Stationary distribution of Markov chains in \mathbb{R}^{d} with application to global random optimization

CHANG CHUNG YU DOREA
Departamento de Matemática, Universidade e Brasilia, 70910-900 Brasilia-DF, Brazil. e-mail:cdorea@mat.unb.br

Stationary and long-run distributions of a class of Markov chains with continuous state space $S \subset \mathbb{R}^{d}$ are studied. Applications to random search algorithms for global optimization are presented.

Keywords: continuous state space; global random optimization; stationary distribution

1. Introduction

We consider a Markov chain $\left\{X_{n}\right\}_{n \geqslant 0}$ that takes values on a bounded and measurable subset $S \subset \mathbb{R}^{d}$ with $m(S)>0$ and whose transition probability function has the representation:

$$
\begin{equation*}
P\left(X_{n} \in B \mid X_{0}=x\right)=P^{(n)}(B \mid x)=P_{\mathrm{c}}^{(n)}(B \mid x)+P_{\mathrm{d}}^{(n)}(B \mid x) \tag{1}
\end{equation*}
$$

for $x \in S$ and $B \in \mathscr{B}^{d}$ (Borel subsets of \mathbb{R}^{d} with Lebesgue measure). The absolutely continuous part,

$$
\begin{equation*}
P_{\mathrm{c}}^{(n)}(B \mid x)=\int_{B} p_{\mathrm{c}}^{(n)}(y \mid x) \mathrm{d} y \tag{2}
\end{equation*}
$$

is such that $p_{\mathrm{c}}^{(n)}(y \mid x)=0$ if $y \notin S$; similarly, the discrete part

$$
\begin{equation*}
P_{\mathrm{d}}^{(n)}(B \mid x)=\sum_{y \in B \cap S_{x}^{(n)}} p_{\mathrm{d}}^{(n)}(y \mid x) \tag{3}
\end{equation*}
$$

is such that $p_{\mathrm{d}}^{(n)}(y \mid x)=0$ for $y \notin S_{x}^{(n)}$ and $S_{x}^{(n)} \subset S$ for each $x \in S$ and $n \geqslant 1$.
Chains with continuous state space and the above representation arise naturally in random global optimization algorithms. A general scheme for random search algorithms can be described as follows: let $X_{0} \in S$ be an initial random point and let $f: S \rightarrow \mathbb{R}$ be a function whose global optimum on S (maximum or minimum) is of interest; for each $x \in S$ let $g(y \mid x)$ denote a density function on \mathbb{R}^{d}; if X_{n} is the result of the algorithm at step n then at step $n+1$ one generates a random value Y_{n} according to the density g; next X_{n+1} is taken to be Y_{n} with an acceptance probability $a\left(Y_{n} \mid X_{n}\right)$ or $X_{n+1}=X_{n}$ with probability $1-a\left(Y_{n} \mid X_{n}\right)$. It follows that the transition function of the algorithm can be written as:

$$
\begin{equation*}
P(B \mid x)=\int_{B} a(y \mid x) g(y \mid x) \mathrm{d} y+I_{(x \in B)}\left[1-\int_{S} a(y \mid x) g(y \mid x) \mathrm{d} y\right] \tag{4}
\end{equation*}
$$

where I denotes the indicator function. This type of Markovian algorithm will be detailed in Section 3.

Though there is an extensive literature on general state-space Markov processes, considerable mathematical background is required to understand them. In this paper we treat Markov chains in \mathbb{R}^{d} by extending the notions of communicability and periodicity of states to subsets of \mathbb{R}^{d}. It will be shown that, as in the discrete state space, they play an important role in analysing the existence of stationary and long-run distributions,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} P^{(n)}(B \mid x)=Q(B) . \tag{5}
\end{equation*}
$$

In Section 2 we derive conditions that will guarantee (5) and in Section 3 we apply these notions to random search algorithms studied by Dorea (1986; 1990) and to a continuous version of the 'simulated annealing' algorithm treated by Dekkers and Aarts (1991).

2. Continuous state space

Let $\left\{X_{n}\right\}_{n \geqslant 0}$ be a Markov process with values on S. Assuming that the n th-step transition function has the representation (1), we then have:

$$
\begin{aligned}
P^{(n+1)}(B \mid x) & =\int_{S} P^{(n)}(B \mid y) P(\mathrm{~d} y \mid x) \\
& =\int_{S} P^{(n)}(B \mid y) p_{\mathrm{c}}(y \mid x) \mathrm{d} y+\sum_{y \in S_{x}} P^{(n)}(B \mid y) p_{\mathrm{d}}(y \mid x),
\end{aligned}
$$

where $S_{x}=\left\{y: y \in S, p_{\mathrm{d}}(y \mid x)>0\right\}$. Using (2) and (3), we can write

$$
\begin{aligned}
P^{(n+1)}(B \mid x)= & \int_{B}\left[\int_{S} p_{\mathrm{c}}^{(n)}(z \mid y) p_{\mathrm{c}}(y \mid x) \mathrm{d} y+\sum_{y \in S_{x}} p_{\mathrm{c}}^{(n)}(z \mid y) p_{\mathrm{d}}(y \mid x)\right] \mathrm{d} z \\
& +\int_{S}\left[\sum_{z \in B \cap S_{y}^{(n)}} p_{\mathrm{d}}^{(n)}(z \mid y) p_{\mathrm{c}}(y \mid x)\right] \mathrm{d} y+\sum_{y \in S_{x}} \sum_{z \in B \cap S_{y}^{(n)}} p_{\mathrm{d}}^{(n)}(z \mid y) p_{\mathrm{d}}(y \mid x) .
\end{aligned}
$$

It follows that

$$
\begin{equation*}
p_{\mathrm{c}}^{(n+1)}(z \mid x) \geqslant \int_{S} p_{\mathrm{c}}^{(n)}(z \mid y) p_{\mathrm{c}}(y \mid x) \mathrm{d} y+\sum_{y \in S_{x}} p_{\mathrm{c}}^{(n)}(z \mid y) p_{\mathrm{d}}(y \mid x) \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
p_{\mathrm{d}}^{(n+1)}(z \mid x) \geqslant \sum_{y \in S_{x}} p_{\mathrm{d}}^{(n)}(z \mid y) p_{\mathrm{d}}(y \mid x) . \tag{7}
\end{equation*}
$$

By expressing $P^{(n+1)}(B \mid x)=\int_{S} P(B \mid y) P^{(n)}(\mathrm{d} y \mid x)$ we also obtain the inequalities

$$
p_{\mathrm{c}}^{(n+1)}(z \mid x) \geqslant \int_{S} p_{\mathrm{c}}(z \mid y) p_{\mathrm{c}}^{(n)}(y \mid x) \mathrm{d} y+\sum_{y \in S_{x}^{(n)}} p_{\mathrm{c}}(z \mid y) p_{\mathrm{d}}^{(n)}(y \mid x)
$$

and

$$
p_{\mathrm{d}}^{(n+1)}(z \mid x) \geqslant \sum_{y \in S_{x}^{(n)}} p_{\mathrm{d}}(z \mid y) p_{\mathrm{d}}^{(n)}(y \mid x) .
$$

