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1. Introduction

Diaconis and Sturmfels (1993) developed a method for constructing a symmetric and

irreducible Markov chain on an intersection of hyperplanes in Z r
�. We shall show how their

algorithm can be used for computing probabilities of succession in a general multi-

dimensional Bayesian framework.

The algorithm of Diaconis and Sturmfels was developed to handle practical and dif®cult

problems in categorical data. It generalizes a useful technique for producing r 3 c tables with

®xed row and column sums, which apparently ®rst appeared in Besag and Clifford (1989) for

testing a particular model for data in a contingency table. The manuscript of Diaconis and

Sturmfels also contains methods for hypergeometric sampling, applications, and a complete

theoretical treatment through toric ideals. Since their method has not yet become widely used,

the present paper describes their construction in rigorous but less abstract terms. It is shown

how irreducible Markov chains on hyperplanes naturally lead to telescoping sums of

monomial differences. The ideals which arise from these differences are studied primarily

with the division algorithm for polynomials in several variables. We use the Markov chain in

Section 3 for computing probabilities of succession in a Bayesian framework conditioned on

arbitrary incomplete present information. Our formula in Proposition 3.1 gives the succession

probability in terms of an expectation over the set on which the event is conditioned with

respect to the uniform distribution. We believe that this application is new.

2. Markov chains

An element a � (a1, . . . , ar) 2 Z r
� will equivalently be denoted X a :� x1

a1 x2
a2 . . . xr

a r .

Here Z r
� denotes the set of r-tuples of non-negative integers. Let T : Rr ! Rd be a linear
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map such that T (Z r
�) � Zd

�. We are interested in constructing a symmetric Markov chain on

the level set S � fa 2 Z r
�: T (a) � T (a0) 2 Zd

�g (assumed to be ®nite) with moves

M � f� f 1, . . . , � f mg, (2:1)

where f i 2 Z r satis®es T ( f i) � 0.

The Markov transition matrix is de®ned by

ð(a, a� f i) � 1

2

1

m
if a� f i 2 S,

ð(a, aÿ f i) � 1

2

1

m
if aÿ f i 2 S,

(2:2)

and the holding probability ð(a, a) makes the matrix stochastic. Thus, one chooses one of the

f i uniformly; then a coin is ¯ipped to determine the sign. If the new state a� f i has non-

negative entries, the move is made. Otherwise, one holds fast.

The main problem is ®nding a set of moves M which produces an irreducible Markov

chain in the state space S. The set M will produce an irreducible chain if, for each a, b 2 S,

there is a sequence f i1 , . . . , f i k
of moves and a sequence of signs z1, . . . , zk such that

a� z1 f i1� . . . � z j f i j
2 S, j � 1, . . . , k,

a� z1 f i1� . . . � zk f i k
� b:

This means that there is a path in S from a to b, which preserves T (a) and which remains in Z r
�.

The construction of the moves M for the chain (2.2) uses the algebra of polynomials of

several variables. We ®rst show how monomial differences arise naturally when studying

paths using a set of moves M. This leads to Corollary 2.1, which shows the importance of a

GroÈbner basis when trying to connect two elements of the state space S.

Let a and b be two elements in S, and suppose that there is a path from a to b with

moves in M. The path can be written a, a1 � aÿ z1 f i1 , a2 � aÿ z1 f i1 ÿ z2 f i2 , . . . , ak � b,

where zi represents the sign � or ÿ and ai 2 Z r
� for each 1 < i < k. Below, f �1 �

max f f 1, 0g is the positive part of f1 and f ÿ1 � max fÿ f 1, 0g is the negative part, which

both have non-negative entries, and f z1

1 will mean f �1 if z1 � � and f ÿ1 if z1 � ÿ. With

this notation, we can write

X a ÿ X b � (X a ÿ X a1 )� (X a1 ÿ X a2 ) � . . . � (X a kÿ1 ÿ Xb)

� z1 X
aÿ f

z1
i1 (X

f �i1 ÿ X
f ÿi1 ) � . . . � zk X

a kÿ1ÿ f
zk
i k (X

f �i k ÿ X
f ÿi k ): (2:3)

We are now considering the symbol X a as an element of the ring Q[x1, . . . , xr], with

coef®cients in the rationals Q and addition and multiplication in this structure. Then (2.3)

shows that the difference X a ÿ X b is in the ideal hX f �i ÿ X f ÿi : i � 1, . . . , mi generated by

monomial differences corresponding to the moves M.

