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One of the most dif®cult problems in rainfall modelling is often the ®tting of theoretical models to

data. In this paper a spectral approach is proposed for ®tting single-site models, by considering the

approximate likelihood functions of collections of sample Fourier coef®cients. An objective function is

derived, which is the same as that used in Whittle's method for time series parameter estimation, and

is shown to have an interpretation as a quasi-likelihood when the time series is non-Gaussian. The

method requires knowledge of the theoretical spectral density of models to be ®tted; the form of this

spectral density is given for a wide class of point-process-based rainfall models. A variant of the

method is also developed for when a number of independent replications of a rainfall process are

available. Large-sample properties of the estimators are derived, and the method is illustrated with

some data from the south-west of England.

Keywords: periodogram; point process; rainfall modelling; spectral analysis; Whittle criterion

1. Introduction

In recent years, much work has been done on building stochastic, and physically intuitive,

models for rainfall at a single site; however, methods for ®tting such models to data remain

fairly primitive. The most widely used approach is based on `method-of-moments' type ®tting

as, for example, in Rodriguez-Iturbe et al. (1987; 1988); however, this suffers from the

disadvantage that the parameter estimates can vary greatly depending on the properties used

in the ®tting procedure.

The reason for the dif®culty in ®tting these rainfall models lies in the fact that their

formulation does not lend itself easily to maximum likelihood estimation, because of the

physically appealing but mathematically intractable dependencies involved between the

rainfall intensities at different time points. Our solution is to work with the Fourier

transform of the data, rather than the data themselves; because collections of the sample

Fourier coef®cients are asymptotically independent and normally distributed, we can derive

an approximate likelihood function in terms of these coef®cients. The method is well known

in time series, where it is referred to as Whittle's method ± see Dzhaparidze and Yaglom

(1983), for example. A particular advantage of the technique is its ef®cient use of data

(compared with, say, a `method-of-moments' approach); for by using ®rst- and second-order
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properties of all the Fourier coef®cients, we are effectively incorporating all ®rst- and

second-order properties of the data into the estimation procedure.

In Section 2 of this paper, we review the necessary theory and derive some approximate

likelihood functions for estimating parameters; Section 3 gives the properties of the

resulting estimators. In Section 4 the technique is illustrated on data from the south-west of

England.

2. Theory

Let Yt denote a stochastic process of mean rainfall intensities, recorded at a site as averages

over intervals of length Ä time units. We assume:

(1) that Yt is strictly stationary, with mean ìY ;
(2) that for k > 2, the k th-order cumulant function, ck(r1, . . . , rkÿ1), of Yt satis®es

X1
r1�ÿ1

:::
X1

rkÿ1�ÿ1
jck(r1, . . . , rkÿ1)j,1: (1)

This requires that the process Yt has short-range rather than long-range dependence. Note

that in (1), the arguments fr j} are integer-valued lags; an integer lag r corresponds to a lag

of rÄ underlying time units.

2.1. Basic spectral theory

A particular consequence of (1) is that the second-order spectral density of the process exists

and is bounded; it is de®ned by

hY (ù) � 1

2ð

X1
r�ÿ1

c2(r)eÿiùrÄ ù 2 (ÿð=Ä, ð=Ä), (2)

where c2(.) is the autocovariance function of the series Yt. Using the results from Priestley

(1981, equations (4.12.24) and (7.1.12)), it is possible to show that

hY (ù) �
X1

k�ÿ1
g ù� 2kð

Ä

� �
3

sin((ùÄ� 2kð)=2)

[ùÄ� 2kð]=2

� �2
" #

(jùj < ð=Ä), (3)

where g(ù) is the theoretical spectral density of the underlying continuous-time rainfall

intensity process from which Yt is derived. This result follows from the fact that the

discretization into bins of length Ä is equivalent to ®rst applying a uniform ®lter of width Ä
to the original process, then sampling at intervals of length Ä (it is important to remember

that Yt is a process of rainfall intensities rather than depths). In practice, it is necessary to

approximate the in®nite sum in (3) by a ®nite one; however, this is not a problem as the sum

is dominated by the terms for small k. A discussion of the choice k in practice is deferred to

Section 4.1.
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2.1.1. Form of g(.) for a class of point process rainfall models.

A wide class of stochastic rainfall models is based on point processes ± see, for example,

Rodriguez-Iturbe et al. (1987; 1988) and Smith and Karr (1983). For this class we have been

able to derive the most general form of the spectral density g(.); before giving the result,

however, it is necessary to establish some notation. The basic model runs as follows:

(1) The rainfall intensity at any time is made up of a superposition of `rain cells',
each attached to an event of a stationary, orderly point process D which we shall call
the driving process. D has rate ë, and incomplete second-order spectral density g�D(:).
Note that this excludes the usual ë=2ð term, which is the contribution from a delta-
function component at the origin of the covariance density. For a discussion of the
spectral theory of point processes, see Bartlett (1963).

(2) Each cell is rectangular with random `depth', X, representing rainfall intensity,
and random duration, L. X and L are independent, and are realized independently and
identically for each cell. The mean and variance of X are ìX and ó 2

X respectively, and
the characteristic function of L is öL(:).

This class of models is clearly stationary because D is, and because X and L are realized

identically for every event of D. It may be shown that the spectral density of the continuous-

time rainfall intensity process is given, for ù 6� 0, by

g(ù) � 1

2ðù2
[2ðg�D(ù)ì2

X j1ÿ öL(ù)j2 � 2ëfì2
X � ó 2

Xgf1ÿR(öL(ù))g] (4)

which can be substituted into a truncated version of (3) to obtain the theoretical spectral

density of the aggregated process. When ù � 0, it is necessary to apply a limiting operation

to (3) and (4) to obtain the required result. The theoretical spectral densities g�D for some of

the most commonly used driving point processes are listed in the Appendix to this paper.