Our main result (Theorem 1 below) shows that an irreducible and aperiodic chain possesses a long-run distribution if certain regularity conditions are met. And in this case it coincides with the unique stationary distribution. The following notation and notions will be needed:

$$
\begin{equation*}
p^{(n)}(y \mid x)=p_{\mathrm{c}}^{(n)}(y \mid x)+p_{\mathrm{d}}^{(n)}(y \mid x) \tag{8}
\end{equation*}
$$

For $B \in \mathscr{B}^{d}$ let

$$
\begin{equation*}
B^{+}=\{D: D \subset B, m(D)>0\}, \quad \text { if } m(B)>0 \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
B^{+}=\{D: D \neq \varnothing, D \subset B\} \quad \text { if } B \text { is countable. } \tag{10}
\end{equation*}
$$

Let

$$
\begin{equation*}
S^{1}=\{D: D \subset S, \text { either } m(D)>0 \text { or } D \text { is countable }\} \tag{11}
\end{equation*}
$$

Definition 1. Let $\{A, B\} \subset S^{1}$. We say that B is accessible from A if there exists $n_{B} \geqslant 1$ such that

$$
P^{\left(n_{B}\right)}\left(B^{\prime} \mid x\right)>0, \quad \forall x \in A, \forall B^{\prime} \in B^{+}
$$

(which we write as $A \xrightarrow{n_{B}} B$). We say that A and B are communicating subsets $(A \leftrightarrow B)$ if $A \xrightarrow{n_{B}} B$ and $B \xrightarrow{n_{A}} A$.

Definition 2. We say that a chain is irreducible if there exists $\left\{A_{1}, \ldots, A_{k}\right\} \subset S^{1}$ such that $\bigcup_{j=1}^{k} A_{j}=S$ and $A_{i} \leftrightarrow A_{j}$ for all i and j.

Definition 3. Assume $A \leftrightarrow A$. We say that d_{A} is the period of A if d_{A} is the greatest common divisor of

$$
\mathscr{D}(A)=\left\{n: P^{(n)}\left(A^{\prime} \mid x\right)>0, \forall x \in A, \forall A^{\prime} \in A^{+}\right\} .
$$

If $d_{A}=1$ we say that the subset A is aperiodic.

Some immediate properties can be derived:
Proposition 1. (a) If $A \xrightarrow{n_{B}} B$ then, given $\epsilon_{0}>0$, there exists $A_{0} \in A^{+}$such that either

$$
\begin{equation*}
P_{\mathrm{c}}^{\left(n_{B}\right)}(B \mid x) \geqslant \epsilon_{0}, \forall x \in A_{0} \text { or } P_{\mathrm{d}}^{\left(n_{B}\right)}(B \mid x) \geqslant \epsilon_{0}, \forall x \in A_{0} \tag{12}
\end{equation*}
$$

depending on whether $m(B)>0$ or B is countable.
(b) If $A \xrightarrow{n_{B}} B$ and $B \xrightarrow{n_{C}} C$ then $A \xrightarrow{n_{B}+n_{C}} C$.
(c) If $A \leftrightarrow B$ then they have the same period $\left(d_{A}=d_{B}\right)$.
(d) If d_{A} is the period of A then there exists $m_{A} \geqslant 1$ such that for $m \geqslant m_{A}$ we have $m d_{A} \in \mathscr{D}(A)$.

Proof. (a) Assume $m(B)>0$ and let $S_{x}^{\left(n_{B}\right)}=\left\{y: p_{\mathrm{d}}^{\left(n_{B}\right)}(y \mid x)>0\right\}$. Since $B \backslash S_{x}^{\left(n_{B}\right)} \in B^{+}$and $m\left(S_{x}^{\left(n_{B}\right)}\right)=0, \forall x \in A$, we must have $P_{\mathrm{c}}^{\left(n_{B}\right)}\left(B^{\prime} \mid x\right)>0, \forall x \in A$ and $\forall B^{\prime} \in B^{+}$. Given $\epsilon_{0}>0$, define for $k \geqslant 1$

$$
D_{k}=\left\{x: x \in A, P_{\mathrm{c}}^{\left(n_{B}\right)}(B \mid x)<\frac{1}{k}\right\} .
$$

Since $D_{k+1} \subset D_{k}, \bigcap_{k} D_{k}=\varnothing$ and $m(A)<\infty$ we have $\lim _{k \rightarrow \infty} m\left(D_{k}\right)=0$. Let k_{0} be large enough so that $\epsilon_{0} \leqslant 1 / k_{0}$ and $m\left(A \backslash D_{k_{0}}\right)>0$ (if $m(A)>0$) and $A \backslash D_{k_{0}} \neq \varnothing$ (if A is countable). Then $A_{0}=A \backslash D_{k_{0}} \in A^{+}$and for $x \in A_{0}$ we have $P_{\mathrm{c}}^{\left(n_{B}\right)}(B \mid x) \geqslant \epsilon_{0}$.

If B is countable clearly we have $P^{\left(n_{B}\right)}\left(B^{\prime} \mid x\right)=P_{\mathrm{d}}^{\left(n_{B}\right)}\left(B^{\prime} \mid x\right), \forall B^{\prime} \in B^{+}$. Now proceeding with arguments of the same type we obtain (12) by observing that $P_{\mathrm{d}}^{\left(n_{B}\right)}(B \mid x)>0, \forall x \in A$.
(b) Let $C^{\prime} \in C^{+}$; then we have $B \xrightarrow{n_{C}} C^{\prime}$. From (a), given $\epsilon_{0}>0$, there exists $B_{0} \in B^{+}$ such that $P^{\left(n_{C}\right)}\left(C^{\prime} \mid y\right) \geqslant \epsilon_{0}$ for $y \in B_{0}$. Since $B_{0} \in B^{+}$we also have $A \xrightarrow{n_{B}} B_{0}$. Now for $x \in A$,

$$
P^{n_{C}+n_{B}}\left(C^{\prime} \mid x\right) \geqslant \int_{B_{0}} P^{\left(n_{C}\right)}\left(C^{\prime} \mid y\right) P^{\left(n_{B}\right)}(\mathrm{d} y \mid x) \geqslant \epsilon_{0} P^{\left(n_{B}\right)}\left(B_{0} \mid x\right)>0
$$

It follows that $A \xrightarrow{n_{C}+n_{B}} C$.
(c) Let $A \xrightarrow{n_{B}} B$ and $B \xrightarrow{n_{A}} A$. From (b) we have $A \xrightarrow{n_{A}+n_{B}} A$ so that $n_{A}+n_{B} \in \mathscr{D}(A)$. Now let $n_{1} \in \mathscr{D}(B)$, we will show that $n_{B}+n_{1}+n_{A} \in \mathscr{D}(A)$. Thus d_{A} divides n_{1} since it divides $n_{A}+n_{B}$. It follows that $d_{A} \leqslant d_{B}$. Interchanging the roles of A and B, we conclude $d_{A}=d_{B}$.