It will be important to order elements of Z r
� and equivalently symbols X a. We say that

a > b if in the difference aÿ b the leftmost non-zero entry is positive. We say that

X a > X b if a > b in the above sense. Thus (1, 1, 0) > (1, 0, 0) > (0, 1, 0). For future

convenience we shall suppose that things are arranged in (2.1) so that f �i > f ÿi and
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f �i > f �i�1 in this ordering. We shall say that the monomial difference X f �i ÿ X f ÿi

corresponds to the move f i 2 M . De®ne for further use

I M � hX f �i ÿ X f ÿi : i � 1, . . . , mi,

I T � hX a ÿ X b: T (a) � T (b)i:
Then (2.3) means that the difference X a ÿ X b is in the ideal generated by I M, which gives

the following proposition.

Proposition 2.1. If elements a and b in S are connected by moves in M, then the monomial

difference X a ÿ X b is in the ideal I M ÿ hX f �i ÿ X f ÿi : i � 1, . . . , mi.

Corollary 2.1. If the Markov chain (2.2) is irreducible, then I T � I M .

Now we are interested in conditions on M which imply that two elements of S are connected

with moves in M. We shall assume that the reader is familiar with the division algorithm for

polynomials in several variables. This can be found for example in Cox et al. (1992). It is clear

that the lead term of an intermediate dividend in the division of a monomial X b by the set of

monomial differences from moves M is connected to b in the Markov chain de®ned in (2.2). It

is reached from the previous lead term by substracting the move f i corresponding to the

multidegree of the divisor of the previous lead term. In order that a path with moves in M

between two points a and b may always be constructed by such division, the collection of

monomial differences corresponding to M will require a generous collection of lead terms,

which in precise terms is the condition that these monomial differences constitute a GroÈbner

basis for I T. We make this argument below to prove Theorem 2.1.

Theorem 2.1. Suppose that M is such that hLT (X f �i ÿ X f ÿi ): i � 1, . . . , mi � hLT (I M )i.
Then there is a path from a 2 S to an element b 2 S with moves in M � f� f 1, . . . , � f mg if

and only if X a ÿ X b 2 I M .

Proof. Proposition 2.1 said that the difference X a ÿ X b is in I M if there is a path from a to b

using moves in M. We shall prove the converse.

Suppose that X a ÿ X b 2 I M . At each step in the division of X a ÿ X b by the set of

monomial differences, the intermediate dividend is the difference of two elements of I M .

Therefore it belongs to I M and its leading term �X aá by de®nition belongs to hLT (I M )i.
Since hLT (I M )i � hLT (X f �i ÿ X f ÿi ): i � 1, . . . , mi, one of the leading terms of the set of

divisors goes into our leading term �X aá and the division can proceed one more step. The

division continues until the remainder is 0. The path can be constructed with the lead terms

of the intermediate dividends and the sequence of moves by tracking the moves represented

by the difference X f �i ÿ X f ÿi at each stage of the division. The path is built at both ends

simultaneously (see Example 2.1). u

Corollary 2.2. Suppose the set of moves M is such that hLT (I M )i � hLT (X f �i ÿ X f ÿi ):

i � 1, . . . , mi. Then the Markov chain (2.2) is irreducible if and only if I M � I T .
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Proof. Suppose that the chain is irreducible. From Proposition 2.1, I T � I M . Since always

I M � I T , the two ideals are the same.

Conversely, suppose the two ideals are the same, and let a, b be in S. Then the difference

X a ÿ X b 2 I M . With the assumption on the leading terms of I M , it follows from Theorem

2.1 that there is a path from a to b. Hence the chain is irreducible. u

Corollary 2.2 means that, for the chain (2.2) to be irreducible, it is enough to ®nd a set

of monomial differences X f �i ÿ X f ÿi such that hLT (X f �i ÿ X f ÿi ): i � 1, . . . , mi �
hLT (I M )i and such that I M � I T . However, this is equivalent to the condition that

hLT (X f �i ÿ X f ÿi ): i � 1, . . . , mi � hLT (I T )i, since this implies that I M � I T . Such a set is

called a GroÈbner basis for I T.