Note that (4) is applicable only to point-process rainfall models where cell depth and

duration are realized independently and identically for each cell. The `random ç' model of

Rodriguez-Iturbe et al. (1988), for example, does not fall into this category, for the cell

durations are not independent within storms in that formulation. Care should therefore be

exercised in the application of (4).

2.2. The sample Fourier coef®cients

Given data Y0, . . . , YNÿ1 from the process Yt, we may compute the sample Fourier

coef®cients

A p � 2

N

XNÿ1

t�0

Yt cos (ùp tÄ), B p � 2

N

XNÿ1

t�0

Yt sin (ùp tÄ), (5)

where

ùp � 2ðp

NÄ
, p � 0, 1, 2, . . . ,

N

2

� �
: (6)
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Because a nonsingular linear transformation of the data is involved, these coef®cients contain

all the information about a realization of Yt, in the sense that we can completely reconstruct

the realization from the coef®cients. Under the assumptions laid down previously, the

coef®cients have the further properties (Brillinger and Rosenblatt 1967) that they are, for

large N, approximately normally distributed and mutually independent. Speci®cally, we have:

A0 � N 2ìY ,
8ðhY (0)

N

� �
; (7)

Ap � N 0,
4ðhY (ùp)

N

� �
( p 6� 0); (8)

Bp � N 0,
4ðhY (ùp)

N

� �
(ùp 6� 0 or ð=Ä); (9)

Bp � 0 (ùp � 0, ð=Ä): (10)

From (6), it is clear that ùp can only take the value ð=Ä if N is even; this point, along with

the separate treatment required for both A0 and B0, requires some care. A further point is that

asymptotic normality of individual coef®cients does not necessarily extend to joint

asymptotic normality of large numbers of them.

Results (7)±(10) tell us that the periodogram at frequency ùp, de®ned as

I(ùp) � N

2
(A2

p � B2
p), (11)

may, when suitably scaled, be used to estimate the spectral density hY (ùp). It is, however,

inconsistent (Priestley 1981, Section 6.2) and needs to be smoothed in order to be useful.

This point is touched on later.

To ascertain the extent to which the assumption of multivariate normality can be justi®ed,

data have been simulated from various different models and simple graphical tests of

multivariate normality have been carried out. The test procedure used was a standard one ±

for details, see Krzanowski (1988), for example. For each model, 5000 realizations were

simulated. The sample Fourier coef®cients were calculated for each realization, and

standardized to have mean 0 and variance 1, according to results (7)±(10). The sum of

squares of the standardized coef®cients was then computed for a subset of the coef®cients,

and the empirical distribution function of this sum of squares plotted on chi-squared

probability paper with the appropriate degrees of freedom. If the multivariate normality

assumption holds, the results should appear as a straight line through the origin, with slope

1. Figure 1 shows some typical results. The model simulated here is of the type described

in Section 2.1.1, where the driving point process is a Bartlett±Lewis process with

exponential inter-offspring spacing (see the Appendix to this paper for a brief outline); and

cell depths and durations are exponentially distributed. The parameter values used here are

typical of those found in UK rainfall modelling (as reported in the literature). The data are

hourly, and the in®nite sum (3) was truncated at k � �20. The subsets of coef®cients were

chosen to be equally spaced on the frequency axis.

It is clear from Fig. 1(a) that limiting multivariate normality does not hold for all the

Fourier coef®cients. When only 5% of the coef®cients are used (Fig. 1(b)) the
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approximation is still inadequate; and it is only when less than 1% of the coef®cients are

used that the graphs for the larger sample sizes start to approach straight lines (Fig. 1(c)).

Notice that in Fig. 1(c), there is very little to distinguish between sample sizes of 30, 60

and 90 days; and the results for the 20-day sample are quite close to these. A general rule

of thumb, from this and other simulations, seems to be that limiting multivariate normality

holds typically for collections of less than 1% of the Fourier coef®cients; and that the

limiting behaviour is established with data sets of more than about 20 days' worth of data

Figure 1. Chi-squared probability plots for testing multivariate normality: (a) using all coef®cients;

(b) using 5% of coef®cients; (c) using 0.5% of coef®cients
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(for the parameter values used here, this corresponds to about ten storms, where a storm is

de®ned by a cluster of cells in the model).

2.3. Formulation of a likelihood function

Let us now suppose that we are interested in ®tting a model, parametrized by a vector

È � (è1, . . . , èK )9, to the series Y0, . . . , YNÿ1. From the distributional results obtained in the

preceding section, we can formulate an approximate likelihood function for È in terms of

collections of the Fourier coef®cients; speci®cally, the likelihood is of the form

L(È) � L(A0)Ð p L(A p)L(B p), where L(A p), L(B p) are normal probability densities. Suppose

the Fourier coef®cients are evaluated at frequencies fùp: p 2 Ð}, where Ð is a subset of the

integers f0, 1, . . . , [N=2]} such that the multivariate normal approximation for the

coef®cients holds. Then the log-likelihood is given by

ln L(È) � ÿ
X
p2Ð

1ÿ 1

2
ä p(N=2)

� �
I(ùp)

4ðhY (ùp; È)
� ln hY (ùp; È)

� �

ÿ ÷Ð(0)
1

2
ln hY (0; È)� N (Y ÿ ìY (È))2

4ðhY (0; È)

( )
� constant, (12)

where Y � A0=2 is the sample mean of the realization, ÷Ð( p) is an indicator set function

taking the value 1 if p 2 Ð and 0 otherwise, and äij denotes the Kronecker delta, whose

appearance is a consequence of (10).

