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1. Introduction

We consider a Markov chain fXngn>0 that takes values on a bounded and measurable subset

S � Rd with m(S) . 0 and whose transition probability function has the representation:

P(Xn 2 BjX 0 � x) � P(n)(Bjx) � P(n)
c (Bjx)� P

(n)
d (Bjx) (1)

for x 2 S and B 2 B d (Borel subsets of Rd with Lebesgue measure). The absolutely con-

tinuous part,

P(n)
c (Bjx) �

�
B

p(n)
c (yjx) dy (2)

is such that p(n)
c (yjx) � 0 if y =2 S; similarly, the discrete part

P
(n)
d (Bjx) �

X
y2B\S

( n)
x

p
(n)
d (yjx) (3)

is such that p
(n)
d (yjx) � 0 for y =2 S(n)

x and S(n)
x � S for each x 2 S and n > 1.

Chains with continuous state space and the above representation arise naturally in random

global optimization algorithms. A general scheme for random search algorithms can be

described as follows: let X0 2 S be an initial random point and let f : S ! R be a function

whose global optimum on S (maximum or minimum) is of interest; for each x 2 S let

g(yjx) denote a density function on Rd ; if X n is the result of the algorithm at step n then

at step n� 1 one generates a random value Yn according to the density g; next X n�1 is

taken to be Yn with an acceptance probability a(YnjX n) or X n�1 � X n with probability

1ÿ a(YnjX n). It follows that the transition function of the algorithm can be written as:
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P(Bjx) �
�

B

a(yjx)g(yjx) dy� I(x2B) 1ÿ
�

S

a(yjx)g(yjx) dy

� �
(4)

where I denotes the indicator function. This type of Markovian algorithm will be detailed in

Section 3.

Though there is an extensive literature on general state-space Markov processes,

considerable mathematical background is required to understand them. In this paper we treat

Markov chains in Rd by extending the notions of communicability and periodicity of states

to subsets of Rd . It will be shown that, as in the discrete state space, they play an important

role in analysing the existence of stationary and long-run distributions,

lim
n!1 P(n)(Bjx) � Q(B): (5)

In Section 2 we derive conditions that will guarantee (5) and in Section 3 we apply these

notions to random search algorithms studied by Dorea (1986; 1990) and to a continuous

version of the `simulated annealing' algorithm treated by Dekkers and Aarts (1991).

2. Continuous state space

Let fX ngn>0 be a Markov process with values on S. Assuming that the nth-step transition

function has the representation (1), we then have:

P(n�1)(Bjx) �
�

S

P(n)(Bjy)P(dyjx)

�
�

S

P(n)(Bjy) pc(yjx) dy�
X
y2Sx

P(n)(Bjy) pd(yjx),

where Sx � fy: y 2 S, pd(yjx) . 0g. Using (2) and (3), we can write

P(n�1)(Bjx) �
�

B

�
S

p(n)
c (zjy) pc(yjx) dy�

X
y2Sx

p(n)
c (zjy) pd(yjx)

" #
dz

�
�

S

X
z2B\S

( n)
y

p
(n)
d (zjy) pc(yjx)

" #
dy�

X
y2Sx

X
z2B\S

( n)
y

p
(n)
d (zjy) pd(yjx):

It follows that

p(n�1)
c (zjx) >

�
S

p(n)
c (zjy) pc(yjx) dy�

X
y2Sx

p(n)
c (zjy) pd(yjx) (6)

and

p
(n�1)
d (zjx) >

X
y2Sx

p
(n)
d (zjy) pd(yjx): (7)
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By expressing P(n�1)(Bjx) � � S P(Bjy)P(n)(dyjx) we also obtain the inequalities

p(n�1)
c (zjx) >

�
S

pc(zjy) p(n)
c (yjx) dy�

X
y2S

( n)
x

pc(zjy) p
(n)
d (yjx)

and

p
(n�1)
d (zjx) >

X
y2S

( n)
x

pd(zjy) p
(n)
d (yjx):

Our main result (Theorem 1 below) shows that an irreducible and aperiodic chain

possesses a long-run distribution if certain regularity conditions are met. And in this case it

coincides with the unique stationary distribution. The following notation and notions will be

needed:

p(n)(yjx) � p(n)
c (yjx)� p

(n)
d (yjx): (8)

For B 2 B d let

B� � fD: D � B, m(D) . 0g, if m(B) . 0 (9)

and

B� � fD: D 6� Æ, D � Bg if B is countable. (10)

Let

S1 � fD: D � S, either m(D) . 0 or D is countableg: (11)

De®nition 1. Let fA, Bg � S1. We say that B is accessible from A if there exists nB > 1 such

that

P(nB)(B9jx) . 0, 8x 2 A, 8B9 2 B�

(which we write as A!n B
B). We say that A and B are communicating subsets (A$ B) if

A!nB
B and B!nA

A.