We are now interested in a method to ®nd a GroÈbner basis for I T , or in other words a

method to construct a ®nite basis of monomial differences fX f �i ÿ X f ÿi : i � 1, . . . , mg in

I T such that hLT (X f �i ÿ X f ÿi ): i � 1, . . . , mi � hLT (I T )i. This will give us moves

M � f� f 1, . . . , � f mg for an irreducible chain in S, by Corollary 2.2. Proposition 2.2

below presents a method given by Diaconis and Sturmfels (1993).

Consider the ideal I in Q[y1, . . . , yd , x1, . . . , xr] generated by the terms X ei ÿ Y T (ei), where

ei is the basis element (0, . . . , 1, . . . 0) 2 Z r
� with 1 in the ith position. The indeterminates are

ordered y1 . y2 . . . . . yd . x1 . 0 . . . xr. This ordering is important for Theorem 2.2.

Proposition 2.2. I T � I \ Q[x1, . . . , xr].

Proof. First we show that I T � I \ Q[x1, . . . , xr]. This will follow if X a ÿ Y T (a) 2 I for

every a 2 Z r
�, since then for any a and b with T (a) � T (b) it will follow that the difference

X a ÿ X b � X a ÿ Y T (a) ÿ X b � Y T (b) also belongs to the ideal I.

To see that X a ÿ Y T (a) 2 I , observe that xi ÿ Y T (ei) 2 I , x2
i ÿ Y T (2ei), etc., all belong to I,

by simple factorization. Now proceed by induction on the degree |a| of a, de®ned by

jaj � a1 � . . . � ar. If the degree of a is 1, then we saw that X a ÿ Y T (a) 2 I . Suppose that

jaj � d, and assume we have that X b ÿ Y T (b) 2 I for all b with jbj, d. If the coordinate

aá . 0 in a, then

(xá ÿ Y T(eá))(X aÿeá � Y T (aÿ eá)) 2 I ,

(xá � Y T (eá))(X aÿeá ÿ Y T (aÿeá)) 2 I (by the induction hypothesis),

and therefore their difference xáY T (aÿeá) ÿ X aÿeá Y T (eá) 2 I , but then the sum Xa ÿ YT (a) �
(xá � YT(eá))(XaÿeáÿYT (aÿeá)) � xáYT (aÿeá) ÿ Xaÿeá YT (eá)) 2 I. This proves that IT � I \
Q[x1, . . . , xr].

Next we show that I \ Q[x1, . . . , xr] � I T . Let öT be the ring homomorphism from

Q[y1, . . . , yd , x1, . . . , xr] into Q[y1, . . . , yd] with the de®ning property

öT (X a) � Y T (a),

öT (Y w) � Y w:

This is well de®ned since T is linear. We shall show that I \ Q[x1, . . . , xr] � ker (öT ) \

404 I.H. Dinwoodie



Q[x1, . . . , xr] � I T . It is clear that I \ Q[x1, . . . , xr] � ker (öT ) \ Q[x1, . . . , xr], since each

element X ei ÿ Y T (ei) of the generating set for I belongs to ker (öT ).

Finally we prove that ker (öT ) \ Q[x1, . . . , xr] � I T . If this were not the case, there

would be a polynomial in ker (öT ) \ Q[x1, . . . , xr] but not in I T . Let p0(x1, . . . , xr) �Pk
i�1zi X

ai be such a polynomial, written with coef®cients zi � �1, ordered but with

possible repetition.

Since 0 � öT ( p0) �Pk
i�1ziY

T (ai), it must be the case that the image Y T (a1) of the lead

monomial X a1 . 1 is the same as the image öT (X a j ) of a lesser monomial X a j in p0, in

order for the cancellation of monomials to take place in the image
Pk

i�1ziY
T(ai). Taking all

the monomials in p0 whose image is Y T (a1) and their coef®cients, we get a polynomial

pT �
Pá

j�1zi j
X

ai j with coef®cients �1 which must sum to 0. It can be written then as a

sum of monomial differences and pT 2 I T � ker (öT ).

