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Saddlepoint methods are used to approximate the joint density of the serial correlogram up to lag

m. Jacobian transformations also lead to approximations for the related partial correlogram and

inverse correlogram. The approximations consider non-circularly and circularly de®ned models in

both the null and the non-null settings. The distribution theory encompasses the standard non-

circularly de®ned correlogram computed from least-squares residuals removing arbitrary ®xed

regressors. Connections of the general theory to the approximations given by Daniels and by Durbin

in the circular setting are indicated. The double-saddlepoint density and distribution approximations

are given for the conditional distribution of the non-circular lag m serial correlation given the

previous lags from order 1 to mÿ 1. This allows for the computation of p values in conditional

inference when testing that the model is AR(mÿ 1) versus AR(m). Numerical comparisons with the

tests of Daniels and of Durbin suggest that their tests based on circularity assumptions are inadequate

for short non-circular series but are in close agreement with the non-circular tests for moderately

long series.
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1. Introduction

We consider the joint saddlepoint density approximation for random vector r � (r1, . . . , rm)T

having the form

rk � ET AkE
ETE

(k � 1, . . . , m), (1)

where E is an n-vector whose components have a multivariate normal density with mean 0

and covariance Ùÿ1 . 0, N n(0, Ùÿ1). The (n 3 n) matrices fAkg are symmetric, with non-

zero rank, and are assumed to result in a full rank distribution for r; suf®cient conditions for

this are given in the Appendix.

An example of such a distribution is the density of the correlogram up to lag m
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computed from the least-squares residuals fzt: t � 1, . . . , ng of a linear regression. In this

case the variables are the serial correlations

rk �
Xn

t�k�1

zt ztÿk

�Xn

t�1

z2
t (k � 1, . . . , m): (2)

The details of this example are considered in Section 5. Two other examples also discussed

include the density for the ®rst m partial serial correlations or the lag m partial correlogram,

and the density of the ®rst m inverse autocorrelations or the inverse correlogram. Each of

these two sequences of statistics is not of form (1) but each density results from Jacobian

transformation of the joint density of serial correlations. We discuss these in Section 9.

Daniels (1956) ®rst considered saddlepoint approximations for distributions of the form

(1) when r is the circularly de®ned serial correlogram up to lag m, either with or without a

mean correction. Using a Jacobian transformation, he also gave the distribution of the

circularly de®ned partial correlogram and showed the approximate independence of the

components in the null setting. Durbin (1980b) extended these results for the circular

setting to include correlograms computed from residuals of Fourier regression.

In the non-circular setting with m � 1, the ®rst saddlepoint methods were Daniels' (1956)

approximation for an intraclass lag 1 serial correlation, either with or without mean

correction. McGregor (1960) gave an approximation for a different lag 1 serial correlation,

r1 � 2(1ÿ d1) where d1 is the lag 1 Durbin±Watson (1950, 1951) statistic, and also based

it on residuals from a polynomial regression. When r1 is the least-squares estimate of the

®rst-order autoregressive coef®cient, four different approximations have been given by

Phillips (1978), Jensen (1988), Wang (1992) and Lieberman (1994).

Approximations in the non-circular setting with m . 1 have been given by Durbin (1980b)

who considered some specially de®ned serial correlations that result in simultaneous

diagonalizability for the matrices fAk : k � 1, . . . , mg. Section 6 gives further discussion of

this. His approximations allow these serial correlations to be based on residuals from Fourier

regression.

The contributions of this paper relate to this previous work in the following way. First we

extend the saddlepoint distribution theory of Daniels (1956) and Durbin (1980b) for the

ordinary correlogram from the circular model setting to the more commonly used non-

circular setting. This development follows the same approach as Daniels (1956) by using a

multivariate version of Geary's (1944) method as given in Section 3 but retains a different

leading term for the saddlepoint expansion in this more general non-circular setting. The

non-circular settings already considered by Durbin (1980b) do not pertain to the ordinary

correlogram as in (2). His correlograms are based on modi®ed de®nitions of serial

correlations in order to retain the same mathematical tractability as in the circular setting,

namely that the matrices fAk : k � 1, . . . , mg are simultaneously diagonalizable. This

assumption essentially assures that the likelihood is a regular exponential family admitting

suf®cient statistics so that the suf®ciency approach of Durbin (1980a) can be used for the

approximations. This approach, however, is not extendable to the more general non-circular

setting with correlogram (2).

A second contribution is the construction of a double-saddlepoint approximation for the
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cumulative distribution of rm given r1, . . . , rmÿ1. This allows for computation of

approximate p values in conditional inference when testing AR(mÿ 1) versus AR(m) for

a non-circular series. Numerical examples with non-circular data compare these p values

with those computed from the tests of Daniels (1956) and Durbin (1980b) which assume

that the series is circular. The examples con®rm that the circular-theory tests should not be

used with short non-circular series. With moderately long non-circular series, however, p

values from the circular and non-circular tests are in close agreement. Con®rmation of the

accuracy of the Daniels and the Durbin tests would appear dif®cult without the use of this

new double-saddlepoint procedure since it would require the approximation of conditional

probabilities for rm given r1, . . . , rmÿ1.

Two different saddlepoint approximations are given for the density of r in the null setting

in which Ù � I n. Section 2 gives a double-saddlepoint approximation and Section 3

develops a single-saddlepoint approximation for arbitrary Ù. 0 in the most general setting.

The two approximations are shown to agree analytically when Ù � I n in Section 4. Such

agreement usually only occurs when the likelihood admits a cut (Booth and Butler 1990);

however, a cut does not occur here.

The non-circular saddlepoint methods are applicable to correlograms as in (2) constructed

from least-squares residuals regressing out arbitrary variables. This is discussed in Section

5. The methods of Durbin (1980b), by contrast, allow only for the removal of Fourier

independent variables since such residuals retain the requisite mathematical tractability

needed with his method. In addition, the methods presented here are applicable in the non-

null setting with arbitrary Ù. 0 so that power calculations are straightforward.

The remainder of the paper is organized as follows. Special models that have simpler

approximations in the null setting are given in Section 6. The connections of the single-

saddlepoint density in the circular setting to those of Daniels (1956) and Durbin (1980b) are

given in Section 7. Densities for the partial and inverse correlograms in the general setting

are noted in Section 9 and comments on asymptotics are given in Section 10. Numerical

work appears in Section 11.

