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Let (Yn) be a sequence of independent random variables with common distribution F and de®ne the

iteration: X 0 � x0, X n :� X nÿ1 _ (áX nÿ1 � Yn), á 2 [0, 1). We denote by D (Öã) the domain of

maximal attraction of Öã, the extreme value distribution of the ®rst type. Greenwood and

Hooghiemstra showed in 1991 that for F 2 D (Öã) there exist norming constants an . 0 and bn 2 R

such that aÿ1
n fX n ÿ bn=(1ÿ á)g has a non-degenerate (distributional) limit. In this paper we show

that the same is true for F 2 D (Øã) [D (Ë), the type II and type III domains. The method of proof

is entirely different from the method in the aforementioned paper. After a proof of tightness of the

involved sequences we apply (modify) a result of Donnelly, concerning weak convergence of Markov

chains with an entrance boundary.
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1. Introduction

Let (Yn)n>1 be a sequence of independent random variables with common distribution

function F and de®ne the iteration

X 0 � x0, X n :� X nÿ1 _ (áX nÿ1 � Yn), n > 1, á 2 [0, 1): (1)

We denote by D (G) the domain of maximal attraction of the distribution G, where G is one

of the extreme value distributions. For F 2 D (G) and an . 0, bn 2 R such that

F n(anx� bn)! G(x), for all x, we de®ne, for n > 1,

Yn, j :� Y j ÿ bn

an

, j � 1, 2, . . . :

For á 2 [0, 1) and x0 2 R, the random element X n(:) 2 D[0, 1) (the space of cadlag

functions, equipped with the Skorohod topology) is de®ned by
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X n(t) :�
aÿ1

n x0 ÿ bn

1ÿ á

� �
, 0 < t , nÿ1,

X n

jÿ 1

n

� �
_ áX n

jÿ 1

n

� �
� Yn, j

� �
,

j

n
< t ,

j� 1

n
, j � 1, 2, . . . :

8>>><>>>: (2)

Observe that the relation between the sequence of random variables X n given by (1) and the

sequence of processes X n(:) is

X n

j

n

� �
� aÿ1

n X j ÿ bn

1ÿ á

� �
: (3)

The motivation for studying recursive sequences such as (1) comes from a stochastic

solar energy model (cf. Haslett 1980). Note that for á � 0 the sequence X n is the sequence

of partial maxima:

X n � x0 _ Y1 _ � � � _ Yn,

whereas for á � 1 (this value is not included in the de®nition (1)) we obtain

X n � x0 � [Y1]� � � � � � [Yn]� ([x]� � x _ 0, x 2 R):

Hence the sequence X n de®ned by (1) is between maxima and sums of independent random

variables, and from that viewpoint of theoretical interest.

Greenwood and Hooghiemstra (1991) showed that for F 2 D (Öã), where

Öã(x) :� exp (ÿxÿã)1[0,1)(x),

the process X n(:) converges weakly in D[0, 1) to a self-similar Markov process Z(:).
Furthermore the distribution of Z(1) admits a density há on (0, 1), given as the unique

density solution of the equation

há(x) � ã

x

�x

0

(xÿ áu)ÿãhá(u) du, x . 0:

In this case X n(0) � aÿ1
n fx0 ÿ bn=(1ÿ á)g ! 0, and the proof proceeds by showing that the

functional induced by (2) on the point process
P

ä( j=n,Yn, j) is continuous.

In this paper we prove weak convergence of X n(:) for F 2 D (Øã) [D (Ë), where

Øã(x) :� exp [ÿ(ÿx)ã]1(ÿ1,0](x)� 1(0,1)(x),

Ë(x) :� exp (ÿeÿx):

For F 2 D (Øã) [D (Ë) we have X n(0) � aÿ1
n fx0 ÿ bn=(1ÿ á)g ! ÿ1. In these cases the

method of proof is entirely different from that in the work of Greenwood and Hooghiemstra

(1991). It is based on the weak convergence of Markov processes to a limiting Markov

process with entrance boundary. The proof uses monotonicity of the relevant Markov process

and tightness of the sequence X n(t) for ®xed positive t. In Sections 2 and 3 we prove weak

convergence, aside from the tightness of X n(t), which we postpone to Section 4.
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2. The convergence result for type II distributions

Let F 2 D (Øã); then r :� sup fx: F(x) , 1g,1, and 1ÿ F(r ÿ xÿ1) � xÿãL(x), with L

slowly varying at in®nity. Set bn � r and an :� r ÿ inf fy: 1ÿ F(y) < nÿ1g. The points