Let $A^{\prime} \in A^{+}$; since $B \xrightarrow{n_{A}} A^{\prime}$, there exists $B_{0} \in B^{+}$such that $P^{\left(n_{A}\right)}\left(A^{\prime} \mid z\right) \geqslant \epsilon_{0}>0$ on B_{0}. Since $n_{1} \in \mathscr{D}(B)$ we have $B \xrightarrow{n_{1}} B_{0}$, and there exists $B_{1} \in B^{+}$such that $P^{\left(n_{1}\right)}\left(B_{0} \mid y\right) \geqslant \epsilon_{1}>0$ on B_{1}. Now for $x \in A$,

$$
\begin{aligned}
P^{\left(n_{B}+n_{1}+n_{A}\right)}\left(A^{\prime} \mid x\right) & \geqslant \int_{\left(y \in B_{1}\right)} \int_{\left(z \in B_{0}\right)} P^{\left(n_{A}\right)}\left(A^{\prime} \mid z\right) P^{\left(n_{1}\right)}(\mathrm{d} z \mid y) P^{\left(n_{B}\right)}(\mathrm{d} y \mid x) \\
& \geqslant \epsilon_{0} \int_{\left(y \in B_{1}\right)} P^{\left(n_{1}\right)}\left(B_{0} \mid y\right) P^{\left(n_{B}\right)}(\mathrm{d} y \mid x) \\
& \geqslant \epsilon_{0} \epsilon_{1} P^{\left(n_{B}\right)}\left(B_{1} \mid x\right)>0
\end{aligned}
$$

Thus $n_{B}+n_{1}+n_{A} \in \mathscr{D}(A)$.
(d) Note that if $r \in \mathscr{D}(A)$ and $s \in \mathscr{D}(A)$ then, using (a), we have $r+s \in \mathscr{D}(A)$. That is, $\mathscr{D}(A)$ is closed under addition. Then there exists m_{A} such that $m d_{A} \in \mathscr{D}(A)$ for $m \geqslant m_{A}$; see Doob (1953, p. 176) or Parzen (1962, p. 262).

Proposition 2. (a) If $A \xrightarrow{n_{B}} B$ then there exist $\delta_{B}>0, A_{0} \in A^{+}$and $B_{0} \in B^{+}$such that

$$
\begin{equation*}
\inf \left\{p^{\left(n_{B}\right)}(y \mid x): x \in A_{0}, y \in B_{0}\right\} \geqslant \delta_{B} \tag{13}
\end{equation*}
$$

(b) If $A \stackrel{n_{A}}{\leftrightarrow} A$ then there exist $\delta_{A}>0$ and $A_{0} \in A^{+}$such that

$$
\begin{equation*}
\inf \left\{p^{\left(2 n_{A}\right)}(y \mid x): x \in A_{0}, y \in A_{0}\right\} \geqslant \delta_{A} \tag{14}
\end{equation*}
$$

(c) If the chain is irreducible and aperiodic, then we can decompose $S=S_{\mathrm{c}} \cup S_{\mathrm{d}}$ where S_{d} is countable and $S_{\mathrm{c}}=S \backslash S_{\mathrm{d}}$. Moreover, there exists $n_{S} \geqslant 1$ such that $S \xrightarrow{n_{S}} S_{\mathrm{c}}$, and if $S_{\mathrm{d}} \neq \varnothing$ we also have $S \xrightarrow{n_{S}} S_{\mathrm{d}}$.

Proof. (a) First assume B is countable. Let $B_{N}=\left\{b_{1}, \ldots, b_{N}\right\} \subset B$. Since $A \xrightarrow{n_{B}} B_{N}$, from (12) we can write,

$$
\begin{equation*}
P_{\mathrm{d}}^{\left(n_{B}\right)}\left(B_{N} \mid N\right) \geqslant \delta_{0}>0 \text { on } A_{0} \in A^{+} . \tag{15}
\end{equation*}
$$

It follows that we must have $p_{\mathrm{d}}^{\left(n_{B}\right)}\left(y_{j} \mid x\right) \geqslant \delta_{0} / N$ for some $y_{j} \in B_{N}$. Now (13) follows using (8) and taking $B_{0}=\left\{y_{j}\right\} \in B^{+}$and $\delta_{B}=\delta_{0} / N$.

Now assume $m(B)>0$. If A is countable let $x_{0} \in A$ and $A_{0}=\left\{x_{0}\right\} \in A^{+}$. Since $P_{\mathrm{c}}^{\left(n_{B}\right)}\left(B \mid x_{0}\right)=\int_{B} p_{\mathrm{c}}^{\left(n_{B}\right)}\left(y \mid x_{0}\right) \mathrm{d} y>0$, there exist $\delta_{B}>0$ and $B_{0} \in B^{+}$such that on B_{0} we have $p_{\mathrm{c}}^{\left(n_{B}\right)}\left(y \mid x_{0}\right) \geqslant \delta_{B}$.

If $m(A)>0$ then from (12),

$$
\begin{equation*}
P_{\mathrm{c}}^{\left(n_{B}\right)}(B \mid x) \geqslant \delta_{1}>0 \text { on } A_{1} \in A^{+} . \tag{16}
\end{equation*}
$$

Let $\delta_{B}=\delta_{1} / 2 m(B)$ and define

$$
D=\left\{(x, y): x \in A_{1}, y \in B, p_{\mathrm{c}}^{\left(n_{B}\right)}(y \mid x) \geqslant \delta_{B}\right\} .
$$

Note that for $x \in A_{1}$ and $D_{x}=\{y:(x, y) \in D\}$ we have $m\left(D_{x}\right)>0$. If not, then for almost all y in D_{x} we have $p_{\mathrm{c}}^{\left(n_{B}\right)}(y \mid x)<\delta_{B}$ and $P_{\mathrm{c}}^{\left(n_{B}\right)}(B \mid x) \leqslant \delta_{B} m(B) \leqslant \delta_{1} / 2$, which contradicts (16). Let m_{2} denote the Lebesgue measure on $\mathbb{R}^{2 d}$; then we have $m_{2}(D)=\int_{A_{1}} m\left(D_{x}\right) \mathrm{d} x>0$. Thus there exists a rectangle $A_{0} \times B_{0}$ with $m_{2}\left(A_{0} \times B_{0}\right)>0, A_{0} \in A_{1}^{+} \subset A^{+}, B_{0} \in B^{+}$, and for $x \in A_{0}$ and $y \in B_{0}$ we have

$$
p^{\left(n_{B}\right)}(y \mid x) \geqslant p_{\mathrm{c}}^{\left(n_{B}\right)}(y \mid x) \geqslant \delta_{B} .
$$

(b) From (a) there exist $A_{1} \in A^{+}$and $A_{2} \in A^{+}$such that

$$
\inf \left\{p^{\left(n_{A}\right)}(y \mid x): x \in A_{1}, y \in A_{2}\right\} \geqslant \delta_{1}>0
$$

By (12) there exists $A_{0} \in A_{2}^{+}$such that

$$
P^{\left(n_{A}\right)}\left(A_{1} \mid y\right) \geqslant \delta_{2}>0 \text { on } A_{0} .
$$

Now for $x \in A_{0}$ and $y \in A_{0}$,

$$
p^{\left(2 n_{A}\right)}(y \mid x) \geqslant \int_{A_{1}} p^{\left(n_{A}\right)}(y \mid z) P^{\left(n_{A}\right)}(\mathrm{d} z \mid x) \geqslant \delta_{1} P^{\left(n_{A}\right)}\left(A_{1} \mid x\right) \geqslant \delta_{1} \delta_{2}>0
$$

(c) Let $\left\{A_{i}, \ldots, A_{k}\right\}$ satisfy Definition 2. Since the chain is aperiodic, from Proposition 1 there exist m_{1}, \ldots, m_{k} such that for $r \geqslant \max \left\{m_{1}, \ldots, m_{k}\right\}$ we have $r \in \mathscr{D}\left(A_{j}\right)$ for $j=1, \ldots, k$.