2. Double-saddlepoint approximation

We ®rst present a double-saddlepoint approximation for the density of r under the assumption

that Ùÿ1 � I n which we call the null setting. With a slight abuse of notation we let r stand

for both the random variable as well as an argument value for its density so that f r(r)

denotes the density of r at r. The double-saddlepoint approximation cannot be used in the

non-null setting because its derivation relies on the use of Basu's Lemma which applies only

in this null case. The double-saddlepoint method does, however, give considerable insight into

the related single-saddlepoint approximation of the next section which encompasses both the

null and the non-null settings.

Let r � N=D where N � (N1, . . . , Nm)T, N k � ET AkE, and D � ETE. The vector r is

independent of its denominator D by Basu's Lemma; so ®nding the joint density of r is the

same as ®nding the joint conditional density of N given that D � 1. The double-saddlepoint
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density approximation of Barndorff-Nielsen and Cox (1979) uses the joint cumulant

generating function of (N, D) which is easily computed as

K(s, t) � ÿ1
2

log

����(1ÿ 2t)I n ÿ 2
Xm

i�1

si Ai

���� � ÿ1
2

log jQj, (3)

where s � (s1, . . . , sm) and K(s, t) is de®ned over the largest neighbourhood of 0 2 Rm�1

for which the matrix Q so de®ned is positive de®nite. The double-saddlepoint density

approximation for f r(r) � f N jD�1(r), the conditional density of N at r given D � 1, is

~f (r) � (2ð)ÿm=2 @2 K(0, ~t0)=@~t2
0

jK 0(~s, ~t)j

 !ÿ1=2

exp [f~t0 ÿ K(0, ~t0)g ÿ f~sT r � ~t ÿ K(~s, ~t)g], (4)

where (~s, ~t) solves the set of equations

r � @K(~s, ~t)

@~s
,

1 � @K(~s, ~t)

@~t
,

(5)

~t0 solves the equation @K(0, ~t0)=@~t0 � 1 and K 0 denotes the (m� 1) 3 (m� 1) Hessian

matrix of second derivatives. The marginal saddlepoint value is explicit as ~t0 � (1ÿ n)=2

and differentiation shows that (5) is

ri � tr ~Qÿ1 Ai (i � 1, . . . , m),

1 � tr ~Qÿ1,

(6)

where ~Q is Q evaluated at the saddlepoint (~s, ~t). The Hessian matrix K 0 in (4) consists of

~K 0ss � @
2 K(~s, ~t)

@~si@~s j

� 2 tr ~Qÿ1 Ai
~Qÿ1 A j (i, j � 1, . . . , m),

~K 0st � @
2 K(~s, ~t)

@~si@~t
� 2 tr ~Qÿ1 Ai

~Qÿ1 (i � 1, . . . , m),

~K 0tt � @
2 K(~s, ~t)

@~t2
� 2 tr ~Qÿ1 ~Qÿ1,

and @2 K(0, ~t0)=@~t2
0 � 2=n.

A simpli®cation occurs in (4) by noting that, from (6),

tr ~Qÿ1(Ai ÿ ri I n) � 0, (7)

so that
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~t � 0T~s� ~t �
Xm

i�1

~si tr ~Qÿ1(Ai ÿ ri I n)� ~t tr ~Qÿ1

� tr [~Qÿ1fÿ1
2
~Q� (1

2
ÿ rT~s)I ng]:

This reduces to

1ÿ n

2
� ~t0 � ~t � ~sT r; (8)

so (4) can be written as

~f (r) � (2ð)ÿm=22ÿ1=2 n(n�1)=2jK 0(~s, ~t)j1=2 exp fÿK(~s, ~t)g: (9)

3. Single-saddlepoint approximation

A single-saddlepoint approximation for the density of r is based on ®rst obtaining a Geary-

type representation for the true density in the manner of Daniels (1956, Section 2). Daniels

extends the Geary (1944) representation for the density of a scalar ratio to that for a vector

ratio as occurs in r � N=D. Essentially the density f r(r) � EfDmg f W (0) where W � (W1,

. . . , W m)T is a random vector with moment generating function

M W (s) � EfDmgÿ1 @
m

@ t m
M N ,D(s, t)

����
t�ÿrT s

, (10)

where M N ,D denotes the joint moment generating function of N, D. The multivariate

inversion of this expression leads to f W (0) and hence

f r(r) � (2ði)ÿm

�
� � �
�
@m

@ t m
M N ,D(s, t)

����
t�ÿrT s

ds, (11)

where the integration is along deformable paths of the imaginary axes of s1, . . . , sm. The

moment generating function of N, D is given as M N ,D(s, t) � jÙj1=2 exp fKÙ(s, t)g where

KÙ(s, t) � ÿ1
2

log

����Ùÿ 2tI n ÿ 2
Xm

i�1

si Ai

����:
The inversion in (11) requires the mth derivative of M N ,D whose structure we now

indicate. The ®rst derivative is

@M N ,D(s, t)

@ t

����
t�ÿrT s

� M N ,D(s) tr Pÿ1
Ù (s) � jÙj1=2jPÙ(s)j1=2 tr Pÿ1

Ù (s), (12)

where

PÙ(s) � Ù� 2rTsI n ÿ 2
Xm

i�1

si Ai

is the matrix in expression KÙ(s, t) evaluated with t � ÿrTs. The product rule of
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differentiation necessarily results in M N ,D as the lead factor in derivatives of all orders.

Furthermore, the product rule and the form of (12) result in each term of the mth derivative

having exponents of Pÿ1
Ù adding to m. For example, the third derivative is

@3 M N ,D(s, t)

@ t3

����
t�ÿrT s

� jÙj1=2jPÙ(s)jÿ1=2[ftr Pÿ1
Ù (s)g3 � 6 tr Pÿ1

Ù (s) tr Pÿ2
Ù (s)� 8 tr Pÿ3

Ù (s)]

and the powers of Pÿ1
Ù in each term add to 3; thus after factoring out ftr Pÿ1

Ù (s)g3 the latter

factor is expressed in terms of q2 and q3 where

qk � tr Pÿk
Ù

(tr Pÿ1
Ù )k

(k > 2):

Hence, it follows that the structure of the mth derivative of M N ,D in the general non-null

setting is

@m

@ t m
M N ,D(s, t)

����
t�ÿrT s

� jÙj1=2jPÙ(s)jÿ1=2ftr Pÿ1
Ù (s)gm 1�

X
j

c j pj

 !
, (13)

where the fpjg are products of terms involving fqk : k � 2, . . . , mg. In the null situation

where Ù � I n we drop the Ù subscript so that PI n
(s) � P(s), etc. For the moment we shall

presume that fpjg in (13) are small and can be ignored. We return to discuss this in Section

10.