( j=n, Yn, j), n > 1, j � 1, 2, . . . are contained in E :� (0, 1) 3 (ÿ1, 0). To prepare for the

formulation of the convergence result we ®rst specify what will be the limiting Markov

process. Denote by N a Poisson point process on E with intensity measure the product of

Lebesgue measure dt and the measure dì, where

ì(y, 0) � jyjã, y , 0:

For x , 0 we denote by Nx the points of N in the strip (0, 1) 3 [x, 0). We order the points of

Nx according to the ®rst coordinate and denote them by (t1, j1), (t2, j2), . . . , where

0 , t1 , t2 , � � � and jk 2 [x, 0). The continuous-time Markov process Zx(:) with state space

[x, 0) is de®ned by

Zx(t) :� x, 0 < t , t1,

Zx(t kÿ1) _ fáZx(t kÿ1)� jkg, t k < t , t k�1:

�
(4)

We shall show that, for x! ÿ1, the process Zx(:) converges almost surely to a process Z(:)
with Z(0) � ÿ1, almost surely, whereas, for any t . 0, we have ÿ1, Z(t) , 0, almost

surely, and where the conditional distribution of (Z(s)jZ(t) � x) is given by the distribution

of Zx(sÿ t), s . t. This ®nal statement is clear from the de®nition of Zx. The process Z(:)
will be the limit of X n(:) on D(0, 1). Here is a proof of the statements concerning Z(:).

Since we have, for x , y and each t > 0,

Zx(t) < Z y(t) < 0,

the almost sure convergence of Zx(t) to a value Z(t), possibly ÿ1, follows. As for each x the

process Zx(:) is non-decreasing we obtain that Z(:) is non-decreasing and we hence conclude

that Zx(:) converges almost surely to a non-decreasing random function Z(:), as x! ÿ1. If

we show that for arbitrary t . 0 the collection II :� fZx(t), x , 0g is uniformly tight, then

ÿ1, Z(t) < 0, t . 0. The tightness of II is a consequence of the three lemmas below, the

®rst of which goes back to ReÂnyi and is well known.

Lemma 1. Fix x , 0. Let ó j, j � 1, 2, . . . be the points of a Poisson process on R� with

intensity jxjã. Independent of this Poisson process we de®ne an independent, identically

distributed sequence â1, â2, . . . with distribution

P(â1 < y) � 1ÿ
���� y

x

����ã, x < y < 0:

Then the point process N 9x :�P jä(ó j,â j) is equal in distribution to Nx.

Lemma 2. Let (X n) be de®ned by (1) with initial value X1 � ÿ1, and with (Yn) an

independent, identically distributed sequence with distribution

F(y) � 1ÿ jyjã, ÿ1 < y < 0: (5)
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Then

sup
n>1

n1=ãEX n > A,

where A , 0 is given by jAjã :� f(1� ã)=ãg(1ÿ á)ÿ1ÿã.

Remark 1. Note that F given in (5) belongs to D (Øã) and that for this speci®c distribution

the norming constants are given by bn � 0 and an � nÿ1=ã. The proof below is equal to the

tightness proof of Theorem 3 in Section 4 for F given in (5). Because of the smoothness of F

the proof of Lemma 2 is easier than that of Theorem 3.

Proof. The conditional expectation E(X n�1jX n) � X n �
� 0

(1ÿá)X n
f1ÿ F(y)g dy; so by taking

double expectations and using the Jensen inequality

EX n�1 � Eg(X n) > g(EX n), (6)

where g(u) :� u� f(1ÿ á)jujg1�ã=(1� ã), ÿ1 < u < 0. Put un :� EX n and vn :� Anÿ1=ã.

We shall prove by induction that un > vn for all n > 1. For n � 1, u1 � ÿ1 and

v1 � A ,ÿ1. Assume that un > vn for some n. By (6) and the monotonicity of g,

un�1 > g(un) > g(vn):

The inequality g(vn) > vn�1 follows because n[1ÿ fn=(n� 1)g1=ã] < 1=ã, for all n > 1 and

ã. 0. u

Lemma 3. For any t . 0,

lim
M!1

lim
x!ÿ1 P(Zx(t) > ÿM) � 1: (7)

Proof. By monotonicity it is suf®cient to show (7) for a sequence xn ! ÿ1. Let

ôn :� inf fs . 0: # points of N contained in the set (0, s] 3 [ÿn1=ã, 0) � ng:
Observe from Lemma 1 that, for xn � ÿn1=ã, there holds Zxn

(ôn)�d n1=ãX n, if X1 :� ÿ1 and

F given in (5). Because N is a Poisson process with intensity dt 3 dì the random variable ôn

is the sum of n independent and exponentially distributed random variables each with

parameter n. It is straightforward that ôn ! 1, a.s. Hence it follows from Lemma 2 and the

monotonicity of Zx(:) that for each t . 1 the statement (7) holds. The result for 0 , t < 1 is

easily obtained by noting that for any subsequence nk we have, with mk � [nk t],

lim
k!1

n
1=ã
k X [nk t] � tÿ1=ã lim

k!1
m

1=ã
k X m k

: u

We now formulate and prove our main result for F 2 D (Øã).