De®nition 2. We say that a chain is irreducible if there exists fA1, . . . , Akg � S1 such thatSk
j�1 Aj � S and Ai $ Aj for all i and j.

De®nition 3. Assume A$ A. We say that dA is the period of A if dA is the greatest common

divisor of

D (A) � fn: P(n)(A9jx) . 0, 8x 2 A, 8A9 2 A�g:
If dA � 1 we say that the subset A is aperiodic.
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Some immediate properties can be derived:

Proposition 1. (a) If A!nB
B then, given E0 . 0, there exists A0 2 A� such that either

P(nB)
c (Bjx) > E0, 8x 2 A0 or P

(nB)
d (Bjx) > E0, 8x 2 A0, (12)

depending on whether m(B) . 0 or B is countable.

(b) If A!n B
B and B!nC

C then A !n B�nC
C.

(c) If A$ B then they have the same period (dA � dB).

(d) If dA is the period of A then there exists mA > 1 such that for m > mA we have

mdA 2 D (A).

Proof. (a) Assume m(B) . 0 and let S(n B)
x � fy: p

(n B)
d (yjx) . 0g. Since BnS(nB)

x 2 B� and

m(S(n B)
x ) � 0, 8x 2 A, we must have P(nB)

c (B9jx) . 0, 8x 2 A and 8B9 2 B�. Given E0 . 0,

de®ne for k > 1

Dk � x: x 2 A, P(nB)
c (Bjx) ,

1

k

� �
:

Since Dk�1 � Dk ,
T

k Dk � Æ and m(A) ,1 we have limk!1 m(Dk) � 0. Let k0 be large

enough so that E0 < 1=k0 and m(AnDk0
) . 0 (if m(A) . 0) and AnDk0

6� Æ (if A is

countable). Then A0 � AnDk0
2 A� and for x 2 A0 we have P(n B)

c (Bjx) > E0.

If B is countable clearly we have P(nB)(B9jx) � P
(n B)
d (B9jx), 8B9 2 B�. Now proceeding

with arguments of the same type we obtain (12) by observing that P
(n B)
d (Bjx) . 0, 8x 2 A.

(b) Let C9 2 C�; then we have B!nC
C9. From (a), given E0 . 0, there exists B0 2 B�

such that P(nC )(C9jy) > E0 for y 2 B0. Since B0 2 B� we also have A!nB
B0. Now for x 2 A,

PnC�nB (C9jx) >

�
B0

P(nC )(C9jy)P(n B)(dyjx) > E0 P(n B)(B0jx) . 0:

It follows that A !nC�nB
C.

(c) Let A!nB
B and B!nA

A. From (b) we have A !n A�n B
A so that nA � nB 2 D (A). Now

let n1 2 D (B), we will show that nB � n1 � nA 2 D (A). Thus dA divides n1 since it

divides nA � nB. It follows that dA < dB. Interchanging the roles of A and B, we conclude

dA � dB.

Let A9 2 A�; since B!n A
A9, there exists B0 2 B� such that P(nA)(A9jz) > E0 . 0 on B0.