The dominant term in the integrand of (11) from (13) is the log-convex function

jPÙ(s)jÿ1=2 which we use to determine a saddlepoint through which the integral paths in

(11) are deformed. The single saddlepoint solves

0 � ÿ1
2

@

@ ŝi

log jPÙ(ŝ)j � tr P̂ÿ1
Ù (Ai ÿ ri I n) (i � 1, . . . , m), (14)

where P̂Ù � PÙ(ŝ). The Hessian matrix of second derivatives we denote as ĤÙ � ( ĥij) where

ĥij � ÿ1
2

@2

@ ŝi@ ŝj

log (jPÙ(ŝ)j) � 2 tr P̂ÿ1
Ù (Ai ÿ ri I n)P̂ÿ1

Ù (A j ÿ r j I n) (i, j � 1, . . . , m):

(15)

A single-saddlepoint density approximation is therefore

f̂ (r) � (2ð)ÿm=2jÙj1=2jĤÙjÿ1=2jP̂Ùjÿ1=2(tr P̂ÿ1
Ù )m: (16)

The last term in (16) satis®es the constraint tr P̂ÿ1
Ù Ù � n, an identity derived by multiplying

equation i of (14) by ÿ2ŝi and summing over i to get

0� tr P̂ÿ1
Ù Ù � tr P̂ÿ1

Ù

Xm

i�1

ÿ2ŝi Ai � 2rT ŝI n

 !
�Ù

( )
� tr P̂ÿ1

Ù P̂Ù � n:

In the null setting, tr P̂ÿ1
Ù � n and the last factor of (16) is nm.
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4. Equivalence in the null setting

The single-saddlepoint approximation in (16) when Ù � I n is now shown to be analytically the

same as the double-saddlepoint approximation in (9). We ®rst show that the double saddlepoint

(~s, ~t) can be expressed in terms of the single-saddlepoint ŝ through the relation ~s � nŝ. Using

(8) we express ~t in terms of ~s and substitute this in the value of ~Q in (7) so that

0 � nÿ1 tr 1� 2rT~s

n

� �
I n ÿ 2

Xm

i�1

~si

n
Ai

( )ÿ1

(Ai ÿ ri I n) (i � 1, . . . , m):

This is the same equation as (14) and, as a saddlepoint equation, yields a unique root so that

~s � nŝ. This equivalence means that ~Q � nP̂ which further gives

nn=2eÿK(~s,~t) � jP̂jÿ1=2; (17)

so the exponential portions determining the saddlepoints of the two approximations are

equivalent.

The most dif®cult and unobvious portion of the argument is in showing the equivalence

of the Hessian-type corrections which are related by

jK 0(~s, ~t)j � 2nÿ2mÿ1jĤ j: (18)

The argument involves separate computations of @~s=@ rT and n @ ŝ=@ rT by differentiating

their respective saddlepoint equations in (6) and (14). The former yields

@~s

@ rT
� ( ~K 0ss ÿ ~K 0st

~K 0tt
ÿ1 ~K 0ts)

ÿ1,

while the latter is a quite long computation leading to the matrix relation

(I m tr P̂ÿ1
Ù � ŵŝT)

@ r

@ ŝT
� ĤÙ, (19)

where

ŵ � 2(tr P̂ÿ2
Ù (A1 ÿ r1 I n), . . . , tr P̂ÿ2

Ù (Am ÿ rm I n))T:

The next step equates j@~s=@ rTj � jn @ ŝ=@ rTj. This implies (18) after some more compu-

tations which have been given by Butler and Paolella (1996). With (17) and (18) it is now

simple algebra to show that ~f (r) � f̂ (r).

The equivalence of these two approximations was not expected since such equivalence is

usually connected with the presence of a cut (Barndorff-Nielsen, 1978, pp. 50±51) as

described by Booth and Butler (1990). The simplest case with m � 1 helps to clarify this

point. Suppose the eigenvalues of A1 are ë1, . . . , ën so that

r1 �
Xn

i�1

ëiE2
i

�Xn

i�1

E2
i

puts Dirichlet (1
2
, . . . , 1

2
) weights on the eigenvalues and has a form comparable with that of

the Dirichlet bootstrap of Booth and Butler (1990). The likelihood associated with these chi

Saddlepoint approximation for correlograms 503



squares does not admit a cut but the two density approximations are the same. Likewise, the

two cumulative distribution approximations, the double-saddlepoint (Skovgaard 1987) and the

single-saddlepoint (Lugannani and Rice 1980) approximations, are the same. The latter

approximation is computed by writing

Pr (r1 < r) � Pr
Xn

i�1

(ëi ÿ r)E2
i < 0

 !
and evaluating the Lugannani±Rice approximation for the distribution of the latter quadratic

form at 0. Further details are given in Section 6.

5. The correlogram from regression residuals

Suppose that frk : k � 1, . . . , mg are serial correlations from least-squares residuals as in (2)

and rk � zT Bk z=zTz where Bk � (bijk) is the band matrix of the kth off-diagonals for which

bijk � 2ÿ11fjiÿ jj � kg, where 1f:g denotes the indicator function. We canonically reduce

the problem and show how the methods of the previous sections can be applied.

Suppose that regression E(y) � Xâ leads to residuals z � My � fI n ÿ X (X T X )ÿ1 X Tgy,

so we write

rk � yT MBk My

yT My
� yT L(LT ML)LT Bk L(LT ML)LT y

yT L(LT ML)LT y
, (20)

where L � (L1 L2) is an orthogonal matrix that canonically reduces M as

LT ML � LT
1 ML1 LT

1 ML2

LT
2 ML1 LT

2 ML2

 !
� I nÿ p 0

0 0

� �
: (21)

Letting E � LT
1 y and denoting Ak � LT

1 Bk L1 as the upper left (nÿ p) 3 (nÿ p) principal

submatrix of LT Bk L, then rk is as speci®ed in (1) with dimension nÿ p for E instead of n. In

the null case for which y is N n(Xâ, I n), then Ùÿ1 � LT
1 L1 � I nÿ p; in the non-null case with

y as Nn(Xâ, Öÿ1), then Ùÿ1 � LT
1Ö
ÿ1 L1.

The matrix L1 is uniquely determined when p � 1, but for p . 1 can be any member of

a compact collection of matrices whose columns form an orthonormal basis for the residual

space. Although the true distribution of r does not depend on the choice of L1, the

saddlepoint density approximation does for p . 1 through the values of fAkg and also

through Ù in the non-null setting.