Since $m(S)>0$ not all A_{j}^{\prime} s can be countable. Without loss of generality, assume that A_{1}, \ldots, A_{ℓ} have positive measure $(\ell \leqslant k)$. Let $S_{\mathrm{c}}=\bigcup_{r=1}^{\ell} A_{r}$ and $B \in S_{\mathrm{c}}^{+}$. Then for some j we have $B_{j}=B \cup A_{j} \in A_{j}^{+}$. For $i=1, \ldots, k$ let n_{i} be such that $A_{i} \xrightarrow{n_{i}} B_{j}$. Since $m\left(B_{j}\right)>0$, from the proof of (a) we have, for $i=1, \ldots, k$,

$$
\begin{equation*}
\inf \left\{p_{\mathrm{c}}^{\left(n_{i}\right)}(y \mid x): x \in A_{i}^{\prime}, y \in B_{j}^{\prime}(i)\right\} \geqslant \delta_{i}>0 \tag{17}
\end{equation*}
$$

where $A_{i}^{\prime} \in A_{i}^{+}$and $B_{j}^{\prime}(i) \in B_{j}^{+}$.
Now take n_{S} large enough so that $n_{S}-n_{i} \in \mathscr{D}\left(A_{i}\right)$ for $i=1, \ldots, k$. From (2) and (17) we have, for $z \in A_{i}^{\prime}$,

$$
\begin{equation*}
P_{\mathrm{c}}^{\left(n_{i}\right)}\left(B_{j}^{\prime}(i) \mid z\right) \geqslant \delta_{i} m\left(B_{j}^{\prime}(i)\right)>0 . \tag{18}
\end{equation*}
$$

Let $\delta_{B}=\min _{1 \leqslant i \leqslant k}\left\{\delta_{i} m\left(B_{j}^{\prime}(i)\right\}\right.$ and $x \in S$. Then $x \in A_{i}$ for some i, and we have

$$
P^{\left(n_{S}\right)}(B \mid x) \geqslant P^{\left(n_{s}\right)}\left(B_{j}^{\prime}(i) \mid x\right) \geqslant \int_{A_{i}^{i}} P_{\mathrm{c}}^{\left(n_{i}\right)}\left(B_{j}^{\prime}(i) \mid z\right) P^{\left(n_{S}-n_{i}\right)}(\mathrm{d} z \mid x)
$$

From (18) and the fact that $n_{S}-n_{i} \in \mathscr{D}\left(A_{i}\right)$, we have

$$
\begin{equation*}
P^{\left(n_{S}\right)}(B \mid x) \geqslant \delta_{B} P^{\left(n_{S}-n_{i}\right)}\left(A_{i}^{\prime} \mid x\right)>0 \tag{19}
\end{equation*}
$$

Since (19) holds for all $B \in S_{\mathrm{c}}^{+}$, we have $S \xrightarrow{n_{S}} S_{\mathrm{c}}$.
If $\ell=k$ then the proof is completed by taking $S_{\mathrm{d}}=\varnothing$. If not, let $S_{\mathrm{d}}=\bigcup_{r=\ell+1}^{k} A_{r}$. Let $B \in S_{\mathrm{d}}^{+}$and $\ell+1 \leqslant j \leqslant k$ such that $B_{j}=B \cap A_{j} \in A_{j}^{+}$. The proof is exactly the same, except that p_{c} is replaced by p_{d} in (17), and P_{c} and $m\left(B_{j}^{\prime}(i)\right)$ by P_{d} and $\left\|B_{j}^{\prime}(i)\right\|$ in (18) (where $\|\cdot\|$ denotes cardinality of the set). And we have $S \xrightarrow{n_{S}} S_{\mathrm{d}}$.

Remark 1. Let $A \xrightarrow{n_{B}} B$. Then from the proofs of Propositions 1 and 2 we also have the following:
(a) If $m(B)>0$ then

$$
\begin{gather*}
P_{\mathrm{c}}^{\left(n_{B}\right)}\left(B^{\prime} \mid x\right)>0, \forall x \in A, \forall B^{\prime} \in B^{+}, \tag{20}\\
\inf \left\{p_{\mathrm{c}}^{\left(n_{B}\right)}(y \mid x): x \in A_{0}, y \in B_{0}\right\} \geqslant \delta_{B}>0, \tag{21}
\end{gather*}
$$

with $A_{0} \in A^{+}$and $B_{0} \in B^{+}$.
(b) If B is countable then (20) and (21) hold with P_{d} and p_{d} in place of P_{c} and p_{c}, respectively.
(c) If $A \stackrel{n_{A}}{\leftrightarrow} A$ and $m(A)>0$, then

$$
\begin{equation*}
\inf \left\{p_{\mathrm{c}}^{\left(2 n_{A}\right)}(y \mid x): x \in A_{0}, y \in A_{0}\right\} \geqslant \delta_{A}>0 \tag{22}
\end{equation*}
$$

with $A_{0} \in A^{+}$. If A is countable we have (22) with p_{d} in place of p_{c}.

Our next result requires the following condition:

Condition 1. If $m\left(E_{k}\right) \rightarrow 0$ as $k \rightarrow \infty$ then:

$$
\begin{equation*}
\lim _{k \rightarrow \infty} P_{\mathrm{c}}\left(E_{k} \mid x\right)<1, \quad \text { uniformly on } x . \tag{23}
\end{equation*}
$$

Note that for each $x \in S$ we always have $P_{\mathrm{c}}\left(E_{k} \mid x\right) \xrightarrow{k} 0$. Condition 1 requires that the convergence be uniform on S. Also if $p_{\mathrm{c}}(y \mid x) \leqslant K<\infty$ is bounded then (23) holds trivially, since $P_{\mathrm{c}}\left(E_{k} \mid x\right) \leqslant \operatorname{Km}\left(E_{k}\right)$.

Theorem 1. If a chain is irreducible and aperiodic, and if Condition 1 is satisfied, then it possesses a long-run distribution

$$
\begin{equation*}
\lim _{n \rightarrow \infty} P^{(n)}(B \mid x)=Q(B), \quad \forall B \in \mathscr{B}^{d}, \tag{24}
\end{equation*}
$$

where Q is a probability on $\left(\mathbb{R}^{d}, \mathscr{B}^{d}\right)$.