Since n1 2 D (B) we have B!n1
B0, and there exists B1 2 B� such that P(n1)(B0jy) > E1 . 0

on B1. Now for x 2 A,

P(n B�n1�n A)(A9jx) >

�
( y2B1)

�
(z2B0)

P(n A)(A9jz)P(n1)(dzjy)P(nB)(dyjx)

> E0

�
( y2B1)

P(n1)(B0jy)P(n B)(dyjx)

> E0E1 P(n B)(B1jx) . 0:

Thus nB � n1 � nA 2 D (A).
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(d) Note that if r 2 D (A) and s 2 D (A) then, using (a), we have r � s 2 D (A). That is,

D (A) is closed under addition. Then there exists mA such that mdA 2 D (A) for m > mA;

see Doob (1953, p. 176) or Parzen (1962, p. 262). u

Proposition 2. (a) If A!nB
B then there exist äB . 0, A0 2 A� and B0 2 B� such that

inf fp(n B)(yjx): x 2 A0, y 2 B0g > äB: (13)

(b) If A$n A
A then there exist äA . 0 and A0 2 A� such that

inf fp(2nA)(yjx): x 2 A0, y 2 A0g > äA: (14)

(c) If the chain is irreducible and aperiodic, then we can decompose S � Sc [ Sd where

Sd is countable and Sc � SnSd. Moreover, there exists nS > 1 such that S!nS
Sc, and if

Sd 6� Æ we also have S!nS
Sd.

Proof. (a) First assume B is countable. Let BN � fb1, . . . , bNg � B. Since A!nB
BN , from

(12) we can write,

P
(nB)
d (BN jN ) > ä0 . 0 on A0 2 A�: (15)

It follows that we must have p
(n B)
d (yjjx) > ä0=N for some yj 2 BN . Now (13) follows using

(8) and taking B0 � fyjg 2 B� and äB � ä0=N .

Now assume m(B) . 0. If A is countable let x0 2 A and A0 � fx0g 2 A�. Since

P(nB)
c (Bjx0) � �B p(n B)

c (yjx0) dy . 0, there exist äB . 0 and B0 2 B� such that on B0 we have

p(nB)
c (yjx0) > äB.

If m(A) . 0 then from (12),

P(nB)
c (Bjx) > ä1 . 0 on A1 2 A�: (16)

Let äB � ä1=2m(B) and de®ne

D � f(x, y): x 2 A1, y 2 B, p(nB)
c (yjx) > äBg:

Note that for x 2 A1 and Dx � fy: (x, y) 2 Dg we have m(Dx) . 0. If not, then for almost all

y in Dx we have p(n B)
c (yjx) , äB and P(nB)

c (Bjx) < äB m(B) < ä1=2, which contradicts (16).

Let m2 denote the Lebesgue measure on R2d ; then we have m2(D) � � A1
m(Dx) dx . 0. Thus

there exists a rectangle A0 3 B0 with m2(A0 3 B0) . 0, A0 2 A�1 � A�, B0 2 B�, and for

x 2 A0 and y 2 B0 we have

p(nB)(yjx) > p(n B)
c (yjx) > äB:

(b) From (a) there exist A1 2 A� and A2 2 A� such that

inf f p(nA)(yjx): x 2 A1, y 2 A2g > ä1 . 0:

By (12) there exists A0 2 A�2 such that

P(n A)(A1jy) > ä2 . 0 on A0:

Now for x 2 A0 and y 2 A0,
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p(2nA)(yjx) >

�
A1

p(nA)(yjz)P(n A)(dzjx) > ä1 P(nA)(A1jx) > ä1ä2 . 0:

(c) Let fAi, . . . , Akg satisfy De®nition 2. Since the chain is aperiodic, from Proposition

1 there exist m1, . . . , mk such that for r > max fm1, . . . , mkg we have r 2 D (Aj) for

j � 1, . . . , k.

Since m(S) . 0 not all A9js can be countable. Without loss of generality, assume that

A1, . . . , Al have positive measure (l < k). Let Sc �
Sl

r�1 Ar and B 2 S�c . Then for some j

we have Bj � B [ Aj 2 A�j . For i � 1, . . . , k let ni be such that Ai!ni
Bj. Since m(Bj) . 0,

from the proof of (a) we have, for i � 1, . . . , k,

inf fp(ni)
c (yjx): x 2 A9i, y 2 B9j(i)g > äi . 0, (17)

where A9i 2 A�i and B9j(i) 2 B�j .

Now take nS large enough so that nS ÿ ni 2 D (Ai) for i � 1, . . . , k. From (2) and (17)

we have, for z 2 A9i,

P(ni)
c (B9j(i)jz) > äi m(B9j(i)) . 0: (18)

Let äB � min1<i<k fäi m(B9j(i)g and x 2 S. Then x 2 Ai for some i, and we have

P(nS )(Bjx) > P(nS )(B9j(i)jx) >

�
A9i

P(ni)
c (B9j(i)jz)P(nSÿni)(dzjx):

From (18) and the fact that nS ÿ ni 2 D (Ai), we have

P(nS )(Bjx) > äB P(nSÿni)(A9ijx) . 0: (19)

Since (19) holds for all B 2 S�c , we have S!nS
Sc.