2.4. Inclusion of all frequencies: a quasi-likelihood interpretation

It would be desirable to include all available frequencies in the set Ð, so as to make use of

all the data and improve the ef®ciency of the method. On the other hand, (12) would lose its

interpretation as a log-likelihood, for it has been seen that the joint normality of the Fourier

coef®cients can only reasonably be assumed for small collections of them. The fact that (12)

involves only ®rst- and second-order properties of the data suggests that it may be possible to

interpret it as a quasi-likelihood function (McCullagh and Nelder 1989, Chapter 9). We now

show that this is indeed so.

When N is odd and all frequencies except zero are included in the analysis, the objective

function (12) is of the form

ÿ
XP

p�1

I(ùp)

4ðhY (ùp; È)
� ln hY (ùp; È)

� �
(the argument is essentially the same when N is even and when zero frequency is included,

although the expressions involved are more complicated). The estimators resulting from this

expression must satisfy Ö(È) � 0, where Ö(È) is the vector of ®rst derivatives of the

objective function which has ith component
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ö(i)(È) � 4ð
XP

p�1

@hY (ùp; È)

@èi

(4ðhY (ùp; È))ÿ2(I(ùp)ÿ 4ðhY (ùp; È)): (13)

Now, to order T ÿ1, the periodogram ordinate I(ùp) has mean 4ðhY (ùp) and variance

(4ðhY (ùp))2; and the covariance between distinct periodogram ordinates is zero (Percival

and Walden 1993, p. 222). Let I denote the vector of periodograms, í(È) and V (È) its

mean vector and covariance matrix respectively, and D the P 3 k matrix of È-derivatives of

í(È). Then the estimator (ÈI , say) satis®es

D9Vÿ1(È)(I ÿ í(È)) � 0: (14)

But this expression has exactly the same form as a quasi-likelihood equation (McCullagh and

Nelder 1989, p. 333). Thus the proposed estimation procedure using all Fourier coef®cients

can be regarded as a quasi-likelihood procedure, treating the periodogram ordinates as data.

This is important, for the standard toolkit of likelihood-based inference becomes available.

Functions of the form (12) were ®rst introduced by Whittle (1953) as a means of

approximating the exact likelihood for Gaussian time-series models; the motivation, as here,

was that the spectral density of a model is easy to obtain whereas an exact likelihood is

not. The application of Whittle's method has been extensively discussed in the time-series

literature, although it is usually assumed that the series is Gaussian. Results for the

consistency and asymptotic normality of the Whittle estimators, when the series is not

Gaussian, were provided by Rice (1979). Large-sample properties of the estimators are

discussed in Section 3 of the present paper.

2.5. Improving the computational ef®ciency

In general, (12) will have to be maximized numerically, which can be time-consuming. The

main reason for this is that, when all frequencies are included, the spectral density hY (ùp; È)

must be calculated at [N=2]� 1 frequencies for each iteration. We now show that, by suitably

smoothing the periodogram and working at a coarser grid of frequencies, the computation

time can be substantially reduced while preserving our likelihood-based approach.

Consider splitting the data sequence into a number of segments of equal length.

Providing these segments are long enough, they will be approximately independent by

assumption (a result of (1)), so we can treat them as if they were independent replications

of the same stationary stochastic process. Speci®cally, let the number of segments be S;

then the length of each segment is [N=S] � M , say. Fourier coef®cients can be calculated

for each segment, over the grid of frequencies fùs p
: p � 0, 1, . . . , [M=2]g, where

ùS p
� 2ðp

MÄ
: (15)

This grid of frequencies is coarser than that in (6), re¯ecting the fact that we are now dealing

with shorter realizations. Denote by �I(ùS p
) the mean of the S periodograms at frequency ùS p

,

and by �A0 the mean Fourier coef®cent at zero frequency. Then the approximate log-likelihood

obtained by considering the Fourier coef®cients of each segment separately is
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ln LS(È) � ÿS
X[M=2]

p�1

1ÿ 1

2
ä p(M=2)

� � �I(ùS p
)

4ðhY (ùS p
; È)
� ln hY (ùS p

; È)

� �

ÿ S

2
ln hY (0; È)ÿ M

4ðhY (0; È)

XS

s�1

(�Ys ÿ ìY (È))2 � constant: (16)

This expression requires [M=2]� 1 terms to be evaluated at each iteration of the numerical

optimization process, as opposed to [N=2]� 1 for the original likelihood (12); hence, if a

large value of S can be chosen, substantial computational savings will result. Some comment

on the choice of S is called for: the argument is the same as that for spectral smoothing, and

may be found in Priestley (1981, Section 6.2.3) in greater detail. In order for the asymptotic

theory to hold, we require both the number of segments, S, and the length of the segments,

[N=S] to increase with N. A convenient way to do this is to set

S � [(NÄ)á] (17)

for some á 2 (0, 1) ( the Ä is included here so as to standardize between data at different

temporal resolutions). The choice of á is arbitrary; however, an important consideration is

that, given a ®nite sample of data, the individual segments should be long enough that the

sampling theory for the Fourier coef®cients holds. In Section 4 models are ®tted to a month's

rainfall data from the UK, and results using various different values of á are compared.