Proof. The proof requires several steps and uses some of the techniques found in Doob (1953).
(a) Since the chain is irreducible and aperiodic, by Proposition 2 there exists $S_{\mathrm{c}} \in S^{+}$ such that $S \xrightarrow{n_{s}} S_{\mathrm{c}}$ (also $S_{\mathrm{c}} \xrightarrow{n_{S}} S_{\mathrm{c}}$). From (22) there exist $\delta_{1}>0$ and $S_{\mathrm{c}}^{\prime} \in S_{\mathrm{c}}^{+}$such that

$$
\begin{equation*}
\inf \left\{p_{\mathrm{c}}^{\left(2 n_{s}\right)}(y \mid x): x \in S_{\mathrm{c}}^{\prime}, y \in S_{\mathrm{c}}^{\prime}\right\} \geqslant \delta_{1} \tag{25}
\end{equation*}
$$

From (20) we have

$$
\begin{equation*}
P_{\mathrm{c}}^{\left(n_{s}\right)}\left(S_{\mathrm{c}}^{\prime} \mid x\right)>0, \quad \forall x \in S . \tag{26}
\end{equation*}
$$

Let $E_{k}=\left\{x: P_{\mathrm{c}}^{(n s)}\left(S_{\mathrm{c}}^{\prime} \mid x\right)<1 / k\right\}$; then, by (26) and the fact that $m(S)<\infty$, we have $m\left(E_{k}\right) \rightarrow 0$. From Condition 1, there exist $\epsilon_{0}>0$ and k_{0} such that

$$
\begin{equation*}
P_{\mathrm{c}}\left(E_{k_{0}} \mid x\right) \leqslant 1-\epsilon_{0}, \quad \forall x \in S \tag{27}
\end{equation*}
$$

Since $P_{\mathrm{c}}^{\left(n_{s}\right)}\left(S_{\mathrm{c}}^{\prime} \mid z\right) \geqslant 1 / k_{0}$ for $z \in S \backslash E_{k_{0}}$, using (6) and (27) we can write, for $x \in S$,

$$
\begin{align*}
P_{\mathrm{c}}^{\left(n_{S}+1\right)}\left(S_{\mathrm{c}}^{\prime} \mid x\right) & \geqslant \int_{S \backslash E_{k_{0}}} P_{\mathrm{c}}^{\left(n_{S}\right)}\left(S_{\mathrm{c}}^{\prime} \mid z\right) P(\mathrm{~d} z \mid x) \\
& \geqslant \frac{1}{k_{0}} P\left(S \backslash E_{k_{0}} \mid x\right) \geqslant \frac{\epsilon_{0}}{k_{0}} . \tag{28}
\end{align*}
$$

Now take $D=S_{\mathrm{c}}^{+}$(thus $m(D)>0$), $n_{D}=3 n_{S}+1$ and $\delta_{D}=\delta_{1} \epsilon_{0} / k_{0}$. Then, using (6), (25) and (28), we have for $y \in D$ and $x \in S$,

$$
\begin{aligned}
p_{\mathrm{c}}^{\left(3 n_{S}+1\right)}(y \mid x) & \geqslant \int_{D} p_{\mathrm{c}}^{(2 n s)}(y \mid z) p_{\mathrm{c}}^{\left(n_{S}+1\right)}(z \mid x) \mathrm{d} z \\
& \geqslant \delta_{1} P_{\mathrm{c}}^{\left(n_{S}+1\right)}\left(S_{\mathrm{c}}^{\prime} \mid x\right) \geqslant \delta_{D}>0
\end{aligned}
$$

Thus there exist $\delta_{D}>0, n_{D} \geqslant 1$ and $D \in S^{+}$such that

$$
\begin{equation*}
\inf \left\{p_{\mathrm{c}}^{\left(n_{D}\right)}(y \mid x): x \in S, y \in D\right\} \geqslant \delta_{D} \tag{29}
\end{equation*}
$$

(b) Let D and δ_{D} satisfy (29) and $\epsilon_{D}=\delta_{D} m(D)$, then

$$
\begin{equation*}
\left|P^{\left(k n_{D}\right)}(B \mid x)-P^{\left(k n_{D}\right)}(B \mid y)\right| \leqslant\left(1-\epsilon_{D}\right)^{k} \tag{30}
\end{equation*}
$$

$\forall B \in \mathscr{B}^{d}, \forall x \in S, \forall y \in S$ and $k \geqslant 1$.
From (1) and (29) we have

$$
P^{\left(n_{D}\right)}(B \mid x) \geqslant \int_{B \cap D} p_{\mathrm{c}}^{\left(n_{D}\right)}(y \mid x) \mathrm{d} y \geqslant \delta_{D} m(B \cap D)
$$

and

$$
P^{\left(n_{D}\right)}\left(B^{\mathrm{c}} \mid x\right) \geqslant \delta_{D} m\left(B^{\mathrm{c}} \cap D\right)=\epsilon_{D}-\delta_{D} m(B \cap D)
$$

It follows that for $x \in S$,

$$
\begin{equation*}
\delta_{D} m(B \cap D) \leqslant P^{\left(n_{D}\right)}(B \mid x) \leqslant 1-\epsilon_{D}+\delta_{D} m(B \cap D) . \tag{31}
\end{equation*}
$$

Using inequality (31) with y in place of x, we can write

$$
P^{\left(n_{D}\right)}(B \mid x)-P^{\left(n_{D}\right)}(B \mid y) \leqslant 1-\epsilon_{D} .
$$

Interchanging the roles of x and y, we obtain

$$
\begin{equation*}
\left|P^{\left(n_{D}\right)}(B \mid x)-P^{\left(n_{D}\right)}(B \mid y)\right| \leqslant 1-\epsilon_{D} \tag{32}
\end{equation*}
$$

For $k \geqslant 2$, let

$$
\begin{gather*}
L(\mathrm{~d} z ; x, y, k)=P^{\left((k-1) n_{D}\right)}(\mathrm{d} z \mid x)-P^{\left((k-1) n_{D}\right)}(\mathrm{d} z \mid y) \tag{33}\\
U=(L(\mathrm{~d} z ; x, y, k) \geqslant 0) \text { and } V=(L(\mathrm{~d} z ; x, y, k)<0) .
\end{gather*}
$$

And we can write

$$
P^{\left(k n_{D}\right)}(B \mid x)-P^{\left(k n_{D}\right)}(B \mid y)=\int_{U} P^{\left(n_{D}\right)}(B \mid z) L(\mathrm{~d} z ; x, y, k)+\int_{V} P^{\left(n_{D}\right)}(B \mid z) L(\mathrm{~d} z ; x, y, k)
$$

From (31) we have

$$
\int_{U} P^{\left(n_{D}\right)}(B \mid z) L(\cdot) \leqslant\left(1-\epsilon_{D}+\delta_{D} m(B \cap D)\right) \int_{U} L(\cdot)
$$

and

$$
\int_{V} P^{\left(n_{D}\right)}(B \mid z) L(\cdot) \leqslant \delta_{D} m(B \cap D) \int_{V} L(\cdot)
$$

Since $\int_{U} L(\cdot)+\int_{V} L(\cdot)=0$, we have

$$
\begin{equation*}
P^{\left(k n_{D}\right)}(B \mid x)-P^{\left(k n_{D}\right)}(B \mid y) \leqslant\left(1-\epsilon_{D}\right) \int_{U} L(\cdot) . \tag{34}
\end{equation*}
$$