Since ker (öT ) \ Q[x1, . . . , xr] is an ideal and it contains pT , it also contains

p1 � p0 ÿ pT , which is a polynomial of strictly smaller degree than p0. Also p1 could

not be in I T ; otherwise p0 � p1 � pT would also be in this ideal.

Therefore, if ker (öT ) \ Q[x1, . . . , xr] were not contained in I T , there would be no

polynomial of smallest degree in the difference ker (öT ) \ Q[x1, . . . , xr]ÿ I T , which cannot

be true. Therefore, the two ideals must be the same. u

Recall that a GroÈbner basis G � hp1, . . . , pgi for an ideal J has the de®ning property

that

hLT ( p1), . . . , LT ( pg)i � hLT ( p): p 2 Ji,

which says that the set G has suf®cient lead terms that the division algorithm will proceed

successfully to leave eventually remainder 0 when the dividend is in the ideal generated by

G.

If G � fX f �i ÿ X f ÿi : i � 1, . . . , mg is a GroÈbner basis of monomial differences for the

ideal I T , then the division algorithm constructs the path from one point a 2 S to another

point b. Consider dividing X a ÿ X b by the basis until one reaches remainder 0. The lead

terms of the intermediate dividends are points in the path, which decrease at ®rst from X a.

The element of the basis which is chosen as divisor of an intermediate lead term represents

the move which steps from that lead term to the next. At some point, ÿX b will become the

lead term if it does not disappear completely. The minus sign on the chosen divisor

X f �i ÿ X f ÿi ¯ags a move backwards from b of ÿ f i. Thus we have put in place the ®nal

move (backwards) from X b to X bÿ f i and we see that the division builds downward

segments on both ends of the path. Which end is considered at a particular stage is

determined by the sign of the lead term of the intermediate dividend. The last step in the

division joins the two ends.

Not only are GroÈbner bases useful for constructing paths, but also they are essential for

eliminating variables. By Proposition 2.2, we can view the equations xi ÿ Y T(ei) � 0,

i � 1, . . . , r, as a parametrization of the variety of points on which elements of the ideal I T

vanish.

The following is the important Proposition 3.6 of Diaconis and Sturmfels (1993).
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Theorem 2.2. A GroÈbner basis for I T is found by computing a GroÈbner basis for I, and then

taking only those elements which involve the indeterminates x1, . . . , xr.

Proof. This is the elimination theorem (Cox et al. 1992, p. 114), together with Proposition

2.2. u

We give a purely illustrative example to make the symbols clear.

Example 2.1. Consider the illustrative problem of constructing the Markov chain on the set

of partitions of the integer 10 into parts 1, 2 and 3. Here, T : Z3
� ! Z� has the form

T (a1, a2, a3) � a1 � 2a2 � 3a3; so T (e1) � 1, T (e2) � 2, T (e3) � 3. From Maple, a GroÈbner

basis of monomial differences for I T is x2
1 ÿ x2, x1x2 ÿ x3, x1x3 ÿ x2

2, x3
2 ÿ x2

3. Thus an

irreducible Markov chain on a level set for T is implemented by choosing � or ÿ and then

choosing uniformly from among the possible increments (2, ÿ1, 0), (1, 1, ÿ1), (1, ÿ2, 1),

(0, 3, ÿ2).

Furthermore, the GroÈbner basis enables one to construct a path between two points in S

by division. The path from (4, 0, 2) to (2, 4, 0) is found by dividing X (4,0,2) ÿ X (2,4,0) by

the basis, which gives ®rst move ÿ(2, ÿ1, 0), last move backwards ÿ(2, ÿ1, 0), etc. This

gives the sequence ± (2, ÿ1, 0), ÿ(2, ÿ1, 0), (0, 3, ÿ2), (2, ÿ1, 0).