If l � k then the proof is completed by taking Sd � Æ. If not, let Sd �
Sk

r�l �1 Ar. Let

B 2 S�d and l � 1 < j < k such that Bj � B \ Aj 2 A�j . The proof is exactly the same,

except that pc is replaced by pd in (17), and Pc and m(B9j(i)) by Pd and i B9j(i)i in (18)

(where i:i denotes cardinality of the set). And we have S!nS Sd. u

Remark 1. Let A!nB
B. Then from the proofs of Propositions 1 and 2 we also have the

following:

(a) If m(B) . 0 then

P(n B)
c (B9jx) . 0, 8x 2 A, 8B9 2 B�, (20)

inf fp(n B)
c (yjx): x 2 A0, y 2 B0g > äB . 0, (21)

with A0 2 A� and B0 2 B�.

(b) If B is countable then (20) and (21) hold with Pd and pd in place of Pc and pc,

respectively.

(c) If A$n A
A and m(A) . 0, then

inf fp(2nA)
c (yjx): x 2 A0, y 2 A0g > äA . 0, (22)

with A0 2 A�. If A is countable we have (22) with pd in place of pc.
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Our next result requires the following condition:

Condition 1. If m( Ek)! 0 as k !1 then:

lim
k!1

Pc(Ek jx) , 1, uniformly on x: (23)

Note that for each x 2 S we always have Pc( Ek jx)!k 0. Condition 1 requires that the

convergence be uniform on S. Also if pc( yjx) < K ,1 is bounded then (23) holds trivially,

since Pc( Ek jx) < Km( Ek).

Theorem 1. If a chain is irreducible and aperiodic, and if Condition 1 is satis®ed, then it

possesses a long-run distribution

lim
n!1 P(n)(Bjx) � Q(B), 8B 2 B d , (24)

where Q is a probability on (Rd , B d).

Proof. The proof requires several steps and uses some of the techniques found in Doob

(1953).

(a) Since the chain is irreducible and aperiodic, by Proposition 2 there exists Sc 2 S�

such that S!nS
Sc (also Sc!nS

Sc). From (22) there exist ä1 . 0 and S9c 2 S�c such that

inf fp(2ns)
c (yjx): x 2 S9c, y 2 S9cg > ä1: (25)

From (20) we have

P(nS )
c (S9cjx) . 0, 8x 2 S: (26)

Let Ek � fx: P(nS )
c (S9cjx) , 1=kg; then, by (26) and the fact that m(S) ,1, we have

m(Ek)! 0. From Condition 1, there exist E0 . 0 and k0 such that

Pc(Ek0
jx) < 1ÿ E0, 8x 2 S: (27)

Since P(nS )
c (S9cjz) > 1=k0 for z 2 SnEk0

, using (6) and (27) we can write, for x 2 S,

P(nS�1)
c (S9cjx) >

�
SnEk0

P(nS )
c (S9cjz)P(dzjx)

>
1

k0

P(SnEk0
jx) >

E0

k0

: (28)

Now take D � S�c (thus m(D) . 0), nD � 3nS � 1 and äD � ä1E0=k0. Then, using (6),

(25) and (28), we have for y 2 D and x 2 S,

p(3nS�1)
c (yjx) >

�
D

p(2nS )
c (yjz) p(nS�1)

c (zjx) dz

> ä1 P(nS�1)
c (S9cjx) > äD . 0:
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Thus there exist äD . 0, nD > 1 and D 2 S� such that

inf fp(n D)
c (yjx): x 2 S, y 2 Dg > äD: (29)

(b) Let D and äD satisfy (29) and ED � äD m(D), then

jP(kn D)(Bjx)ÿ P(knD)(Bjy)j < (1ÿ ED)k (30)

8B 2 B d , 8x 2 S, 8y 2 S and k > 1.