If $k=2$ we have, from (32),

$$
\int_{U} L(\cdot)=P^{\left(n_{D}\right)}(U \mid x)-P^{\left(n_{D}\right)}(U \mid y) \leqslant 1-\epsilon_{D}
$$

Thus

$$
P^{\left(2 n_{D}\right)}(B \mid x)-P^{\left(2 n_{D}\right)}(B \mid y) \leqslant\left(1-\epsilon_{D}\right)^{2} .
$$

Induction arguments and (34) give us (30).
(c) For $k \geqslant 1, m \geqslant 1$ and $x \in S$, we have

$$
\begin{equation*}
\left|P^{\left(k n_{D}+m\right)}(B \mid x)-P^{\left(k n_{D}\right)}(B \mid x)\right| \leqslant\left(1-\epsilon_{D}\right)^{k} . \tag{35}
\end{equation*}
$$

Since $\int_{S} P^{(m)}(\mathrm{d} y \mid x)=1$ and $P^{\left(k n_{D}+m\right)}(B \mid x)=\int_{S} P^{\left(k n_{D}\right)}(B \mid y) P^{(m)}(\mathrm{d} y \mid x)$, we can write

$$
P^{\left(k n_{D}+m\right)}(B \mid x)-P^{\left(k n_{D}\right)}(B \mid x)=\int_{S}\left[P^{\left(k n_{D}\right)}(B \mid y)-P^{\left(k n_{D}\right)}(B \mid x)\right] P^{(m)}(\mathrm{d} y \mid x)
$$

and (35) follows from (30).
(d) $P^{(n)}(B \mid x)$ is a Cauchy sequence by (35). For $B \in B^{d}$ let $Q(B)=\lim _{n \rightarrow \infty} P^{(n)}(B \mid x)$, which is independent of x by (30). It is easy to verify that Q is σ-additive on \mathscr{B}^{d} and since $Q(S)=1$ it is a probability on $\left(\mathbb{R}^{d}, \mathscr{B}^{d}\right)$.

Remark 2. (a) Under the hypothesis of Theorem 1 the long-run distribution Q necessarily has an absolutely continuous part. Note that from (29) we have $p_{\mathrm{c}}^{\left(n_{D}\right)}(y \mid x) \geqslant \delta_{D}>0, \forall y \in D$ and $\forall x \in S$ with $m(D)>0$. And from (6) for $y \in D, x \in S$,

$$
p_{\mathrm{c}}^{\left(n_{D}+1\right)}(y \mid x) \geqslant \int_{S} p_{\mathrm{c}}^{\left(n_{D}\right)}(y \mid z) P(\mathrm{~d} z \mid x) \geqslant \delta_{D}
$$

Thus for $D^{\prime} \in D^{+}$we have

$$
\lim _{n \rightarrow \infty} P_{\mathrm{c}}^{(n)}\left(D^{\prime} \mid x\right) \geqslant \delta_{D} m\left(D^{\prime}\right)
$$

(b) Our next theorem shows that the results of Theorem 1 hold if we assume the following condition:

Condition 1'. if $m\left(E_{k}\right) \rightarrow 0$ then $\lim _{n \rightarrow \infty} P_{\mathrm{d}}\left(E_{k} \mid x\right)=0$ uniformly on S.

Theorem 1'. Assume that the chain is irreducible and aperiodic with $S_{\mathrm{d}} \neq \varnothing$. Then (24) holds if Condition 1 ' is satisfied.

Proof. From Proposition 2(c), if the chain is irreducible and aperiodic then $S=S_{\mathrm{c}} \cap S_{\mathrm{d}}$ with S_{d} countable and $S_{\mathrm{c}}=S \backslash S_{\mathrm{d}}$. Since $S_{\mathrm{d}} \neq \varnothing$ there exists $n_{S} \geqslant 1$ with $S \xrightarrow{n_{S}} S_{\mathrm{d}}$, and by (22) there exist $S_{\mathrm{d}}^{\prime} \in S_{\mathrm{d}}^{+}$and $\delta_{1}>0$ such that

$$
\inf \left\{p_{\mathrm{d}}^{(2 n s)}(y \mid x): x \in S_{\mathrm{d}}^{\prime}, y \in S_{\mathrm{d}}^{\prime}\right\} \geqslant \delta_{1} .
$$

And by (20) we have $P_{\mathrm{d}}^{\left(n_{S}\right)}\left(S_{\mathrm{d}}^{\prime} \mid x\right)>0, \forall x \in S$.

Let $E_{k}=\left\{x: P_{\mathrm{d}}^{(n s)}\left(S_{\mathrm{d}}^{\prime} \mid x\right)<1 / k\right\}$; then $m\left(E_{k}\right) \rightarrow 0$. From Condition 1^{\prime}, given $\epsilon_{0}>0$, there exists k_{0} such that $P_{\mathrm{d}}\left(E_{k_{0}}^{\mathrm{c}} \mid x\right) \geqslant \epsilon_{0}$ for $x \in S$. From (7) we have

$$
\begin{aligned}
P_{\mathrm{d}}^{\left(n_{S}+1\right)}\left(S_{\mathrm{d}}^{\prime} \mid x\right) & \geqslant \sum_{z \in\left(E_{k_{0}}^{\mathrm{c}} \cap S_{x}\right)} P_{\mathrm{d}}^{\left(n_{S}\right)}\left(S_{\mathrm{d}}^{\prime} \mid z\right) p_{\mathrm{d}}(z \mid x) \\
& \geqslant \frac{1}{k_{0}} P_{\mathrm{d}}\left(E_{k_{0}}^{\mathrm{c}} \mid x\right) \geqslant \frac{\epsilon_{0}}{k_{0}} .
\end{aligned}
$$

Now let $D=S_{\mathrm{d}}^{\prime}, n_{D}=3 n_{S}+1$ and $\delta_{D}=\delta_{1} \epsilon_{0} / k_{0}$ and we have for, $y \in D$ and $x \in S$,

$$
\begin{aligned}
p_{\mathrm{d}}^{\left(3 n_{S}+1\right)}(y \mid x) & \geqslant \sum_{z \in D} p_{\mathrm{d}}^{\left(2 n_{s}\right)}(y \mid z) p_{\mathrm{d}}^{\left(n_{S}+1\right)}(z \mid x) \\
& \geqslant \delta_{1} P_{\mathrm{d}}^{\left(n_{s}+1\right)}\left(S_{\mathrm{d}}^{\prime} \mid x\right) \geqslant \frac{\delta_{1} \epsilon_{0}}{k_{0}}=\delta_{D}>0 .
\end{aligned}
$$

Thus there exist $\delta_{D}>0, n_{D} \geqslant 1$ and $D \in S_{\mathrm{d}}^{+}$such that

$$
\begin{equation*}
\inf \left\{p_{\mathrm{d}}^{\left(n_{D}\right)}(y \mid x): x \in S, y \in D\right\} \geqslant \delta_{D} \tag{36}
\end{equation*}
$$

It follows that for $B \in B^{d}$

$$
P^{\left(n_{D}\right)}(B \mid x) \geqslant \sum_{\left(y \in B \cap D \cap S_{x}^{\left(n_{D}\right)}\right)} p_{\mathrm{d}}^{\left(n_{D}\right)}(y \mid x) \geqslant \delta_{D}\|D \cap B\|
$$

and

$$
\delta_{D}\|D \cap B\| \leqslant P^{\left(n_{D}\right)}(B \mid x) \leqslant 1-\delta_{D}\|D\|+\delta_{D}\|D \cap B\| .
$$

Since $0<\delta_{D}\|D\|<1$, using the same arguments as in Theorem 1 we obtain (24).