The support of the m-dimensional correlogram is an open convex set of values r

identi®ed in the following way. If

Ri �
1 r1 � � � ri

r1 1 � � � riÿ1

..

. . .
. ..

.

ri � � � r1 1

0BBB@
1CCCA (i � 1, . . . , m), (22)

504 R.W. Butler and M.S. Paolella



then the support is I � fr: jRij. 0 i � 1, . . . , mg. In the correlogram context, the

mapping ŝ$ r through the saddlepoint equation (14) is a bijection from ŝ 2 Rm onto r 2 I
as we now indicate. It suf®ces to consider the null setting since I is not dependent on the

value of Ù.

The saddlepoint equation allows for the determination of r from ŝ if 2rT ŝ � ẑ is ®rst

determined. Suppose that í1(̂s) < . . . < ín(ŝ) are the eigenvalues of 2
Pm

i�1 ŝi Ai ÿ I n. Then

the equality tr P̂ÿ1 � n gives ẑ as the unique root of

n �
Xn

i�1

(ẑÿ íi)
ÿ1 (ẑ . ín): (23)

The values of ŝ and ẑ determine P̂ which in turn determines r as

ri � tr P̂ÿ1 Ai

tr P̂ÿ1
(i � 1, . . . , m) (24)

through rearrangement of (14). Substituting the decomposition of positive de®nite

P̂ÿ1 �Pn
i�1(ẑÿ íi)

ÿ1oio
T
i into (24) gives

rT � (r1, . . . , rm) �
Xn

i�1

(ẑÿ íi)
ÿ1

�X
j

(ẑÿ í j)
ÿ1

 !
(oT

i A1oi, . . . , oT
i Amoi) (25)

where (oT
i A1oi, . . . , oT

i Amoi)
T 2 I for each i. Thus vector r is a convex combination of

vectors in I so r 2 I by its convexity. If the support of the distribution of r were not convex,

then the bijection ŝ$ r would map between Rm and the interior of the convex hull of the

support of r. Such would be the situation, for example, if r consisted instead of the various

lagged orders of the Durbin±Watson statistics.

6. Special null cases

There is substantial simpli®cation if either m � 1 or the matrices fAk : k � 1, . . . , mg are

simultaneously diagonalizable. When m � 1, the saddlepoint density (16) of r1 in (1) has the

simple null form

f̂ (r) � (2ð)ÿ1=2 nĥÿ1=2 exp (ÿ1
2
æ̂2), (26)

with

ĥ � 2
Xn

i�1

w2
i (1ÿ 2ŝwi)

ÿ2, æ̂ � sgn (ŝ)
Xn

i�1

log (1ÿ 2ŝwi)

 !1=2

,

where sgn is the sign function, wi � ëi ÿ r, fëig are the eigenvalues of A1, and ŝ solves

0 �
Xn

i�1

(1ÿ 2wiŝ)ÿ1wi: (27)

The Lugannani±Rice (1980) approximation for the cumulative distribution of r1 is
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Pr (r1 < r) � Ö(æ̂)� ö(æ̂)fæ̂ÿ1 ÿ (ŝ ĥ1=2)ÿ1g (r 6� E(r1)) (28)

where Ö and ö are the standard normal distribution and density functions, respectively.

Equations (26), (27) and (28) agree with those of Lieberman (1994, equations (1) and (5))

with I n in place of his G.

The setting in which fAkg are simultaneous diagonalizable encompasses three forms for

vector r that have been discussed by Anderson (1971, Section 6.5). These are (1) circularly

de®ned serial correlations treated by Daniels (1956) which comprise the circular serial

correlogram, (2) successive differences treated by Durbin (1980b) and de®ned so that the

Durbin±Watson (1950, 1951) statistic is 2(1ÿ r1) but such that rk for k . 2 is not related

to the lag k Durbin±Watson statistic and (3) another form treated by Durbin (1980b) and

de®ned so that r1 is the ®rst component of the non-circular correlogram but such that the

vector itself is not the correlogram.

Suppose that OT Ak O � diag(ëk) where ëT
k � (ë1k , . . . , ënk) consists of the eigenvalues of

Ak for each k. Let ÷ � (÷1, . . . , ÷n)T consist of independent and identically distributed ÷2
1

variables. Place the ëT
k in the rows of (m 3 n) matrix Ë so that

Ë � (ë1, . . . , ëm)T � (l 1, . . . , l n):

The vector ratio is now r � Ë÷=1T÷. In this setting

log jP̂j �
Xn

i�1

log f1ÿ 2(l i ÿ r)T ŝg, (29)

and the saddle point ŝ solves

0 �
Xn

i�1

f1ÿ 2(l i ÿ r)T ŝgÿ1(l i ÿ r): (30)

The Hessian is

Ĥ � 2
Xn

i�1

f1ÿ 2(l i ÿ r)T ŝgÿ2(l i ÿ r)(l i ÿ r)T: (31)

Suppose further that the numerators of r above add up disjoint subsets of the ÷2 variables

so that

Ë �

1T
á1

0T � � � � � � 0T

0T 1T
á2

0T ..
. ..

.

..

. . .
. . .

. ..
.

0T 0T � � � 1T
ám

0T

0BBBBB@

1CCCCCA: (32)

In this case the true density of r is Dirichlet (á1=2, . . . , ám=2; ám�1=2) where

ám�1 � nÿPm
i�1ái. Some long computations by Butler and Paolella (1996) showed that

f̂ (r) differs from f (r) by Stirling's approximation in the gamma functions, i.e.
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f̂ (r) � Ã̂(n=2)

Ã(n=2)

Ym�1

i�1

Ã(ái=2)

Ã̂(ái=2)

 !
f (r): (33)

Furthermore, the solution to the saddlepoint equation (30) is explicit with

ŝi � (2n)ÿ1 ám�1

rm�1

ÿ ái

ri

� �
(i � 1, . . . , m) (34)

where rm�1 � 1ÿPm
i�1 ri.

7. Circular parametric likelihood connections

The saddlepoint density (10) encompasses the density of the ®rst m circularly de®ned serial

correlations considered by Daniels (1956). In this context, (16) can be approximated in the

null setting to give the same analytical results as the density in Daniels' equation (9.14) for

the ®rst m circularly de®ned serial correlations. Upon transformation to partial serial

correlations, these null distributions agree with the density of partial serial correlations given

by Daniels' equation (10.5) when corrected for the misprint. Details of this have been given

by Butler and Paolella (1996).