Theorem 1. Let F 2 D (Øã) and x0 , r=(1ÿ á). On D(0, 1) we have

X n(:)!d Z(:), (8)

where Z(:) is the Markov process with entrance boundary introduced above.
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Proof. The coordinate projection X n(t) at time t . 0 is uniformly tight as a consequence of

Theorem 3 in Section 4, because

lim
n!1

a[nt]

an

� tÿ1=ã,

and

X n(t) � aÿ1
n X [nt] ÿ r

1ÿ á

� �
� a[nt]

an

aÿ1
[nt] X [nt] ÿ r

1ÿ á

� �
:

Next we check that the sequence X n(:) is tight in D[a, b], the space of cadlag functions

with t 2 [a, b] for each pair a, b with 0 , a , b ,1. Given that X n(a) � x 2 [ÿM , 0], the

process X n(t), t > a, is non-decreasing and converges weakly to Zx(t ÿ a), t > a, because

of convergence of the underlying point processes and continuity of the map

(x, y)! x _ (áx� y). Hence, if nk is a subsequence for which X n k
(a) converges weakly

on R, then X nk
(:) converges weakly on D[a, b]. Consequently the sequence X n is relatively

compact on D[a, b] (and hence tight by Prohorov's theorem).

Take a particular weakly convergent subsequence of X n(:) and denote its limit by

Ẑ(:) 2 D(0, 1) (for convenience we shall also index the subsequence by n). For t . 0 we

denote by C t the set of continuity points of the distribution of Ẑ(t). We shall show that the

process Ẑ(:) satis®es the following.

(i) For each M . 0, limh#0 P( Ẑ(h) < ÿM) � 1.

(ii) For 0 , s , t, x 2 C s and y 2 C t,

P( Ẑ(s) < x, Ẑ(t) < y) �
� z

ÿ1
P( Ẑ(s) 2 du)P(Zu(t ÿ s) < y):

(iii) The ®nite-dimensional distributions of Ẑ(:) coincide with those of Z(:).

From (iii) the theorem follows, because the ®nite-dimensional distributions form a

determining class.

If ÿM 2 C h, then

P( Ẑ(h) < ÿM) � lim
n!1 P(X n(h) < ÿM)

> lim
n!1 P( sup

1< j<[nh]

Yn, j < ÿM(1ÿ á))

� exp fÿhMã(1ÿ á)ãg ! 1, h # 0:

This proves (i).

For 0 , s , t, x 2 C s and y 2 C t,

P( Ẑ(s) < x, Ẑ(t) < y) � lim
n!1 P(X n(s) < x, X n(t) < y)

� lim
n!1

�x

ÿ1
P(X n(s) 2 du)P(X n(t) < yjX n(s) � u):
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Since for each u we have P(X n(t) < yjX n(s) � u)! P(Zu(t ÿ s) < y) and, since the map

u! P(Zu(t) < x) is bounded and continuous, we obtain (ii) from the de®nition of weak

convergence.

In order to prove (iii) for the one-dimensional distributions write, for 0 , h , t and

x 2 C t,

P( Ẑ(t) < x) �
�0

ÿ1
P( Ẑ(h) 2 du)P(Zu(t ÿ h) < x)

>

�ÿM

ÿ1
P( Ẑ(h) 2 du)P(Zu(t ÿ h) < x)

> P(ZÿM (t ÿ h) < x)P( Ẑ(h) < ÿM)! P(Z(t) < x),

by letting ®rst h # 0 and then M !1. On the other hand

P( Ẑ(t) < x) �
�0

ÿ1
P( Ẑ(h) 2 du)P(Zu(t ÿ h) < x)

< P(Z(t ÿ h) < x)! P(Z(t) < x):

Hence the distribution of Ẑ(t) coincides with that of Z(t). Statement (iii) for two-dimensional

distributions and also for arbitrary ®nite-dimensional distributions is now an easy

consequence of (ii) and the equality of the one-dimensional distributions at each positive

time t. u

Remark 2. The above proof is an adaption of the proof of Theorem 1 of Donnelly (1991).