3. Rules of succession

The rule of succession says that, after n successes in n Bernoulli trials with unknown

parameter p, the probability of a further success is (n� 1)=(n� 2). Zabell (1989) discusses

the origin of the rule with Laplace and its connection with exchangeability. The rule can be

derived in a Bayesian framework as in de Finetti (1972), which discusses the connections

with inductive reasoning. If we choose a uniform prior distribution on the parameter p before

the trials begin, then

PfSn � 1 � n� 1jSn � ng �
�1

0

pn�1 d p

 !, �1

0

pn d p

 !
� n� 1

n� 2
:

Consider now independent trials with r possible outcomes on each. Place a uniform prior

distribution on the standard r-simplex Ä of probabilities. Choose the parameter p uniformly,

and then sample n times independently from the r possibilities with distribution p. Let Sn be

the r-tuple which records the number of objects in class i, i � 1, . . . , r. If A, B � Z r
�, we are

interested in the succession probability PfSn�1 2 BjSn 2 Ag.
Let ei be the r-tuple given by ei � (0, . . . , 1, . . . , 0), which is 1 in the ith place and 0

elsewhere.
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Proposition 3.1. The succession probability PfSn�1 2 BjSn 2 Ag takes the form

1

n� r

X
a2A

Xr

i�1

(ai � 1)
I B(a� ei)

jAj , (3:1)

where a � (a1, . . . , ar).

Proof. We need PfSn�1 2 B, Sn 2 Ag and PfSn 2 Ag. It is well known that the uniform

prior on the probability simplex yields the uniform distribution on Sn (the so-called Bose±

Einstein statistics); so

PfSn 2 Ag � jAj
n� r ÿ 1

r ÿ 1

� � :
Now

PfSn 2 A, Sn�1 2 Bg �
�
Ä

P(Sn 2 A, Sn�1 2 Bjp) dó (p)

�
�
Ä

X
(a,b)2A3B

P(Sn � a, Sn�1 � bjp) dó (p)

�
�
Ä

Xr

i�1

X
a2A

I B(a� ei)P(Sn � a, Sn�1 � a� eijp) dó (p)

�
Xr

i�1

�
Ä

X
a2A

I B(a� ei)
n!

a1! . . . ar!
pa1

1 . . . pa r

r pi dó (p)

�
Xr

i�1

X
a2A

I B(a� ei)
n!

a1! . . . ar!
(r ÿ 1)!

a1! . . . ar!(ai � 1)

(n� 1� r ÿ 1)!
:

Using the well-known formula for
�

pa1

1 . . . pa r
r pi dó (p), this equals

Xr

i�1

n!(r ÿ 1)!

(n� r)!

X
a2A

(ai � 1)I B(a� ei) �
Xr

i�1

n!(r ÿ 1)!

(n� r)!
jAj
X
a2A

(ai � 1)
I B(a� ei)

jAj :

Now dividing by PfSn 2 Ag, we get (3.1). u

The formula above can be put in the form
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PfSn�1 2 BjSn 2 Ag � 1

n� r
E
Xr

i�1

(ai � 1)I B(a� ei)

 !
,

where E indicates expectation with respect to the uniform distribution on the set A. This

means that, to compute the probability of succession, one should run a symmetric Markov

chain in A and compute the expectation as a time average. We shall show how this is done in

the next examples. Consider the categorical data of Snee (1974) used in Diaconis and

Sturmfels (1993), which classi®es 592 subjects by hair and eye colour. In our notation the

table is S592 (Table 1).

Example 3.1. Suppose now that we are interested in the distribution of the next 4-vector of

column sums conditioned on the present table S592. Let Bk be the event where the kth

column sum in S593 is one greater than its sum in the present table S592. Here A �
fS592 � (aij)g; so jAj � 1 and the formula of Proposition 3.1. becomes

1

n� r

X4

ij�1

(aij � 1)I Bk
(a� eij) � 1

n� r

X4

i�1

(aik � 1) � 1

592� 16

X4

i�1

aik � 1

 !
:

Therefore, the ®rst column sum will be 109 with conditional probability (108� 4)=
(592� 16), the second will be 287 with conditional probability (286� 4)=(592� 16), the

third will be 72 with conditional probability (71� 4)=(592� 16), and the fourth will be 128

with conditional probability (127� 4=592� 16).