In Section 1 it was claimed that the spectral method makes ef®cient use of the available

data. If the data set is split then the individual segments can be completely reconstructed

from their Fourier coef®cients, but information on the ordering of the segments has been

lost. However, as the segments are assumed to be approximately independent, there is very

little information to be had here in any case; hence when a replication is subdivided, the

loss in ef®ciency is small, and we would expect little variation in the estimates. In the data

analysis reported in Section 4, this is indeed the case.

The periodogram average �I(ùS p
) in (16) is in fact the spectral estimate obtained by

smoothing the original periodogram using Barlett's window (Priestley 1981, p. 439), and

this suggests the use of other smoothed spectral estimates in place of �I(ùS p
) in (16). This

matter will not be pursued further here; our aim is to preserve as much information as

possible, and the procedure described above achieves this in a straightforward way while

maintaining a likelihood-based interpretation.

2.6. Multiple replications

It is convenient at this stage to extend the theory to the case when we have available a set of

replications of a rainfall intensity process which can, for practical purposes, be regarded as

independent. An example would be the case of a raingauge with several years' data; in this

case, the years could be regarded as replications if we were interested in modelling the

rainfall in one particular month. Where S replications are available (and assuming that they

are all of the same length N), it is easily shown that the likelihood function corresponding to

(12) is (when all frequencies are used)
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ln LS(È) � ÿS
X[N=2]

p�1

1ÿ 1

2
ä p(N=2)

� �
�I(ùp)

4ðhY (ùp; È)
� ln hY (ùp; È)

� �

ÿ S

2
ln hY (0; È)ÿ N

4ðhY (0; È)

XS

s�1

(�Ys ÿ ìY (È))2 � constant, (18)

where now �I(ùp) denotes the mean periodogram at frequency ùp obtained from the S

replications, and �Ys is the sample mean rainfall intensity from the sth replication). The

periodograms may also be used to assess the validity of the assumption that the replications

are independent and identically distributed ± see Diggle and Al-Wasel (1994), for example.

2.7. Comparing models

The motivation behind this method of parameter estimation was to develop a likelihood-based

approach to the problem. A particular advantage of this kind of approach is that it allows

different models to be compared objectively using standard techniques. Although neither (12),

(16) nor (18) can strictly be regarded as a log-likelihood unless a very small proportion of the

Fourier coef®cients is used, it has been shown that they are interpretable as quasi-likelihoods,

whence standard techniques such as likelihood ratio tests and the Akaike information

criterion (AIC) may be used to assess model ®t. The AIC is de®ned (Akaike 1974), when

(12) is used to estimate È, by

AIC(È) � ÿ2ln L(È)� 2K (19)

(recall that K is the number of parameters being estimated) and, where it is used, the aim is

to choose the model with the lowest AIC value (if either (16) or (18) is used to estimate È
then Ls(:) is used instead of L(.) in (19)). The principle behind the AIC is to minimize the

expected Kullback±Leibler distance between the ®tted and true models for the data (Akaike,

1974, Section IV). In fact the conclusions reported below do not depend critically on the use

of AIC in preference to various other similar criteria that have been suggested in the

literature.

In the present context, the use of either likelihood ratio tests or the AIC to compare

models implicitly involves a comparison between the ®tted and actual joint distributions of

the sample Fourier coef®cients. Hence, if (16) is used to estimate the parameters of each

model, the same value of á should be used in (17) for all models under consideration.

Further, because the objective functions considered here are quasi-likelihoods rather than

true likelihoods, the standard ÷2 null distributions for likelihood ratio testing must be

modi®ed (Kent 1982). This also implies some correction to the AIC if its information-

theoretic interpretation is strictly to be maintained, for its derivation makes use of these null

distributions. Determining the required correction to the AIC is beyond the scope of this

paper; however, note that it is needed essentially because the two alternative forms of the

Fisher information matrix (the expected score derivative matrix and the expected squared

score matrix, repectively) are equal only when the underlying family of joint densities for
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the Fourier coef®cients is correctly speci®ed. If these two matrices are approximately equal,

the uncorrected AIC is still a reasonable criterion for model comparison.

3. Properties of the estimators

The properties of estimators arising from a maximization of (12) are well known in the time-

series ®eld, so will only be sketched here. For a fuller account the reader should refer to Rice

(1979). Properties of estimators arising from (16) and (18) can be obtained in a similar manner. It

will be convenient to denote the true value of È by È0; in addition, we will denote the estimator

arising from (12) by È I, that arising from (16) by È II and that arising from (18) by È III.

3.1. Consistency

Under mild conditions, it is straightforward to show that all three classes of estimators are

consistent. Speci®cally, we have:

Lemma 3.1. Providing the mixing condition (1) holds, the set Ù of possible È-values is

compact, and the spectral density hY is continuous and unique for a given parametrization of

the model,

È I!Pr
È0 as N !1, (20)

with similar results holding for È II and È III .

The result for È I here is just that presented as Lemma 2.1 of Rice (1979); proofs of the

results for È II and È III follow in exactly the same way.

3.2. Convergence of the estimators

There are few results available for the large-sample properties of the estimators proposed

here; in this section, following Rice (1979), we examine the speed of convergence of the

estimators to the true value. The derivation is for È II ; the result for È I appears in Rice

(1979), and that for È III follows similarly (for this estimator, we assume that the number of

replications S stays constant, so that asymptotics are with respect to N only).