One of the differences is that in the present paper the state space of the Markov process is a

subset of R, whereas Donnelly treats countable state spaces; also the way we prove tightness

on D(0, 1) differs from Donnolly's approach.

Corollary 1. For F 2 D (Øã) and (X n), with x0 , r=(1ÿ á), the sequence de®ned in (1), we

have

aÿ1
n X n ÿ bn

1ÿ á

� �
!d X ,

where the limit X has density há on (ÿ1, 0), given by the unique density solution of the

functional equation

há(x) � ã

jxj
�x

x=á
jxÿ áujãhá(u) du, x , 0: (9)

Proof. For x , 0, an elementary argument using the de®nition of Z(:) gives, for h! 0,

P(Z(t � h) . x)ÿ P(Z(t) . x) � h

�x

x=á
jxÿ áujãP(Z(t) 2 du)� o(h):
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This equation can be rewritten, using the self-similarity of Z(:),

P(Z(1) . x(t � h)1=ã)ÿ P(Z(1) . xt1=ã) � h

�x

x=á
jxÿ áujãP(Z(1) 2 t1=ã du)� o(h):

The functional equation (9) now follows by standard arguments and by using the equality

X �d Z(1). That (9) has a unique density solution can be seen by calculating the moments

ìk :�
�0

ÿ1
jxjkãhá(x) dx, k � 0, 1, . . . :

It follows from (9) that

ìk � ìk�1

�1

á
ãy kãÿ1(yÿ á)ã dy,

and hence by a theorem of Carleman (cf. Feller 1971, p. 227), the moments ì0 � 1, ì1, . . .
uniquely determine the density há. u

3. The convergence result for type III distributions

In this section we treat the case where F 2 D (Ë). In order to de®ne the limit process of

X n(:) for this case let N be the Poisson process on (0, 1) 3 R with intensity measure

dt 3 dì, where ì(x, 1) � eÿx, x 2 R. The point process Nx is the restriction of N to

(0, 1) 3 (x, 1). On the points (t1, j1), t2, j2), . . . , of Nx, we de®ne Zx(:) by (4). Further we

denote by Z(:) the almost sure limit of Zx(:), as x! ÿ1. Along the lines of Section 2 we

have the following.

Theorem 2. Let F 2 D (Ë) and x0 , r=(1ÿ á). On D(0, 1) we have

X n(:)!d Z(:):

Corollary 2. For F 2 D (Ë) and (X n), with x0 , r=(1ÿ á), the sequence de®ned in (1), we

have

aÿ1
n X n ÿ bn

1ÿ á

� �
!d X ,

where the limit X has density há on R given by

há(x) :� (1ÿ á)fÃ((1ÿ á)ÿ1)gÿ1 exp fÿxÿ eÿx(1ÿá)g, x 2 R, (10)

and where Ã(t) :� �1
0

x tÿ1eÿx dx, t . 0.
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Proof. For x 2 R and h! 0,

P(Z(t � h) . x)ÿ P(Z(t) . x) � h

�x

ÿ1
exp fÿ(xÿ áu)gP(Z(t) 2 du)� o(h): (11)

From (11) the density of X �d Z(1) can be obtained, using the self-similarity of

exp fÿZ(t)g. u

Remark 3. Note that the density in (10) has the form

há(x) dx � c exp (ÿáx) dË fx(1ÿ á)g, á 2 [0, 1):

However, for á 6� 0 this density is not of the Gumbel type, i.e., there are no constants a and b

such that

há(x) dx � dË(áx� b):

4. Tightness of sequences

In this section we prove tightness for the sequence

aÿ1
n X n ÿ bn

1ÿ á

� �
,

with (X n) the sequence given by (1).

Theorem 3. For F 2 D (Øã) and x0 , r=(1ÿ á), there exist norming constants an . 0 and

bn 2 R such that the sequence fX n ÿ bn=(1ÿ á)g=an is tight on (ÿ1, 0). A possible choice

of (an) and (bn) is

bn � r, an :� r ÿ inf fx: 1ÿ F(x) < nÿ1g:

Proof. Note by induction that X n < x0 _ M n=(1ÿ á), where M n � Y1 _ Y2 � � � _Yn,

however, it is not possible to obtain a lower bound for X n in terms of M n. From the well

known extreme value limit for (M n ÿ bn)=an we obtain 0 as a distributional upper bound for

fX n ÿ bn=(1ÿ á)g=an.