Similar arguments can be used to show how (16) relates to the approximations of Durbin

(1980b) for the density of circularly de®ned serial and partial serial correlations constructed

from residuals that remove effects of Fourier regressors. For details see Butler and Paolella

(1996). Removal of the sample mean y from fytg is a special case of this since the vector

of ones is always an eigenvector for the collection of circulant matrices involved.

8. The conditional distribution of rm given r1, . . . , rm21

Consideration of such conditional distributions is motivated by methods for optimal testing of

the order of autoregressive models. For example, the circular AR(m) model in Daniels'

equation (9.1) has an exponential family likelihood with canonical parameters as the inverse

autocovariances fäig. Using standard theory as done by Anderson (1971, Section 6.3.2), the

UMP unbiased test of äm � 0 versus äm 6� 0 or, equivalently, AR(mÿ 1) versus AR(m),

rejects for values of rm0 falling suf®ciently far out in either tail of the conditional density

f (rmjr(mÿ1)0; Ù). One-sided p values can be computed as

p̂ � min fô, 1ÿ ôg, (35)

where

ô � Pr (rm . rm0jr(mÿ1) � r(mÿ1)0; äm � 0)

and rT
0 � (r10, . . . , rm0) � (rT

(mÿ1)0, rm0) is the observed value of rT � (rT
(mÿ1), rm). Such

optimality is maintained with either mean correction or Fourier regressors added into the

model (Anderson 1971, see Section 6.6). This optimality does not carry over to the non-

Saddlepoint approximation for correlograms 507



circular model but does provide motivation for use of the same procedure in the general

testing of AR(mÿ 1) versus AR(m).

We shall use the notation above to discuss the approximation of the conditional density

of rm given the value r(mÿ1)0 in the most general context. A double-saddlepoint density as

given by Barndorff-Nielsen and Cox (1979) is computed as the ratio of two single

approximations:

f̂ (rmjr(mÿ1)0; Ù) � f̂ (r(mÿ1)0, rm; Ù)

f̂ (r(mÿ1)0; Ù)
� (2ð)ÿ1=2 jĤ mÿ1j

jH mj

 !1=2

(tr Pÿ1
m )m

(tr P̂ÿ1
mÿ1)mÿ1

" #
jPmj
jP̂mÿ1j

 !ÿ1=2

where Ĥ mÿ1 and P̂mÿ1 are the ĤÙ and P̂Ù values associated with the (mÿ 1)-dimensional

saddlepoint ŝ(mÿ1) of the denominator determined by r(mÿ1)0, H m and Pm are the ĤÙ and P̂Ù

values associated with the m-dimensional saddlepoint sT � (s1, . . . , sm) of the numerator

determined by (r(mÿ1)0, rm), and explicit dependence on Ù has been suppressed. For

probability calculation, one-dimensional numerical integration

Pr (rm , rm0 r(mÿ1)0; Ù) �
�

p\(ÿ1,rm0)

f̂ (rmjr(mÿ1)0) drm

 !� �
p
f̂ (rmjr(mÿ1)0) drm

 !
(36)

can be performed when p , the conditional support of rm given r(mÿ1)0, is identi®able. In the

correlogram setting p � frm: jRmj. 0g when it is known that jR(mÿ1)0j. 0, where Rm and

R(mÿ1)0 are Rm and Rmÿ1 evaluated at (rT
(mÿ1)0, rm). Since

0 , jRmj � jR(mÿ1)0jf1ÿ (rT
(mÿ1)0, rm)Rÿ1

(mÿ1)0(rT
(mÿ1)0, rm)Tg (37)

then p � (a, b) � (ÿ1, 1) where a and b are the roots to the quadratic term in rm within the

braces. Determination of p in settings other than the serial correlogram is not so simple. If

instead r consists of the various lagged orders of the Durbin±Watson statistics, then the joint

support of r is dif®cult to identify and so is the conditional support.

A double-saddlepoint cumulative function as used by Skovgaard (1987) is derived using

the method of Temme (1982). Consider performing the integration in the numerator of (36)

with the transformation

rm $ w � sgn (sm) log
jPmj
jP̂mÿ1j

 !( )1=2

: (38)

To see that w is well de®ned, note that saddlepoint s in

Pm � Pm(s) � Ù� [2(rT
(mÿ1)0, rm)s]I n ÿ 2

Xm

i�1

si Ai

maximizes jPm(ô)j over ô 2 Rm whereas jP̂mÿ1j is the maximum of jPm(ô(mÿ1), 0)j over

ô(mÿ1) 2 Rmÿ1; thus jPmj > jP̂mÿ1j with equality only when sm � 0. The numerator of (36) is

now
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Pr (rm < rm0jr(mÿ1)0; Ù) �
�w0

ÿ1
h(w)ö(w) dw, (39)

with

h(w) �
^jH mÿ1j
jH mj

 !1=2

(tr Pÿ1
m )m

(tr P̂ÿ1
mÿ1)mÿ1

@ rm

@w
(40)

and

w0 � sgn (ŝm) log
jP̂mj
jP̂mÿ1j

 !( )1=2

(41)

where P̂m � Pm(ŝ) and ŝT � (ŝ1, . . . , ŝm) is the saddlepoint for (rT
(mÿ1)0, rm0). The change in

variable @ rm=@w � w=(sm tr Pÿ1
m ) is shown in the Appendix. Using this in (40), then h(w) has

a removable singularity at w � 0 with h(0) � 1 as shown in the Appendix. The argument of

Temme as outlined by Barndorff-Nielsen and Cox (1989, Section 3.9) now applies and leads to

Pr (rm < rm0jr(mÿ1)0; Ù) � Ö(w0)� ö(w0)
1

w0

ÿ 1

v0

� �
(ŝm 6� 0), (42)

where

v0 � ŝm

jĤ mj
jĤ mÿ1j

 !1=2

tr P̂ÿ1
mÿ1

tr P̂ÿ1
m

 !mÿ1

: (43)

Numerical accuracy of (42) is considered in Section 11.

9. Other correlograms

Densities for the partial correlogram vector r: and inverse correlogram vector rÿ are given

below in the general non-null setting without the assumption of circularity. The necessary

Jacobians have been given by Daniels and are speci®ed below. Conditional distribution

function approximations can also be developed for each of these correlograms, but we do not

give details.