From (1) and (29) we have

P(n D)(Bjx) >

�
B\D

p(nD)
c (yjx) dy > äD m(B \ D)

and

P(nD)(Bcjx) > äD m(Bc \ D) � ED ÿ äD m(B \ D):

It follows that for x 2 S,

äD m(B \ D) < P(n D)(Bjx) < 1ÿ ED � äD m(B \ D): (31)

Using inequality (31) with y in place of x, we can write

P(nD)(Bjx)ÿ P(n D)(Bjy) < 1ÿ ED:

Interchanging the roles of x and y, we obtain

jP(nD)(Bjx)ÿ P(n D)(Bjy)j < 1ÿ ED: (32)

For k > 2, let

L(dz; x, y, k) � P((kÿ1)n D)(dzjx)ÿ P((kÿ1)nD)(dzjy) (33)

U � (L(dz; x, y, k) > 0) and V � (L(dz; x, y, k) , 0):

And we can write

P(knD)(Bjx)ÿ P(kn D)(Bjy) �
�

U

P(n D)(Bjz)L(dz; x, y, k)�
�

V

P(nD)(Bjz)L(dz; x, y, k):

From (31) we have �
U

P(n D)(Bjz)L(:) < (1ÿ ED � äD m(B \ D))

�
U

L(:)

and �
V

P(nD)(Bjz)L(:) < äD m(B \ D)

�
V

L(:):

Since
�

U L(:)� �V L(:) � 0, we have

P(kn D)(Bjx)ÿ P(kn D)(Bjy) < (1ÿ ED)

�
U

L(:): (34)

422 C.C.Y. Dorea



If k � 2 we have, from (32),�
U

L(:) � P(nD)(U jx)ÿ P(nD)(U jy) < 1ÿ ED:

Thus

P(2nD)(Bjx)ÿ P(2nD)(Bjy) < (1ÿ ED)2:

Induction arguments and (34) give us (30).

(c) For k > 1, m > 1 and x 2 S, we have

jP(kn D�m)(Bjx)ÿ P(knD)(Bjx)j < (1ÿ ED)k : (35)

Since
�

S P(m)(dyjx) � 1 and P(kn D�m)(Bjx) � � S P(kn D)(Bjy)P(m)(dyjx), we can write

P(knD�m)(Bjx)ÿ P(knD)(Bjx) �
�

S

[P(kn D)(Bjy)ÿ P(kn D)(Bjx)]P(m)(dyjx):

and (35) follows from (30).

(d) P(n)(Bjx) is a Cauchy sequence by (35). For B 2 Bd let Q(B) � limn!1 P(n)(Bjx),

which is independent of x by (30). It is easy to verify that Q is ó-additive on B d and since

Q(S) � 1 it is a probability on (Rd , B d). u

Remark 2. (a) Under the hypothesis of Theorem 1 the long-run distribution Q necessarily has

an absolutely continuous part. Note that from (29) we have p(n D)
c (yjx) > äD . 0, 8y 2 D and

8x 2 S with m(D) . 0. And from (6) for y 2 D, x 2 S,

p(n D�1)
c (yjx) >

�
S

p(nD)
c (yjz)P(dzjx) > äD:

Thus for D9 2 D� we have

lim
n!1 P(n)

c (D9jx) > äD m(D9):

(b) Our next theorem shows that the results of Theorem 1 hold if we assume the

following condition:

Condition 19. if m( Ek)! 0 then limn!1 Pd( Ek jx) � 0 uniformly on S.

Theorem 19. Assume that the chain is irreducible and aperiodic with Sd 6� Æ. Then (24)

holds if Condition 19 is satis®ed.

Proof. From Proposition 2(c), if the chain is irreducible and aperiodic then S � Sc \ Sd with

Sd countable and Sc � SnSd. Since Sd 6� Æ there exists nS > 1 with S!nS
Sd, and by (22)

there exist S9d 2 S�d and ä1 . 0 such that

inf fp
(2nS )
d (yjx): x 2 S9d, y 2 S9dg > ä1:

And by (20) we have P
(nS )
d (S9djx) . 0, 8x 2 S.
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Let Ek � fx: P
(nS )
d (S9djx) , 1=kg; then m(Ek)! 0. From Condition 19, given E0 . 0, there

exists k0 such that Pd(Ec
k0
jx) > E0 for x 2 S. From (7) we have

P
(nS�1)
d (S9djx) >

X
z2(Ec

k0
\Sx)