For large N , È II is close to È0, by Lemma 3.1. De®ne ö(i)(È) � @ln LS(È)=
@èi(i � 1, . . . , K), and de®ne Ö(È) � (ö(1)(È), . . . , ö(K )(È))9. Then

ö(i)(È0) � ö(i)(È II )�
XK

j�1

@ö(i)

@è j

����
È�È9

�
È( j)

II ÿÈ( j)
0

�
, (21)

where È( j)
II is the j th component of the vector È II , and È9 is on the line segment joining È0

and È II . Note that ö(i)(È II ) � 0 by de®nition; hence, combining all K equations (21) gives
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Ö(È0) � A(È II ÿÈ0), (22)

where A is a K 3 K matrix whose (i, j)th element is

Aij � @ö
(i)

@è j

����
È�È9

� @
2ln LS(È)

@èi@è j

����
È�È9

: (23)

The expansion (22) holds with probability tending to 1 as N !1.

Rearranging (22) gives

(È II ÿÈ0) � Aÿ1Ö(È0): (24)

In order to make use of result (24), it is necessary to establish large-sample

approximations for the right-hand side of the expression. We consider the case when

M � [N=S] is odd ± when M is even, the same procedure clearly applies. First, note that

when M is odd the log-likelihood (16) can be written

ln LS(È) � ÿS
X[N=2S]

p�1

�I(ùS p
)

4ðhY (ùS p
; È)
� ln hY (ùS p

; È)

 !
�Ë(È)� constant, (25)

where Ë(È) is the contribution from terms at zero frequency. Hence

ö(i)(È) � @ln LS(È)

@èi

� ÿS
X[N=2S]

p�1

@hY (ùS p
; È)

@èi

(hY (ùS p
; È))ÿ1 X ( p, È)� @Ë(È)

@èi

(26)

and

@2ln Ls(È)

@èi@è j

� S
X[N=2S]

p�1

(hY (ùS p
; È))ÿ2

@hY (ùS p
; È)

@èi

@hY (ùS p
; È)

@è j

(2X ( p, È)ÿ 1)

"

ÿX ( p, È)hY (ùS p
; È)

@2 hY (ùS p
; È)

@èi@è j

#
� @

2Ë(È)

@èi@è j

, (27)

where

X ( p, È) � ÿ
�I(ùS p

)

4ðhY (ùS p
; È)
� 1: (28)

Now standard results for the sampling theory of smoothed periodograms (for example,

Brillinger 1975, Section 5.6) imply that, providing hY is bounded below and @hY=@èi is

bounded above for all ùS p
, Efö(i)(È0)g � O(S) and varfö(i)(È0)g � O(N2Sÿ1); hence

ö(i)(È0) � O p(S)� O p(NSÿ1=2). An additional consequence of these results is that, for

large N , X ( p, È9) � o p(1) uniformly in p, providing hY is bounded below for all ùS p
and

is continuous, with continuous ®rst È-derivatives in the neighbourhood of È0. The ®rst

term in (27) is thus dominated, with probability tending to 1 as N !1, by the quantity

ÿS
X[N=2S]

p�1

(hY (ùS p
; È))ÿ2

@hY (ùS p
; È)

@èi

@hY (ùS p
; È)

@è j

:
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In addition, �Y!Pr
ìY (È0) as N !1 so, providing @ìY=@èi and @2ìY=@èi@è j are bounded,

the behaviour of Ë(È) and its derivatives is dominated by that of ln hY (0; È). Thus we can

approximate

@Ë(È)

@èi

� ÿ S

2hY (0; È)

@hY (0; È)

@èi

(29)

@2Ë(È)

@èi@è j

� S

2(hY (0; È))2

@hY (0; È)

@èi

@hY (0; È)

@è j

, (30)

and, providing @2 hY=@èi@è j is bounded above for all ùS p
, we can approximate

1

N

@2ln LS(È)

@èi@è j

� ÿ S

2N

@

@èi

ln hY (0; È)

� �
@

@è j

ln hY (0; È)

� �

ÿ S

N

X[N=2S]

p�1

@

@èi

ln hY (ùS p
; È)

� �
@

@è j

ln hY (ùS p
; È)

� �

� ÿ Ä

2ð

�ð=Ä
ù�0

@

@èi

ln hY (ù; È)

� �
@

@è j

ln hY (ù; È)

� �
dù � áij, say, (31)

as other terms in (27) will be small in comparison. The error involved in replacing the sum

by an integral is O(S=N )2, providing the second ù-derivative of the integrand is bounded on

the interval (0, ð=Ä).

So we can approximate the matrix A by Ná, where á is a K 3 K matrix with (i, j)th

element áij. Providing á is invertible, we thus have Aÿ1 � Nÿ1áÿ1; hence, from (24) and

the order of magnitude of Ö(È0), È II ÿÈ0 � O p(S=N � Sÿ1=2), and we have shown the

result for È II in the following:

Lemma 3.2. Under the conditions of Lemma 3.1, and providing that:

(1) the matrix á in (31) is non-singular;

(2) hY (:; È) does not vanish in the neighbourhood of È0;

(3) hY (:; È) is twice È-differentiable in the neighbourhood of È0, and that all its
®rst and second È-derivatives are bounded in this neighbourhood;

(4) the ®rst and second È-derivatives of ìY (È) exist and are bounded in the

neighbourhood of È0;

then, with probability tending to 1 as N !1, È I ÿÈ0 � O(Nÿ1=2); È II ÿÈ0 �
O(S=N � Sÿ1=2); and È III ÿÈ0 � O(Nÿ1=2).

The result derived for the estimator È II here could clearly be strengthened in principle,

for setting á � 0 (17) yields the estimator È I. The reason for the apparent anomaly is that

the standard results on the sampling theory of smoothed periodograms do not make any

assumptions on the frequencies at which the periodograms are calculated; in particular, the

covariance between periodogram ordinates is much less than those results would suggest

when we restrict ourselves to frequencies in the set fùS p
g. Unfortunately, it has not proved
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possible to obtain speci®c results for the magnitude of these covariances, so the weaker

result must stand at present.