For the Jacobians, Daniels shows in his equation (10.2) that�������� @ r

@á̂T

�������� � jRmÿ1j3 i D̂iÿ1, (44)

where D̂ � (d̂ ij) has entries

d̂ ij � (ÿ1)1fi � jg � á̂i� j1fi� j < mg � á̂ jÿi1fi , jg (i, j � 1, . . . , m)

based on á̂ � (á̂1, . . . , á̂m)T � Rÿ1
mÿ1 r, the solution to the Yule±Walker equation. His

equation (10.4) determines that
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�������� @á̂@ r:

�������� � Y
j odd

(1ÿ r2
j :)

( jÿ1)=2
Y

j even

f(1ÿ r2
j :)

( j=2)ÿ1(1ÿ r j:)g:

Putting these together gives

f̂ (r:) � f̂ (r)

�������� @ r

@á̂T

��������3

�������� @á̂@ rT
:

�������� (r: 2 (ÿ1, 1)m): (45)

If we denote the lag m inverse correlation vector as rÿ � ä̂=ä̂0 � (ä̂1, . . . , ä̂m)T=ä̂0

where

ä̂0 � 1� á̂2
1 � � � � � á̂2

m,

ä̂1 � ÿá̂1 � á̂1á̂2 � � � � � á̂mÿ1á̂m,

ä̂2 � ÿá̂2 � á̂1á̂3 � � � � � á̂mÿ2á̂m,

..

.

ä̂mÿ1 � ÿá̂mÿ1 � á̂1á̂m,

ä̂m � ÿá̂m,

(46)

then its density is

f̂ (rÿ) � f̂ (r)jRmÿ1j3 i D̂iÿ2(1� rT Rÿ2
mÿ1 r)mj1� 2rT rÿjÿ1: (47)

The Jacobian in this transformation has been computed in the Appendix. The support of r_ is

identi®ed through the one-to-one relationship rÿ $ r.

10. Null asymptotics

The asymptotic order of the error for the approximation in (16) depends on the set of

matrices fAkg and their large-sample behaviour. We do not consider an analysis of this here

but content ourselves with a heuristic discussion of the orders of magnitude.

The order of the terms eliminated from the single-saddlepoint approximation is

determined by the sample moments of the eigenvalues of P̂ÿ1. Each eliminated term pj

is a function of the fqk : k > 2g. At the saddlepoint, these values are

0 , q̂k � tr P̂ÿk

(tr P̂ÿ1)k
� nÿk tr P̂ÿk (k > 2) (48)

since the eigenvalues of P̂ÿ1 have a sample mean of nÿ1 tr P̂ÿ1 � 1. If we suppose a sequence

fAkg that produces eigenvalues for P̂ÿ1 whose ®rst m sample moments are O(1) for large n,

then

nÿk tr P̂ÿk � nÿk�1 3 nÿ1 tr P̂ÿk � O(nÿk�1) (k > 2): (49)
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Then the errors in eliminated terms are of order O(nÿ1) and smaller. There is another

argument that these terms are small. Without any conditions on fAkg, fq̂kg decrease

monotonically at an exponential rate in k sinceX1
k�0

q̂k �
X1
k�0

tr
P̂ÿ1

n

� �k

� tr (I n ÿ nÿ1P̂ÿ1)ÿ1 ,1: (50)

The sum converges since the eigenvalues of nÿ1P̂ÿ1 are positive and add to 1.

11. Numerical examples

Table 1 compares the accuracy of various univariate approximations when the true model is a

non-circular AR(1) process requiring mean correction, i.e. yt � ì� ç t with ç t �
á1ç tÿ1 � W t for t � 1, . . . , n, and fW tg are independent N (0, 1) realizations. Displayed are

approximations of Pr(r1 < r10já1) for the various values of n and á1 in four settings: null

(á1 � 0), stationary (á1 � 0:5), unit-root (á1 � 1), and non-stationary (á1 � 1:1). The

column headed Imhof refers to the approximate numerical inversion algorithm of Imhof

(1961); the column headed Beta is Henshaw's (1966) beta distribution approximation

matching third and fourth moments; the column headed L±R is the Lugannani±Rice

approximation given in (28); the column headed NID refers to the numerically integrated

single-saddlepoint density in (26) using the Romberg integration algorithm from Press et al.

Table 1. Approximations of Pr (r1 < r10) for non-circular AR(1) modelsa

n á1 r10 Imhof Beta L±R NID Normal

10 0 0.3471 0.9500 0.9501 0.9501 0.9496 0.8638

0.5 0.6015 0.9500 0.9509 0.9491 0.9442 0.6445

1.0 0.7368 0.9500 Failb 0.9475 0.9448 Ð

1.1 0.7460 0.9500 Failb 0.9462 0.9464 Ð

25 0 0.2711 0.9500 0.9500 0.9501 0.9501 0.9124

0.5 0.6467 0.9500 0.9503 0.9509 0.9501 0.8029

1.0 0.8961 0.9500 Failb 0.9484 0.9442 Ð

1.1 0.8848 0.9500 1.000 0.9377 0.9239 Ð

70 0 0.1785 0.9500 0.9500 0.9500 0.9500 0.9323

0.5 0.6197 0.9500 0.9501 0.9501 0.9501 0.8762

1.0 0.9631 0.9500 Failb 0.9490 0.9452 Ð

1.1 0.9050 0.9500 0.9505 0.9541 Failc Ð

aThe model is yt � ì� ç t with ç t � á1ç tÿ1 � W t where fW tg are i.i.d. normal innovations for t � 1, . . . , n. Imhof
is `̀ exact'' numerical inversion. Beta is beta-distribution approximation. L±R is the Lugannani±Rice approximation,
NID is the numerically integrated single-saddlepoint density in (26), and Normal is the normal approximation.
bThe beta approximation sometimes fails because either of its degrees-of-freedom estimates is negative.
cNumerical integration breaks down in this case.
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(1989); the column headed Normal is the normal approximation r1 � N (á1, nÿ1) applicable

only when já1j, 1. Values of r10 were selected so the Imhof procedure returned a value of

0.95.

Both the beta and the Lugannani±Rice approximations are highly accurate, for all cases

and sample sizes; however, the beta approximation often fails in non-stationary settings

because either of its degrees-of-freedom estimates is negative. As would be expected, values

obtained from the numerically integrated density are close, but not as accurate as the

Lugannani±Rice values. Owing to rounding errors and the `̀ pile-up'' of the true density,

numerical integration for the non-stationary case with n � 70 observations failed. Not

surprisingly, the normal approximation is very poor for the (arguably impractical) sample

size of 10, but, even with 70 observations, it breaks down as já1j increases towards unity.