P
(nS )
d (S9djz) pd(zjx)

>
1

k0

Pd(Ec
k0
jx) >

E0

k0

:

Now let D � S9d, nD � 3nS � 1 and äD � ä1E0=k0 and we have for, y 2 D and x 2 S,

p
(3nS�1)
d (yjx) >

X
z2D

p
(2nS )
d (yjz) p

(nS�1)
d (zjx)

> ä1 P
(nS�1)
d (S9djx) >

ä1E0

k0

� äD . 0:

Thus there exist äD . 0, nD > 1 and D 2 S�d such that

inf fp
(n D)
d (yjx): x 2 S, y 2 Dg > äD: (36)

It follows that for B 2 Bd

P(nD)(Bjx) >
X

( y2B\D\S
( n D )
x )

p
(nD)
d (yjx) > äD i D \ Bi

and

äD i D \ Bi < P(n D)(Bjx) < 1ÿ äD i Di � äD i D \ Bi:

Since 0 , äD i Di , 1, using the same arguments as in Theorem 1 we obtain (24). u

Theorem 2. Let fE1, . . . , Ekg � S1 be mutually communicating and aperiodic subsets of S.

For E � Sk
i�1 Ei, let F � SnE. Assume that F 6� Æ, m(E) . 0, Condition 1 holds and that

for some r and nF we have F!nF
Er. Then the chain has a long-run distribution.

Proof. Since m(E) . 0 we may assume m(Ei) . 0 for i � 1, . . . , l and Ei countable for

i � l � 1, . . . , k. Let Ec �
Sl

i�1 Ei and Ed �
Sk

i�l �1 Ei.

First, we will show that there exists n9F > 1 such that

F!n9F
Ec and F!n9F

Ed (if Ed 6� Æ): (37)

Since the Ei are communicating and aperiodic subsets we can take m large enough so that

Er!m Ei for i � 1, . . . , k. Since F!n F
Er we have (37) by setting n9F � nF � m and using

Proposition 1.

Using aperiodicity again, there exists nE > 1 such that

S!nE
Ec and S!n E

Ed (if Ed 6� Æ): (38)
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Now m(Ec) . 0 and Ec!n E
Ec. Using exactly the same type of argument as in the proof of

Theorem 1, we show that there exist D 2 E�, äD . 0 and nD > 1 such that

inf fp(n D)
c (yjx): x 2 S, y 2 Dg > äD:

Following the proof of Theorem 1, we have (24). u

3. Applications

Consider the problem of estimating the global minimum of f : S ! R, that is,

ymin � min
x2S
f f (x)g or Smin � fx: x 2 S, f (x) � yming: (39)

Assume that S is bounded with m(S) . 0, the global minimum ymin is ®nite, f is continuous

in a neighbourhood of each minimum point xmin 2 Smin and the minimum points are interior

points of S.

The following random search algorithm will be used: let X 0 2 S be an initial random

point; for each x 2 S let g(:jx) be a density function on Rd ; for k > 0 let X k denote the

value of the algorithm at step k; at step k � 1 a random value Yk is generated according to

the density g(:jXk) and we de®ne

X k�1 � Yk with probability a(Yk jX k)

X k with probability 1ÿ a(Yk jX k):

�
It follows that the Markov chain fX ngn>0 has the transition probability function given by

P(Bjx) � Pc(Bjx)� Pd(Bjx), with

Pc(Bjx) �
�

B

pc(yjx) dy, pc(yjx) � a(yjx)g(yjx) (40)

and

Pd(Bjx) �
X

y2B\fxg
pd(yjx), pd(xjx) � 1ÿ

�
S

pc(yjx) dy, (41)

and pd(yjx) � 0 if y 6� x.

Note that the second step transition is given by

P(2)(Bjx) �
�

S

P(Bjy) pc(yjx) dy� P(Bjx) pd(xjx),

and writing P(Bjx) � �B pc(yjx) dy� I (x2B) pd(xjx) we have

P(2)
c (Bjx) �

�
B

�
S

pc(zjy) pc(yjx) dy� pd(zjz) pc(zjx)� pc(zjx) pd(xjx)

� �
dz

and

P
(2)
d (Bjx) � I (x2B) p2

d(xjx):
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In general we have

p
(n)
d (yjx) � pn

d (yjx)

and

p(n)
c (yjx) �

�
S

p(nÿ1)
c (yjz) pc(zjx) dz� pnÿ1

d (yjy) pc(yjx)� pd(yjy) p(nÿ1)
c (yjx):

Note that, in this case, inequality (6) is strict and we have equality in (7). Two types of

algorithms will be analysed.