Theorem 2. Let $\left\{E_{1}, \ldots, E_{k}\right\} \subset S^{1}$ be mutually communicating and aperiodic subsets of S. For $E=\bigcup_{i=1}^{k} E_{i}$, let $F=S \backslash E$. Assume that $F \neq \varnothing, m(E)>0$, Condition 1 holds and that for some r and n_{F} we have $F \xrightarrow{n_{F}} E_{r}$. Then the chain has a long-run distribution.

Proof. Since $m(E)>0$ we may assume $m\left(E_{i}\right)>0$ for $i=1, \ldots, \ell$ and E_{i} countable for $i=\ell+1, \ldots, k$. Let $E_{\mathrm{c}}=\bigcup_{i=1}^{\ell} E_{i}$ and $E_{\mathrm{d}}=\bigcup_{i=\ell+1}^{k} E_{i}$.

First, we will show that there exists $n_{F}^{\prime} \geqslant 1$ such that

$$
\begin{equation*}
F \xrightarrow{n_{F}^{\prime}} E_{\mathrm{c}} \text { and } F \xrightarrow{n_{F}^{\prime}} E_{\mathrm{d}} \quad\left(\text { if } E_{\mathrm{d}} \neq \varnothing\right) \tag{37}
\end{equation*}
$$

Since the E_{i} are communicating and aperiodic subsets we can take m large enough so that $E_{r} \xrightarrow{m} E_{i}$ for $i=1, \ldots, k$. Since $F \xrightarrow{n_{F}} E_{r}$ we have (37) by setting $n_{F}^{\prime}=n_{F}+m$ and using Proposition 1.

Using aperiodicity again, there exists $n_{E} \geqslant 1$ such that

$$
\begin{equation*}
S \xrightarrow{n_{E}} E_{\mathrm{c}} \text { and } S \xrightarrow{n_{E}} E_{\mathrm{d}} \quad\left(\text { if } E_{\mathrm{d}} \neq \varnothing\right) \tag{38}
\end{equation*}
$$

Now $m\left(E_{\mathrm{c}}\right)>0$ and $E_{\mathrm{c}} \xrightarrow{n_{E}} E_{\mathrm{c}}$. Using exactly the same type of argument as in the proof of Theorem 1, we show that there exist $D \in E^{+}, \delta_{D}>0$ and $n_{D} \geqslant 1$ such that

$$
\inf \left\{p_{\mathrm{c}}^{\left(n_{D}\right)}(y \mid x): x \in S, y \in D\right\} \geqslant \delta_{D}
$$

Following the proof of Theorem 1, we have (24).

3. Applications

Consider the problem of estimating the global minimum of $f: S \rightarrow \mathbb{R}$, that is,

$$
\begin{equation*}
y_{\min }=\min _{x \in S}\{f(x)\} \text { or } S_{\min }=\left\{x: x \in S, f(x)=y_{\min }\right\} . \tag{39}
\end{equation*}
$$

Assume that S is bounded with $m(S)>0$, the global minimum $y_{\text {min }}$ is finite, f is continuous in a neighbourhood of each minimum point $x_{\min } \in S_{\min }$ and the minimum points are interior points of S.

The following random search algorithm will be used: let $X_{0} \in S$ be an initial random point; for each $x \in S$ let $g(\cdot \mid x)$ be a density function on \mathbb{R}^{d}; for $k \geqslant 0$ let X_{k} denote the value of the algorithm at step k; at step $k+1$ a random value Y_{k} is generated according to the density $g\left(\cdot \mid X_{k}\right)$ and we define

$$
X_{k+1}= \begin{cases}Y_{k} & \text { with probability } a\left(Y_{k} \mid X_{k}\right) \\ X_{k} & \text { with probability } 1-a\left(Y_{k} \mid X_{k}\right)\end{cases}
$$

It follows that the Markov chain $\left\{X_{n}\right\}_{n \geqslant 0}$ has the transition probability function given by $P(B \mid x)=P_{\mathrm{c}}(B \mid x)+P_{\mathrm{d}}(B \mid x)$, with

$$
\begin{equation*}
P_{\mathrm{c}}(B \mid x)=\int_{B} p_{\mathrm{c}}(y \mid x) \mathrm{d} y, \quad p_{\mathrm{c}}(y \mid x)=a(y \mid x) g(y \mid x) \tag{40}
\end{equation*}
$$

and

$$
\begin{equation*}
P_{\mathrm{d}}(B \mid x)=\sum_{y \in B \cap\{x\}} p_{\mathrm{d}}(y \mid x), \quad p_{\mathrm{d}}(x \mid x)=1-\int_{S} p_{\mathrm{c}}(y \mid x) \mathrm{d} y, \tag{41}
\end{equation*}
$$

and $p_{\mathrm{d}}(y \mid x)=0$ if $y \neq x$.
Note that the second step transition is given by

$$
P^{(2)}(B \mid x)=\int_{S} P(B \mid y) p_{\mathrm{c}}(y \mid x) \mathrm{d} y+P(B \mid x) p_{\mathrm{d}}(x \mid x)
$$

and writing $P(B \mid x)=\int_{B} p_{\mathrm{c}}(y \mid x) \mathrm{d} y+I_{(x \in B)} p_{\mathrm{d}}(x \mid x)$ we have

$$
P_{\mathrm{c}}^{(2)}(B \mid x)=\int_{B}\left[\int_{S} p_{\mathrm{c}}(z \mid y) p_{\mathrm{c}}(y \mid x) \mathrm{d} y+p_{\mathrm{d}}(z \mid z) p_{\mathrm{c}}(z \mid x)+p_{\mathrm{c}}(z \mid x) p_{\mathrm{d}}(x \mid x)\right] \mathrm{d} z
$$

and

$$
P_{\mathrm{d}}^{(2)}(B \mid x)=I_{(x \in B)} p_{\mathrm{d}}^{2}(x \mid x) .
$$

In general we have

$$
p_{\mathrm{d}}^{(n)}(y \mid x)=p_{\mathrm{d}}^{n}(y \mid x)
$$

and

$$
p_{\mathrm{c}}^{(n)}(y \mid x)=\int_{S} p_{\mathrm{c}}^{(n-1)}(y \mid z) p_{\mathrm{c}}(z \mid x) \mathrm{d} z+p_{\mathrm{d}}^{n-1}(y \mid y) p_{\mathrm{c}}(y \mid x)+p_{\mathrm{d}}(y \mid y) p_{\mathrm{c}}^{(n-1)}(y \mid x)
$$

Note that, in this case, inequality (6) is strict and we have equality in (7). Two types of algorithms will be analysed.