Table 2 computes approximations of Pr(r1 < r10, r2 < r20já1, á2) when the true model is

AR(0), AR(1) and AR(2), with each model requiring mean correction of the form

yt � ì� ç t with ç t � á1ç tÿ1 � á2ç tÿ2 � W t for t � 1, . . . , n, and fW tg as independent

N (0, 1) realizations. Three stationary settings are considered including AR(0) with

á1 � á2 � 0, AR(1) with á1 � 0:5 and á2 � 0, and AR(2) with á1 � 1:2 and á2 � ÿ0:8.

The column headed NID again refers to the (two-dimensional) numerically integrated

density; the column headed Simulation contains results from Monte Carlo simulation using

two million replications based on the `̀ ran1'' and `̀ ran2'' generators from Press et al.

(1989); the column headed Normal is the normal approximations based on the theoretical

autocovariance function and Bartlett's formula (Priestley 1981, Section 5.3.4), i.e.

r1 ÿ 0:5
r2 ÿ 0:52

� �
� N2

0

0

� �
, nÿ1 0:75 0:75

1:3125

� �� �
for AR(1), and

r1 ÿ 2=3

r2 ÿ 0

� �
� N2

0

0

� �
, nÿ1 0:06173 0:14815

0:46667

� �� �

Table 2. Approximations of Pr (r1 < r10, r2 < r20) for non-circular AR(0)ÿAR(2) modelsa

n á1 á2 r10 r20 NID Simulation Normal

10 0 0 0 0 0.3835 0.3854 0.25

10 0.5 0 0 0 0.1476 0.1515 0.0313

10 1.2 ÿ0.8 0.4 0.2 0.1663 0.1785 0.03344

25 0 0 0 0 0.3326 0.3325 0.25

25 0.5 0 0 0 0.0179 0.0176 0.00189

25 1.2 ÿ0.8 0.4 0.2 0.0080 0.0077 0.07401

70 0 0 0 0 0.2983 0.2987 0.25

70 0.5 0 0 0 0.0465 0.0468 0.06680

aThe model is yt � ì� ç t with ç t � á1ç tÿ1 � á2ç tÿ2 � W t where fW tg are i.i.d. normal innovations for
t � 1, . . . , n. NID is the numerically integrated single-saddlepoint density in (26), Simulation is the Monte Carlo
simulation, and Normal is the bivariate normal approximation.
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for AR(2). The bivariate normal cumulative distribution function was approximated using the

algorithm from Drezner (1978), noting the correction given by Hull (1993, p. 245).

Comparison with the simulated values shows that the numerically integrated saddlepoint

approximation performs exceptionally well for the null model á1 � á2 � 0, even with only

n � 10 observations. For n > 25, it obtains approximately two-digit accuracy for both non-

null models. The asymptotic bivariate normal approximation, on the other hand, is not

`̀ too'' far off for the null model with n � 70 observations (with value 0.25 compared with

the simulated valve of 0.2987) but is otherwise completely unacceptable, being off in some

cases by several orders of magnitude.

Table 3 gives p values of the form (35) under the null setting (Ù � I n) in the

progressive testing of AR(mÿ 1) versus AR(m) for m � 1, . . . , 5 using the annual pear

data of Henshaw (1966) covering n � 16 years with p � 5 dependent variables inclusive of

a mean location parameter. The column headed r gives the value rm0 and the column

headed r: the lag m partial serial correlation from the regression residuals. Interval (Low,

High) is the support of the conditional distribution of rm given r(mÿ1)0. The columns headed

NICD and SCDF are the approximations from the numerically integrated conditional

saddlepoint density in (36), and the saddlepoint cumulative density function approximation

in (42), respectively.

The column headed D±D in Table 3 is the p-value approximation based on the circular

Daniels±Durbin distribution theory with p � 5. The conditional test that rejects for tail

values of rm given r(mÿ1)0 is analytically equivalent to the partial serial correlation test that

rejects for tail values of rm: given r1:0, . . . , rmÿ1:0, the observed values of the ®rst lag

(mÿ 1) partial serial correlations. In the circular null setting, rm: is approximately

independent of r1:, . . . , rmÿ1: and the p value when rm:0 < 0 is determined from Durbin

(1980b, equation (20)) as

p̂ � Pr frm: < rm:0g �
IB

rm:0 � 1

2
;

nÿ p� 1

2
,

n� p� 1

2

� �
(m odd),

IB
rm:0 � 1

2
;

nÿ p

2
,

1

2
(n� p)� 1

� �
(m even),

8>>><>>>: (51)

Table 3. Approximate p values in progressive AR(m) testing using the pears data seta

m r r: Low High NICD SCDF D±D

1 0.26335 0.26335 ÿ1 1 0.0494 0.0317 0.0096

2 ÿ0.20321 ÿ0.29288 ÿ0.86130 1 0.5711 0.5665 0.6249

3 ÿ0.42921 ÿ0.33250 ÿ0.99714 0.70450 0.1225 0.1239 0.4545

4 ÿ0.24708 ÿ0.12116 ÿ0.91215 0.60137 0.4045 0.4339 0.8469

5 0.19903 0.17838 0.67962 0.81167 0.1178 0.1151 0.0238

aThe data set contains n � 16 observations and p � 5 regressors. Columns r and r: list the mth-order serial and
partial serial correlations from the regression residuals respectively. The interval (Low, High) designates the range
of support of the conditional distribution of rm given r(mÿ1)0. NICD is the numerically integrated conditional
saddlepoint density in (36), SCDF is the saddlepoint CDF approximation (42), and D±D denotes the Daniel±Durbin
approximation (51).
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where IB(b, á, â) is the incomplete beta(á, â) probability up to value b. A comparable

expression can be written when rm:0 . 0.

Table 4 illustrates the same sequence of conditional tests as in Table 3 using the

quarterly measurements of investment data in Vinod (1973, Table 1) spanning n � 44

quarters and having p � 3 dependent variables inclusive of a mean location parameter.

Whereas the Daniels±Durbin approximation based on circular models is quite different from

the non-circular approximations with n � 16 and p � 5, these approximations are now quite

good in this example when n � 44 and p � 3. The examples suggest that perhaps n does

not need to be especially large relative to p for the approximations based on the circularity

assumptions of Daniels and Durbin to be accurate.