Algorithm 1. Take g(y) � g(yjx) independent of x and the acceptance probability to be

a(yjx) � I ( f ( y)< f (x)) I ( y2S).

Algorithm 2. Take a(yjx) � min f1, exp fÿc( f (y)ÿ f (x))gg, where c . 0 is a constant.

For Algorithm 2 we assume the same type of hypothesis as in Dekkers and Aarts (1991) (but

weaker relative to the objective function f and the set of minimum points Smin): (i) if

m(A) . 0 then
�

A g(yjx) dy . 0, 8x 2 S; (ii) if m(Ek)!k 0 then
�

E k
g(yjx) dy!k 0 uniformly

on x; and (iii)
�

S g(yjx) dy � 1 for all x 2 S and g(yjx) � g(xjy).

We will show that the hypothesis of Theorem 2 is satis®ed and the long-run distribution

is given by

Q(B) �
�

B

áeÿc( f ( y)ÿ ymin) dy with áÿ1 �
�

S

eÿc( f ( y)ÿ ymin) dy: (42)

For E. 0 de®ne

ç(E) � fx: x 2 S, jxÿ x0j < E for some x0 2 Sming: (43)

Let ymin(E) � inf f f (x): x 2 Snç(E)g and

B(E) � ç(E) \ fx: x 2 S, f (x) < ymin(E)g: (44)

Since f is continuous in a neighbourhood of each minimum point we have m(B(E)) . 0.

We will show that B(E)$1 B(E) and SnB(E)!1 B(E). This, together with (ii), veri®es the

conditions of Theorem 2. Thus the long-run distribution exists and coincides with the

unique stationary distribution. To prove (42) it is enough to show that the stationary density

is given by q(y) � á exp fÿc( f (y)ÿ ymin)g. And this can be done by verifying that q

satis®es

q(y) �
�

S

pc(yjx)q(x) dx� q(y) pd(yjy):

To prove B(E)$1 B(E), ®rst note that f (y)ÿ f (x) < ymin(E)ÿ ymin for x 2 B(E) and

y 2 B(E). It follows that a(yjx) > äE � exp fÿc(ymin(E)ÿ ymin)g. Now let B9 2 B�(E) and

x 2 B(E); then by (40) and (i) we have

Pc(B9jx) �
�

B9

a(yjx)g(yjx) dy > äE

�
B9

g(yjx) dy . 0:
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To prove that SnB(E)!1 B(E), note that for z 2 SnB(E) and y 2 B(E) we have f (y) < f (z)

so that a(yjz) � 1. And by (i),

P(B9jz) <

�
B9

g(yjz) dy . 0, 8B9 2 B�(E):

As for Algorithm 1, we assume that x0 is the unique minimum point and that g(y) . 0 in

a neighbourhood of x0. An atypical situation arises: Smin$1 Smin but Smin is not accessible

from any other subset of S (for all n > 1 we have P(n)(fx0gjx) equal to 0 if x 6� x0 and

equal to 1 if x � x0). Now let B(E) be de®ned by (44) and E. 0 small enough so that

g(y) . 0 on B(E). Then we can show that SnB(E)!1 B(E). In this case one can prove directly

that the long-run distribution Q is the probability mass at x0. Note that for all n > 1 and

E. 0 we have P(n)(B(E)jx0) � 1. And for x 6� x0 and qE �
�

B(E) g(y) dy we have

P(Bc(E)jx) � 1ÿ qE. Using induction arguments it is easy to show that, for x 6� x0,

P(n)(Bc(E)jx) �
�

Bc(E)
P(nÿ1)(Bc(E)jy)P(dyjx) � (1ÿ qE)

n: (45)

From (45), if ç(E) is an E-neighbourhood of x0, we have

lim
n!1 P(n)(ç(E)jx) � 1, 8x 2 S:

It follows that X n ! x0 in probability and Q(fx0g) � 1.
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