to show that

> Ey(X;, X)p(Xy, X)) < AD*N*B(m). (3.5

d(B)>m,d(D)>m,DZB,
But the relations d(B)> m, d(D)>m and D ¢ B, imply that at least one of k or [, say &,
satisfies |k — i| > m and |k — j| > m. Thus, by (1.5), we may replace X by its independent
copy X and (3.5) follows since Ew(Xk, x) =0, for all x. O

4. Proof of Theorem 1.1

We shall denote by a a generic, sufficiently small positive constant which may depend on K,
B, Z and p only. Also write

SOEEexp{iT},  p(n = exp{—12/2}.

The proof of the theorem combines the techniques of Tikhomirov (1980) for sums of
weakly dependent random variables, and those used by Gotze (1991), Bentkus et al. (1997)
in the i.i.d. case for symmetric statistics.

While proving the theorem we may assume that |g(X;)| < V/N. Otherwise we may
replace g(X;) by
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g(X)1{|g(X)| = VN} — Eg(X)1{|g(X))| < VN}.

Without loss of generality, we shall assume as well that 03, = ES? = 1.
We shall prove that the characteristic function f for |¢| < a\v/N/log? N = a/N/m?
satisfies the ordinary differential equation,

' =-f()+e@)f()+e(n,  fO0)=1, 4.1

with some functions ¢ and & such that

Am?* £
e(r)| = s 4.2
|e(n)] N (4.2)
and
leo(1)| < AN'?|t|m*y + AE|R| + AN~'? 4 Am|f)N~'/2. (4.3)

The equation has the unique solution

t t u2 t
f(t) = ¢p(t)exp {J e(u) du} + ¢(t)J exp§ =+ J &(z)dz peg(u) du. 4.4)
0 0 2 u
Let us derive Theorem 1.1 from (4.4). It follows from (4.4) that

/() — 9O < I + I,

where

IA=0)

t
exp {J e(u) d”} - 1’ < Am’ N~ 2 exp {—17/4}, 4.5)
0

and
t 2 t
1 g0] e {”7 +] e dz} (1) du

< AN'?m? + mN~'2)yy min {1; |¢|} + AE|R| + N~Y?)min {|]7'; |#[}. (4.6)

Estimates (4.5) and (4.6), together with Esseen’s inequality for characteristic functions, imply
the result of the theorem.

In order to prove the inequality in (4.5), apply |exp {z} — 1| < |z|]exp {|z|} and (4.2) on
the interval |¢| < av/N/m? with a sufficiently small a. Similarly, the estimate for I, is
derived using | [ &(z) dz| < ad(* — u?) and ad < 1/4.

It remains to prove (4.1)—(4.3). We shall write B ~ D if B= D+ &(t)f(¢) + &y(¢), for
|t| < av/N/m?, with some functions & and &, bounded as in (4.2) and (4.3). Thus we have
to prove that f'(¢) ~ —tf(¢). Differentiating, we have

. N
f(t) = iES exp {itT} + iERexp {itT} ~ I3 “éfﬁz Eg(X;)exp {ifT},
=1

with an error bounded by E|R|.
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Define Sj,odéfs and

345
; def

2N e(x) with  QE{L1<I<N,|I-j<
1€Q

< m}.

Put S;; =S — Aj;. By induction we may define

Ay ENT2Y gx)  with

def
1eQ;

Q1<

IS N,(s—Dm<|l—j| <sm}
and SJSdif s—1 —

9=

A . Furthermore, for a natural » = 4, log N (to be chosen later)
def def
J—rm,j+rms

(5 dof p _ Q], def

Tjs = Sjs + 0
An application of (a; +

4= \/_(513/2 + a;/z) and of the triangle
inequality implies
E|0,[? < am’y*2.

4.7
Taylor’s expansion in powers of 6; and an application of (4.7), together with the Holder
inequality, show that

N

L~ ZEg(Xj) exp {ifT0}

VN &

with an error bounded by A|t|m>N'/?y.
Splitting T;0 = T;1 + Aj1, we may write

. N . N
i i
14 = — Eg(X)Joexp {itT"l}—F— Eg(X)Jl exp{itT-,l}
where Jodéfl and Jsdéfexp {itA;,} — 1, for s = 1. Repeating the procedure, we obtain (we
shall choose r = A;log N)
S'(0)~ 1s=

s=0 j=

Z Z 1(j, s) + Z 1,(j, r), for any natural r,
with

(4.8)

def 1 .
1(j, )= \/NEg(Xj)Jl o Jsexp {itT,51}

def 1 )
L, = \/.A_[Eg(Xj)Jl . Jeexp{itT;,}.