Example 3.2. Suppose now that we are interested in the distribution of the next 4-vector of

column sums conditioned on the present column sums. The present table S592 involves

r � 16 classi®cations, and we let (aij)i � 1, . . . , 4, j � 1, . . . , 4 denote a 4 3 4 table. We are

conditioning on the event A � f(aij): T (a) � (108, 286, 71, 127)g, where T : R16 ! R4 sums

the columns of the table.

Let Bk be the event where the kth column sum in the next table S593 will be 1 greater

than its present value. The probability conditioned on the present column sums is

Table 1. S592

Number of subjects with the following hair colours

Eye colour Black Brunette Red Blonde Total

Brown 68 119 26 7 220

Blue 20 84 17 94 215

Hazel 15 54 14 10 93

Green 5 29 14 16 64

Total 108 286 71 127 592
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1

n� r

X4

ij�1

X
a2A

(aij � 1)
I Bk

(a� eij)

jAj � 1

n� r

1

jAj
X4

i�1

X
a2A

(aik � 1)

� 1

n� r

1

jAj
X
a2A

X4

i�1

(ai1 � 1)

� 1

n� r

1

jAj jAj
X4

i�1

aik � 4

 !

� 1

n� r

X4

i�1

aik � 4

 !
:

The conditional probabilities work out to be the same as in Example 3.1.

Example 3.3. Suppose next that we have incomplete information from the present table S592.

We are interested in the distribution of the second column sum, conditioned on the present

®rst column sum, the present fourth row sum, and the total number of observations. Then the

event A � f(aij) 2 Z434
� :

P4
i�1ai1 � 108,

P4
j�1a4 j � 64,

P4
ij�1aij � 592g.

Let Bk be the event where the second column sum in the next table S593 is no more than

the integer k > 0. Then the conditional probability of Bk given the present information A

takes the form

1

n� r

X4

ij�1

X
a2A

(aij � 1)
I Bk

(a� eij)

jAj :

Much work is needed to look at each element a 2 A to see whether it satis®es a� eij 2 Bk .

The Diaconis±Sturmfels algorithm will ®nish the problem by using a time average from the

symmetric chain on the set A to compute the expectation above.

Our 16 indeterminates are (xij), i � 1, . . . , 4, j � 1, . . . , 4, and our map T : R16 ! R3

which de®nes A is given by T (aij) � (
P4

i�1ai1,
P4

j�1a4 j,
P4

ij�1aij). To compute a GroÈbner

basis in Maple for the ideal of monomial differences, we set X :� [y1, y2, y3, x11, x12,

x13, x14, x21, x22, x23, x24, x31, x32, x33, x34, x41, x42, x43, x44] and F :� [x11,

ÿy1� y3, x12ÿ y3, x13ÿ y3, x14ÿ y3, x21ÿ y1� y3, x22ÿ y3, x23ÿ y3, x24ÿ y3,

x31ÿ y1� y3, x32ÿ y3, x33ÿ y3, x34ÿ y3, x41ÿ y1� y2� y3, x42ÿ y2� y3, x43ÿ y2� y3,

x44ÿ y2� y3]. The command gbasis (F, X, plex) gives the following 13 monomial

differences in the x variables: x11 ÿ x31, x12 ÿ x34, x13 ÿ x34, x14 ÿ x34, x21 ÿ x31, x22 ÿ x34,

x23 ÿ x34, x24 ÿ x34, ÿx34x41 � x31x44, x32 ÿ x34, x33 ÿ x34, x42 ÿ x44, x43 ÿ x44.

The ®rst of these corresponds to incrementing entry (1, 1) while decrementing entry

(3, 1) to preserve the ®rst column sum. It is clear that all the corresponding moves preserve

the ®rst column sum, the ®nal row sum and the total number of observations. Since they

form a GroÈbner basis, they also connect all tables with the same sums as those observed in

S592 (Corollary 2.2).

Running the chain shows that PfB286jAg is quite close to 1.
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