It is also possible to show that, for large N, the estimators È I , È II and È III are

approximately normally distributed. The argument relies on the fact that, by (24), the error

matrix (È II ÿÈ0) is a linear combination of the {ö(i)}. These are, in turn, each a weighted

sum of smoothed periodograms, which themselves have a limiting normal distribution

(Brillinger and Rosenblatt 1967). Hence the error matrix (È II ÿÈ0) tends to a linear

combination of normal random variables, and is itself normally distributed. The covariance

matrix of the quantity A(È II ÿÈ0) may be deduced from that of the vector Ö(È0), and

depends on the fourth-order spectrum of the rainfall intensity process.

In fact, such distributional results are not very useful when applied to many of the models

in current use. Apart from the dif®culty in obtaining expressions for fourth-order spectra,

there are often problems with parameter identi®ability with these models, in the sense that

widely separated regions of the parameter space can give rise to similar objective function

values. This is a phenomenon which has been reported in the literature in connection with

other methods of parameter estimation (see, for example, Rodriguez-Iturbe et al. 1988, p.

288; Onof and Wheater 1993), and appears to be a feature of this type of model.

4. Application to data

The techniques described above are now illustrated using data, shown in Fig. 2, from a

raingauge in the south-west of England. They consist of 15-minute rainfall intensities (so that

Ä � 0:25) for December 1993. The gauge is of `tipping-bucket' type, with buckets of size

0.2 mm. The mean rainfall intensity in any 15-minute interval is therefore obtained by

counting the number of tips in that interval, and multiplying by 0.8 (to yield an intensity in

millimetres per hour). Figure 2 also shows the autocorrelation function, and estimated

spectral density, for these data. The spectral density was estimated using the smoothed

periodogram (�I(ùS p
) in (16)); the value of á used in (17) to obtain this was 0.3. Model ®tting

was carried out using both (12) and (16). Two separate values of á, 0.3 and 0.5, were tried in

the latter. When calculating the theoretical spectral density of the model, the in®nite sum in

(3) was truncated at k � �5.

The choice of á-values for the smoothed periodogram estimate was motivated by a desire

to assess the robustness of the method in cases when the sample size is not large enough to

claim that limiting behaviour has been attained. In particular, when á � 0:5, in our case the

data are being split up into segments of 27 hours' duration, which is clearly well below the

length needed to claim that the large-sample approximations hold. Even with á � 0:3, the

segments are only 106 hours long; a comparison of these results with those obtained when

á � 0 will give an idea of the sensitivity of the method to such departures from assumptions.

An inspection of Fig. 2 reveals that the series appears stationary, consisting of 12±13

Figure 2. Rainfall intensity series used in Section 4, together with autocorrelation function and

periodograms: (a) rainfall intensity series for gauge 3; (b) autocorrelation function; (c) estimated

spectral density
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`storms' interspersed with dry periods. Of these storms about 7 or 8 are quite major events,

with smaller events occurring in the ®rst 100 hours and around the 400- and 600-hour

periods. There is some quasi-periodicity in the data, indicated by a sinusoidal

autocorrelation function and a peak in the smoothed periodogram away from the origin.

The mean rainfall intensity is 0.163 mm hÿ1.

Ten separate models, of the point-process type described in Section 2.1.1, were ®tted to

the data set. Each is speci®ed by its driving point process, together with the distributions of

cell depth and duration. The speci®cations for the various models are shown in Table 1

(note that the ®tting method cannot handle depth distributions with more than two

parameters, as the properties of the cell depths enter the spectral density (4) only through

their mean and variance). For a discussion of the Poisson, Bartlett±Lewis and Neyman±

Scott point-process models, see Cox and Isham (1980, Chapter 3); for the Markov renewal

model, see Smith and Karr (1983). For a brief summary of all these models, see the

Appendix to the present paper.

For the `clustering' models 3±8, the number of cells per storm (that is, the number of

offspring per parent in the point process) was taken to have a geometric distribution, and parent

events were not included in the process (there is no cell at the `storm origin'). For the Bartlett±

Lewis models, the distribution of inter-cell times within a storm was taken to be exponential.

For the Markov renewal model, an exponential distribution of dry period lengths was used. The

two different Neyman±Scott models ± one with a Gaussian scatter of cells about a storm

origin, and the other with an exponential scatter ± were included as they will give rise to rather

different storm pro®les; the Gaussian scatter will produce symmetrical storms, while the

exponential scatter will produce storms which start intensely and then gradually decay.

Experience, both of this and of other methods of model ®tting, has shown that for the

type of model we are considering, numerical optimization algorithms are frequently

hampered by the presence of many local optima in the function to be optimized. It is

therefore necessary to perform the optimization several times from different starting points,

and to select the best set of parameter estimates from the results.

In our work, the ®tting strategy was as follows: for models 1, 3, 5, 7 and 9, initial

estimates were obtained from tables of parameters in Onof (1992). Random perturbations

Table 1. Speci®cation of models ®tted to the data set used in Section 4

Model Driving process Depth distribution Duration distribution

1 Poisson Exponential Exponential

2 Poisson 2-parameter Gamma

3 Bartlett±Lewis Exponential Exponential

4 Bartlett±Lewis 2-parameter Gamma

5 Neyman±Scott, Gaussian scatter Exponential Exponential

6 Neyman±Scott, Gaussian scatter 2-parameter Gamma

7 Neyman±Scott, Exponential scatter Exponential Exponential

8 Neyman±Scott, Exponential scatter 2-parameter Gamma

9 Markov renewal Exponential Exponential

10 Markov renewal 2-parameter Gamma

A spectral method for estimating parameters in rainfall models 315



were added to these initial estimates to obtain 20 different sets of starting values for the

numerical optimization procedure. The Fortran NAG routine E04JAF was then used to carry

out the optimization from each of these starting values. The best sets of parameter estimates

thus obtained were used as initial estimates for the remaining models (which are simply

generalized versions of the exponential models), and perturbed to give 20 different starting

values for each model.