The expectation in I(j, s) is taken over a function of a set of random variables which
does not contain X; with indices / such that sm <|/ — j]
may replace exp {it

| =< (s + 1)m. Thus, by (1.5), we
s+1} by its independent copy, and obtain
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r—1 N r—1 N
S IG )~ DD L), (4.9)
s=0 j=I1 s=0 j=I1
with
def 1 .
I =——Eg(X))J, ... JyEexp{itT; 411 }.
2(] ) \/ﬁ g( ) 1 p{ Js +1}

Indeed, |J5| <2 and |g(X;)| < /N, and the error in (4.9) is bounded from above by
AX 3N2*ﬁ(m) < N2’B(m) < AN~'/? since r = A,log N and since we may choose the
constant 4 = A(A;) in m = Alog N sufficiently large.

We have

I(j,0)=0 since Eg(X;) = 0. (4.10)

Collecting J; with odd or even [/ into separate groups, applying the Hélder inequality and
then, by (1.5), replacing the multipliers |J;| <2 by their independent copies, we obtain

EJ1 . TP < TIEIP)'? + 438 (m), s=1. (4.11)
=1

The choices of m and r and |J;| < |tA;|, together with (4.11), imply
(E|Jy ... J¥*?3 < Amin {(a/m)*; (m|t|N"V/?)} + AN 3. (4.12)
Relation (4.8) implies that

N
F(f) ~ ZZ L(j, s), since > 11(j, r) ~ 0. (4.13)
Jj=1

s=1 j=

To prove (4.13), use (4.10) and bound 7,(j, r) using (4.12). The error in the transition from
(4.8) to (4.13) is bounded by AN~'/2,
Denote T &of Tjs+0; =S5+ R. Then the relation (4.13) implies

r—1 N

f(r)~2213(] s), I, s)def\/;_Eg(X)J1 . JEexp{itTi 1}, (4.14)
s=1 j=

Indeed, it suffices to expand in powers of 6, and to use (4.7) and (4.12). The error in the
transition from (4.13) to (4.14) is bounded by A|7|m*\/Ny.
Define

[4(S) lEg(X )J] e s

and notice that, for j € I, dg{ J: sm<j<N — sm}, the expectation /4(s) is independent of j
since the sequence X, X, ... is stationary. Thus

> LG, )= L)Y N"PEexp {itT) 1} (4.15)

JETy jer
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Using (4.12), we have
r—1
Z > NTPEIGOO ) S| S ANTEY Smsta/my < AN (4.16)
s=1 I<j<N /$I‘ s=1

Due to (4.15) and (4.16), we derive from (4.14) that
r—1 N
' def -
SO~ Y VNLELWD,  f(0ZF 5D Bexp{irTn} (4.17)
s=1 j:1

The error in the transition from (4.14) to (4.17) is bounded by AN~'/2
Let us show that
|fo(t) — f()| < AmsN~'2|4f (1) + AsN~'/2, (4.18)
Define pcj,sdéfS — Sjs41. Then Ty =T — u;,, and
Ss(t) = f(t) = D1 f(1) + D,

with

N
def 1 .
D = N E:l Eexp {—itu;} — 1,

, dof 1 def .
= EZ(E, E&))exp{itT}, £, S exp {—itu;,}.
Expanding in powers of #u;,, we obtain

1 N
|Dy| < NZEWLS\ < Ams|t|N"/2.
J=1

By the Holder inequality,

N
> (&

J=1

N N
=N E(§ — B — EEp) < AN,

=1 =1

|D,]> < N2E

since in the last sum summands, say P;;, with indices j and & such that |j — k| < 4ms satisfy
|Pjal < (E|&; — E&;PEI&x — E&)'? < AP (Elus PE|u; )2 < As*m ™2,

and since |P; x| < 4/N in the case |j — k| >4ms (to see this, apply (1.5)). Collecting these
estimates, we obtain (4.18).
Relations (4.17), (4.18) and (4.12) together imply

r—1
F10~ > VNI(s)f (D). (4.19)
s=1

The error in replacing (4.17) by (4.19) is bounded from above by Am?t>N~'/2|f(f)| +
Am|t|N~'/2. By (4.12),
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r—1

> Ha(s)| < APm* N~
s=2

and
1) ~ VNLQ)f (1) = iV NEg(X))J1 £ (D).

A Taylor expansion applied to J; and a comparison of the coefficient of ¢ with —1 = —ES?
show that (4.19) implies that f'(f) ~ —tf(f), with an error bounded by AN~/2(1 +
m*t?)|f(#)]), which concludes the proof of the theorem.
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