12. Final remarks

There are other examples that might be included in the discussion above such as the sequence

of Durbin±Watson statistics from lag 1 to m. However, for joint probability computation

there is the problem that I may be dif®cult to identify and also not convex. The conditional

cumulative distribution function approximations avoid this dif®culty and might perhaps be

useful.

The points of the normalized periodogram fI1, . . . , I nÿ1) are also of the form (1) with

m � nÿ 1 since they are values of a ®nite Fourier transform of the correlogram (Diggle

1990, Section 2.8) and therefore linear in fri: i � 1, . . . , nÿ 1g. We have not addressed the

issue of whether these examples can be considered. The asymptotic methods employed here

and in all related work assume a ®xed value of m but consideration of the periodogram

should presume otherwise. It is, however, entirely possible that the saddlepoint density in

(16) could retain accuracy in this setting. Evidence for this is revealed in the accuracy

attained in reproducing the Dirichlet density of Section 6 as m increases with increasing n.

Asymptotically this must result in degenerate categories corresponding to bounded or slowly

growing values in faig. However, the accuracy in (33) when renormalized is not diminished

with increasing m.

If the periodogram can be approximated, then so can window-smoothed periodograms

since they can be written in the form (1) based on their linearity in fI1, . . . , I nÿ1g. These

and other examples are worthy of further study.

Table 4. Approximate p values in progressive AR(m) testing using the Vinod data seta

m r r: Low High NICD SCDF D±D

1 0.01765 0.01765 ÿ1 1 0.2797 0.2784 0.2846

2 0.29141 0.29119 ÿ0.999377 1 0.00355 0.00352 0.00478

3 ÿ0.25872 ÿ0.29238 ÿ0.906142 0.923709 0.05914 0.05924 0.06195

4 0.44199 0.46192 ÿ0.781215 0.892208 0.04120 0.04112 0.04521

5 ÿ0.42366 ÿ0.60055 ÿ0.686565 0.629792 0.04200 0.04152 0.04327

aThe data set contains m � 44 observations and p � 3 regressors.
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We conclude by making the following practical recommendations. Routine correlogram

signi®cance should be judged using the beta approximations of Daniels (1956) and Durbin

(1980b) which are considerably more accurate than the asymptotic normal bands �2=n1=2,

even for series of length n � 44 with p � 3 regressors. However, for short series,

signi®cance should be based on the new double-saddlepoint approximation in (64) that

presumes non-circularity since, for such series, the approximations of Daniels and Durbin

suffer from the assumption of circularity.

Appendix

A.1. Conditions for a full rank r

We show that linear independence of the matrices fAi: i � 1, . . . , mg and I is suf®cient to

guarantee that the distribution of r has full rank. We say that fAig and I are linearly

independent if Xm

i�1

l i Ai � l m�1 I � 0) (l 1, . . . , l m�1) � 0:

For the distribution of r to not be of full rank, there would need to exist (l 1, . . . , l m) 6� 0

and l m�1 such that

1 � Pr
Xm

i�1

l i ri � ÿl m�1

 !
� Pr ET

Xm

i�1

l i Ai � l m�1 I

 !
E � 0

( )
:

This requires that
Pm

i�1l i Ai � l m�1 I � 0. Under linear independence this is not possible

since (l 1, . . . , l m) 6� 0.

A.2. Derivation of @ rm=@w in (40) and proof that h(0) � 1

Differentiate w2 � log (jPmj=jP̂mÿ1j) so that

2w
@w

@ rm

� tr Pÿ1
m

@Pm

@ rm

� �

� 2 sm � rT @s

@ rm

� �
tr Pÿ1

m ÿ 2
Xm

i�1

@si

@ rm

tr Pÿ1
m Ai

� 2sm tr Pÿ1
m

(A1)

where the last line follows from ri � (tr Pÿ1
m Ai)=tr Pÿ1

m .

Substitute (A1) into the expression for h(:) in (40) and let w! 0 so that sm ! 0,

s! (ŝ(mÿ1)0, 0), tr Pÿ1
m ! tr P̂ÿ1

mÿ1, and
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lim
w!0

h(w) � jĤ mÿ1j
jH m(ŝ(mÿ1)0, 0)j

 !1=2

lim
w!0

w

sm

: (A2)

The ®nal term limw!0(w=sm) � limw!0 (@w=@sm) is computed by partial differentiating the

last line in (A1) with respect to sm to get

w
@2w

@ r2
m

@ rm

@sm

� @w

@sm

� �2
@sm

@ rm

� tr Pÿ1
m � sm

@

@sm

tr Pÿ1
m :

Taking limits then gives

lim
w!0

@w

@sm

� (tr P̂ÿ1
mÿ1)

@ rm

@sm

����
w�0

 !1=2

:

The latter derivative results from rewriting (19) as

@s

@ rT
� Hÿ1

m (I m tr Pÿ1
m � wsT)

so that

@sm

@ rm

� hmm tr Pÿ1
m � îT

m Hÿ1
m wsm, (A3)

where hmm is the (m, m)th element of Hÿ1
m or hmm � jH mÿ1(s1, . . . , smÿ1)j=jH mj. Taking the

limit and using this cofactor expression for hmm gives

lim
w!0

@w

@sm

� jH m(ŝmÿ1)0, 0)j
jĤ mÿ1j

 !1=2

:

Combine this with (A2) to show that limw!0 h(w) � 1.

A.3. Jacobian for (47)

The Jacobian @ r=@ rT
ÿ is computed in terms of @ r=@á̂T 3 @á̂=@ rT

ÿ where the former quantity

is given in (44). Since rÿ � ä̂=ä̂0, then the latter term can be computed by way of (46). From

(46),

D̂ � @ä̂

@á̂T
� @

@á̂T
(ä̂0 rÿ) � ä̂0

@ rÿ
@á̂T
� rÿ

@ä̂0

@á̂T
:

Since @ä̂0=@á̂T � 2á̂T, then we can solve for�������� @ rÿ
@á̂T

�������� � ä̂ÿm
0 i D̂ÿ 2rÿá̂T i

� (1� rT Rÿ2
mÿ1 r)ÿm i D̂i 3 j1ÿ 2á̂T D̂ÿ1 rÿj,

since á̂ � Rÿ1
mÿ1 r. However, now á̂ � ÿD̂T r as given in Daniels' equation (9.13) so that
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�������� @á̂@ rTÿ

�������� � (1� rT Rÿ2
mÿ1 r)m i D̂iÿ1 3 j1� 2rT rÿjÿ1 (A4)

and the density in (47) follows from the Jacobians in (44) and (A4).
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