4.1. Results of the ®tting procedure

The results reported in this section represent, for each model, the best of the 20 sets of

parameter estimates obtained. In assessing model ®t, the Akaike information criterion (19)

was used ± although to maintain its information-theoretic interpretation, it should strictly be

corrected for the fact that the estimates are not true likelihood estimates (recall Section 2.7).

For the present discussion, it seems a reasonable (and simple) criterion to use merely for

illustrative purposes ± its information-theoretic interpretation may be doubtful, but it still

provides a quick and simple means of penalizing overparametrized models, and (as will be

seen below) the results it produces are sensible and agree with those reported elsewhere in

the literature (for example, Rodriguez-Iturbe et al. 1987; 1988).

Table 2 shows the AIC values achieved by the different models, for the different values

of the smoothing parameter á. It is immediately clear that the Poisson models 1 and 2

provide the poorest ®t, with the Markov renewel models 9 and 10 doing rather better in

AIC terms. However, it is the clustering models 3±8 which have the lowest AIC values and

hence provide the best ®t. It is interesting to note the difference between the Neyman±Scott

models with Gaussian cell scatter and those with exponential scatter, with the exponential

scatter models performing rather better. The conclusion from this is that storms are not

symmetrical, and that rainfall data are not time-reversible; this is in line with results

reported by other authors, among them Rodriguez-Iturbe et al. (1988, p. 295). There is

Table 2. AIC values for models ®tted to this data set (asterisks indicate best-®tting models)

AIC value

Model No. of parameters á � 0.0 á � 0.3 á � 0.5

1 3 ÿ18 001.4 ÿ1734.80 ÿ292.298

2 5 ÿ18 099.3 ÿ1744.32 ÿ293.147

3� 5 ÿ18 412.8 ÿ1793.19 ÿ305.771

4 7 ÿ18 410.9 ÿ1789.29 ÿ301.972

5 5 ÿ18 383.0 ÿ1788.57 ÿ304.491

6 7 ÿ18 381.6 ÿ1785.35 ÿ300.526

7� 5 ÿ18 415.1 ÿ1793.48 ÿ305.974

8 7 ÿ18 411.4 ÿ1789.48 ÿ301.974

9 5 ÿ18 186.5 ÿ1749.58 ÿ290.039

10 7 ÿ18 216.1 ÿ1751.00 ÿ289.527
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hardly any difference between the Neyman±Scott exponential scatter and Bartlett±Lewis

models.

Turning now to the speci®cation of cell depth and duration, it is seen that the exponential

distribution seems an adequate choice for both of these quantities; the use of two-parameter

distributions improves the ®t only for the worst-®tting models (Poisson and Markov

renewal).

The conclusions regarding model ®t are affected little by the choice of the smoothing

parameter á. In fact, the rankings of the models by AIC value are exactly the same for

á � 0:0 as they are for á � 0:3. The rankings for á � 0:5 differ slightly, this being due

mainly to the fact that there are far fewer periodogram ordinates contributing to the

likelihood in this case, so the ability to distinguish between models is lost if they perform

similarly.

It is to be expected, from Lemma 3.2 and from the simulation results reported in Section

2.2, that the choice of á may affect the values of the parameter estimates themselves. In

fact, the estimates obtained using a value of 0.3 were generally very similar to those using a

value of zero; those resulting from á � 0:5 were substantially different, however. The

general pattern was that estimates were more robust to changes in á for the better-®tting

models. The least robust parameters were: the cell depth parameters for models with two-

parameter depth distributions; and the mean number of cells per storm in all clustering

models, which tended to increase with á (this being compensated for by a decrease in the

storm arrival rate).

For the two best-®tting models, 3 and 7, the parameter estimates are given in Table 3.

For reasons that have already been discussed, the estimates for á � 0:0 are preferable to

those when á � 0:3, and from here on we con®ne our observations to these estimates,

noting simply that there is very little difference in practical terms between the two sets, and

that the second set was produced around seven times faster than the ®rst.

There is broad agreement in Table 3 when we compare the models, in particular with

regard to the properties of individual cells. Both ®tted models yield a mean rainfall

intensity of 0.164 mm hÿ1; the expected number of storms in the month is 8.0 for the

Bartlett±Lewis model, and 6.5 for the Neyman±Scott. These results tie in well with our

earlier assessment of the data, although it is clear that the method has effectively ignored

Table 3. Parameter estimates for best-®tting models (á � 0.0 and 0.3)

Bartlett±Lewis model Neyman±Scott model

Parameter á � 0.0 á � 0.3 á � 0.0 á � 0.3

Mean cell depth (mm hÿ1) 3.79 3.73 3.76 3.69

Mean cell duration (h) 0.0986 0.107 0.0928 0.103

Storm arrival rate (hÿ1) 0.0107 0.0088 0.0087 0.0074

Mean no. of cells=storm 40.9 46.6 53.8 58.1

Parameter of inter-cell dbn 9.96 9.87 N=A
Parameter of dispersal dbn N=A 0.224 0.206
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the smaller events. The theoretical spectra hY (:) are shown for both models in Fig. 3,

whence it is seen that neither model captures the observed quasi-periodicity (the spectra are

both maximal at the origin).