Choose a sequence èn of positive real numbers with an=èn ! 1, and satisfying

lim
n!1 n 1ÿ èn�1

èn

� �
� ãÿ1: (12)

This is possible since an � a(n), where

a(y) :� r ÿ inf fx: 1ÿ F(x) < yÿ1g, y > 1,

and a is regularly varying; for details see Galambos and Seneta (1973) and de Bruijn (1959).

Our goal is to prove that there exists a constant A0 . 0 and an integer n0 such that

E
X n ÿ r=(1ÿ á)

èn

> ÿA0, n > n0: (13)
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This inequality, together with the upper bound X n < x0 _ M n=(1ÿ á), implies tightness of

fX n ÿ bn=(1ÿ á)g=èn and hence of fX n ÿ bn=(1ÿ á)g=an, since an=èn ! 1. So all we

need to prove is inequality (13).

Choose A1 . 0 with A
ã
1 � 3

2
[f(ã� 1)=ãg(1ÿ á)ÿ1ÿã], and put ç � (4ã)ÿ1. Since

nf1ÿ F(r ÿ ènz)g converges uniformly to zã on compacta, we can ®nd n1 such that, for

n > n1,

1

A1

�A1(1ÿá)

0

nf1ÿ F(r ÿ ènz)g dz >
1

A1

� A1(1ÿá)

0

(zã ÿ ç) dz

� 1

ã� 1
A
ã
1(1ÿ á)ã�1 ÿ (1ÿ á)ç

>
3

2ã
ÿ ç

� 5

4ã
:

According to (12) we can ®nd n2 such that, for n > n2,

n 1ÿ èn�1

èn

� �
< ãÿ1 � ç � 5

4ã
:

Hence for n > n0 � n1 _ n2,

1

A1

�A1(1ÿá)

0

nf1ÿ F(r ÿ ènz)g dz >
5

4ã
> n 1ÿ èn�1

èn

� �
: (14)

We are now ready to show (13). Note that

E(X n�1jX n) � X n �
� r

(1ÿá)X n

f1ÿ F(y)g dy;

so by taking double expectations and using the Jensen inequality

EX n�1 � Eg(X n) > g(EX n), (15)

where g(u) :� u� � r

(1ÿá)u
f1ÿ F(y)g dy, u , r=(1ÿ á). Put un :� EX n and vn :�

r=(1ÿ á)ÿ A0èn, where A0 . A1 is taken large enough to satisfy

un0
> vn0

:

We shall prove by induction that

un > vn (16)

for all n > n0. Assuming that (16) holds for some n > n0 it follows from the monotonicity

of g on (ÿ1, r=(1ÿ á)) and (15) that

un�1 > g(un) > g(vn):

Hence we shall obtain un�1 > vn�1 if we show that

g(vn) > vn�1, 8n > n0: (17)
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The inequality (17) is equivalent to

vn �
� r

(1ÿá)v n

f1ÿ F(y)g dy > vn�1, 8n > n0,

or, after setting y � r ÿ A0ènz,�1ÿá

0

nf1ÿ F(r ÿ A0ènz)g dz > n 1ÿ èn�1

èn

� �
, 8n > n0: (18)

Inequality (18), and hence (17), follows from�1ÿá

0

nf1ÿ F(r ÿ A0ènz)g dz >

�1ÿá

0

nf1ÿ F(r ÿ A1ènz)g dz

� 1

A1

�(1ÿá)A1

0

nf1ÿ F(r ÿ ènz)g dz

> n 1ÿ èn�1

èn

� �
,

for all n > n0, according to (14). u

The proof of tightness of the sequence aÿ1
n fX n ÿ bn=(1ÿ á)g, in case F 2 D(Ë), can be

given in a similar way; therefore we omit this proof.

Theorem 4. For F 2 D (Ë) and x0 , r=(1ÿ á), (an) and (bn) such that F n(anx �
bn)! Ë(x) we have that fX n ÿ bn=(1ÿ á)g=an is tight on R.

5. Concluding remarks

(i) Together with the paper of Greenwood and Hooghiemstra (1991) this paper gives

suf®cient conditions on F to ensure that fX n ÿ bn=(1ÿ á)g=an has a distributional

limit. It is known that for á � 0 these conditions are also necessary. Whether this is

also the case for 0 ,á, 1 we do not know.

(ii) The recursion (1) can be written as

X n � X nÿ1 � [Yn ÿ (1ÿ á)X n]�:

A description of what kind of results can be expected if we let á depend on n such

that án ! 1 is given in the work of den Hollander et al. (1991).
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