Algorithm 1. Take $g(y)=g(y \mid x)$ independent of x and the acceptance probability to be $a(y \mid x)=I_{(f(y) \leqslant f(x))} I_{(y \in S)}$.

Algorithm 2. Take $a(y \mid x)=\min \{1, \exp \{-c(f(y)-f(x))\}\}$, where $c>0$ is a constant.
For Algorithm 2 we assume the same type of hypothesis as in Dekkers and Aarts (1991) (but weaker relative to the objective function f and the set of minimum points $S_{\text {min }}$): (i) if $m(A)>0$ then $\int_{A} g(y \mid x) \mathrm{d} y>0, \forall x \in S$; (ii) if $m\left(E_{k}\right) \xrightarrow{k} 0$ then $\int_{E_{k}} g(y \mid x) \mathrm{d} y \xrightarrow{k} 0$ uniformly on x; and (iii) $\int_{S} g(y \mid x) \mathrm{d} y=1$ for all $x \in S$ and $g(y \mid x)=g(x \mid y)$.

We will show that the hypothesis of Theorem 2 is satisfied and the long-run distribution is given by

$$
\begin{equation*}
Q(B)=\int_{B} \alpha \mathrm{e}^{-c\left(f(y)-y_{\text {min }}\right)} \mathrm{d} y \quad \text { with } \alpha^{-1}=\int_{S} \mathrm{e}^{-c\left(f(y)-y_{\text {min }}\right)} \mathrm{d} y . \tag{42}
\end{equation*}
$$

For $\epsilon>0$ define

$$
\begin{equation*}
\eta(\epsilon)=\left\{x: x \in S,\left|x-x_{0}\right| \leqslant \epsilon \text { for some } x_{0} \in S_{\min }\right\} . \tag{43}
\end{equation*}
$$

Let $y_{\min }(\epsilon)=\inf \{f(x): x \in S \backslash \eta(\epsilon)\}$ and

$$
\begin{equation*}
B(\epsilon)=\eta(\epsilon) \cap\left\{x: x \in S, f(x) \leqslant y_{\min }(\epsilon)\right\} . \tag{44}
\end{equation*}
$$

Since f is continuous in a neighbourhood of each minimum point we have $m(B(\epsilon))>0$. We will show that $B(\epsilon) \stackrel{1}{\leftrightarrow} B(\epsilon)$ and $S \backslash B(\epsilon) \xrightarrow{1} B(\epsilon)$. This, together with (ii), verifies the conditions of Theorem 2. Thus the long-run distribution exists and coincides with the unique stationary distribution. To prove (42) it is enough to show that the stationary density is given by $q(y)=\alpha \exp \left\{-c\left(f(y)-y_{\min }\right)\right\}$. And this can be done by verifying that q satisfies

$$
q(y)=\int_{S} p_{\mathrm{c}}(y \mid x) q(x) \mathrm{d} x+q(y) p_{\mathrm{d}}(y \mid y) .
$$

To prove $B(\epsilon) \stackrel{1}{\leftrightarrow} B(\epsilon)$, first note that $f(y)-f(x) \leqslant y_{\min }(\epsilon)-y_{\text {min }}$ for $x \in B(\epsilon)$ and $y \in B(\epsilon)$. It follows that $a(y \mid x) \geqslant \delta_{\epsilon}=\exp \left\{-c\left(y_{\min }(\epsilon)-y_{\min }\right)\right\}$. Now let $B^{\prime} \in B^{+}(\epsilon)$ and $x \in B(\epsilon)$; then by (40) and (i) we have

$$
P_{\mathrm{c}}\left(B^{\prime} \mid x\right)=\int_{B^{\prime}} a(y \mid x) g(y \mid x) \mathrm{d} y \geqslant \delta_{\epsilon} \int_{B^{\prime}} g(y \mid x) \mathrm{d} y>0 .
$$

To prove that $S \backslash B(\epsilon) \xrightarrow{1} B(\epsilon)$, note that for $z \in S \backslash B(\epsilon)$ and $y \in B(\epsilon)$ we have $f(y) \leqslant f(z)$ so that $a(y \mid z)=1$. And by (i),

$$
P\left(B^{\prime} \mid z\right) \leqslant \int_{B^{\prime}} g(y \mid z) \mathrm{d} y>0, \quad \forall B^{\prime} \in B^{+}(\epsilon)
$$

As for Algorithm 1, we assume that x_{0} is the unique minimum point and that $g(y)>0$ in a neighbourhood of x_{0}. An atypical situation arises: $S_{\text {min }} \stackrel{1}{\leftrightarrow} S_{\text {min }}$ but $S_{\text {min }}$ is not accessible from any other subset of S (for all $n \geqslant 1$ we have $P^{(n)}\left(\left\{x_{0}\right\} \mid x\right)$ equal to 0 if $x \neq x_{0}$ and equal to 1 if $x=x_{0}$). Now let $B(\epsilon)$ be defined by (44) and $\epsilon>0$ small enough so that $g(y)>0$ on $B(\epsilon)$. Then we can show that $S \backslash B(\epsilon) \rightarrow B(\epsilon)$. In this case one can prove directly that the long-run distribution Q is the probability mass at x_{0}. Note that for all $n \geqslant 1$ and $\epsilon>0$ we have $P^{(n)}\left(B(\epsilon) \mid x_{0}\right)=1$. And for $x \neq x_{0}$ and $q_{\epsilon}=\int_{B(\epsilon)} g(y) \mathrm{d} y$ we have $P\left(B^{\mathrm{c}}(\epsilon) \mid x\right)=1-q_{\epsilon}$. Using induction arguments it is easy to show that, for $x \neq x_{0}$,

$$
\begin{equation*}
P^{(n)}\left(B^{\mathrm{c}}(\epsilon) \mid x\right)=\int_{B^{\mathrm{c}}(\epsilon)} P^{(n-1)}\left(B^{\mathrm{c}}(\epsilon) \mid y\right) P(\mathrm{~d} y \mid x)=\left(1-q_{\epsilon}\right)^{n} . \tag{45}
\end{equation*}
$$

From (45), if $\eta(\epsilon)$ is an ϵ-neighbourhood of x_{0}, we have

$$
\lim _{n \rightarrow \infty} P^{(n)}(\eta(\epsilon) \mid x)=1, \quad \forall x \in S
$$

It follows that $X_{n} \rightarrow x_{0}$ in probability and $Q\left(\left\{x_{0}\right\}\right)=1$.

Acknowledgement

The research for this paper was partially supported by CNPq-Brasil.

References

Dekkers, A. and Aarts, E. (1991). Global optimization and simulated annealing. Math. Programming, 50, 367-393.
Doob, J.L. (1953). Stochastic Processes. New York: Wiley.
Dorea, C.C.Y. (1986). Limiting distribution for random optimization methods. SIAM J. Control Optim., 24, 76-82.
Dorea, C.C.Y. (1990). Stopping rules for a random optimization method. SIAM J. Control Optim., 28, 841-850.
Parzen, E. (1962). Stochastic Processes. San Francisco: Holden-Day.
Received October 1995 and revised July 1996.