In this work, the in®nite sum at (3) was truncated at k � �5. Similar ®tting exercises

have been carried out for different values of k. It was found that, for jkj > 2, parameter

estimates changed very little, so for 15-minute rainfall data it probably suf®ces to truncate

(3) at k � �2; for data at coarser temporal resolutions, this must clearly be increased

accordingly.

There seems little point in using the theory developed in Section 3 to generate con®dence

intervals for the parameter estimates, because there are so many local maxima to the

likelihood function. Indeed, there appear to be widely separated regions of the parameter

space that are consistently favoured over others; in particular, estimates of the mean number

of cells per storm and storm arrival rate lie in distinct `bands'. This may indicate that there

is another layer of clustering in the data which has not been captured by the models, or that

there is more than one type of storm.
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Figure 3. Theoretical spectra for clustering models ®tted to this data set
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5. Discussion

The data analysis in the previous section demonstrates that this method of ®tting models is

feasible, and that it gives sensible results. The use of the smoothed periodogram in the ®tting

procedure gives rise to increased bias in the estimates for ®xed sample sizes; but the

considerable computational savings more than compensate for this, especially in view of the

number of local optima in the objective function. The presence of local optima may appear

disturbing, but it is a common feature of the type of model being considered here that

different sets of parameters can produce very similar behaviour; the phenomenon is also

encountered with the more usual moment-based approach, and is essentially due to the

simplicity of the models rather than any defect on the part of the estimation procedure.

The method is particularly useful when applied to models for which certain theoretical

properties are hard to derive. The only theoretical knowledge required of a model is its

mean and second-order spectral density; this allows us to remove certain assumptions

(regarding the exponential distribution of cell durations, for example) that are typically

made in order to ®t models using methods of moments. In addition, it is possible to drop

the assumption that cell depth and duration are independent, and still obtain tractable

expressions for theoretical spectra.

Another advantage of the technique is that, because of its ef®cient use of the data, it can

be used with relatively small data sets (compared with, say, methods of moments). However,

because of its reliance on ®rst- and second-order properties the ®tted models tend, whatever

the sample size, to be poor at capturing features such as the wet and dry interval properties

of the data. In applications, it is often more important to model such features than to

capture fully the low-order moment structure of the data; hence this is a potential

disadvantage. A more detailed investigation of this, and other issues of an applied nature, is

currently in preparation.

Although the objective functions (12), (16) and (18) were derived as likelihood functions

by treating the sample Fourier coef®cients as data, it has been seen that in general these

functions cannot strictly be regarded as likelihoods. However, it is possible to view them as

quasi-likelihood functions if we consider the data to be the vector of periodogram ordinates;

this perspective allows models to be compared using standard likelihood-based techniques.

A possible re®nement of the method would involve the inclusion of terms which are

O(Tÿ1) in the covariance matrix of the periodograms.

This work is currently being extended to ®t spatiotemporal rainfall models to rain radar

data.

Appendix: spectral densities of some common point-process
models

The spectral densities listed are the incomplete spectral densities (g�D(:) in the notation of

Section 2.1.1). We give the general formula and, where necessary, the value at zero frequency.

A fuller account of most models may be found in Cox and Isham (1980, Chapter 3).
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Poisson process

A renewal process whose intervals are exponential random variables with parameter ë.

g�D(ù) � 0 8ù: (32)

Renewal process

Intervals between events are i.i.d. with mean í; and their characteristic function is ö(.).

g�D(ù) � 1

íð
R

ö(ù)

1ÿ ö(ù)

� �
(33)

g�D(0) � 0: (34)

Bartlett±Lewis process

`Parent' events form a Poisson process of rate r; each parent gives rise to a random number,

Z, of offspring, which form a ®nite renewal process starting at the position of the parent. Z

has mean ìZ and probability generating function ÐZ(:). The inter-offspring distribution has

characteristic function ö(:). Parents may or may not be included in the ®nal process; the

results here are for when they are not.

g�D(ù) � r
ð
R

ö(ù)

1ÿ ö(ù)
ìZ ÿ 1ÿÐ Z(ö(ù))

1ÿ ö(ù)

� �� �
(35)

g�D(0) � r
2ð

EfZ(Z ÿ 1)g: (36)

Neyman±Scott process

As Bartlett±Lewis, but now offspring are independently and identically scattered about the

parent event according to some distribution with characteristic function ö(:). Again, the

results are for when parents are not included.

g�D(ù) � r
2ð

EfZ(Z ÿ 1)gjö(ù)j2 8ù: (37)

Generalized Neyman±Scott process (Chandler 1993, Section 2.2.6)

As Neyman±Scott, but without the restriction that the parent process be Poisson. We assume

it has incomplete spectral density g�P(:). Parents are not included.

g�D(ù) � jö(ù)j2
2ð

[rEfZ(Z ÿ 1)g � 2ðì2
Z g�P(ù)] 8ù: (38)
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Markov renewal process (Smith and Karr 1983)

`Wet' periods and `dry' periods alternate. The length of wet periods is exponentially

distributed with mean ã; and the legth of `dry' periods has mean ì and characteristic

function ö(:). The length of the current period is independent of all previous periods. During

dry periods, no events occur; during wet periods, events occur in a Poisson process with rate

r.

g�D(ù) � r2ã

ð(ã� ì)
R

i(ö(ù)ÿ 1)

ù(1ÿ iùãÿ ö(ù))

� �
(39)

g�D(0) � 0, (40)

the latter result following from the fact the process can be represented as a renewal process.
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