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In this paper we prove the absolute continuity of the law of the solution to an elliptic stochastic partial
differential equation with an additive white noise reflected at zero. The proof is based on Malliavin’s
calculus tools, and some methods of variational inequalities and ordinary partial differential equations
driven by measure data.
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1. Introduction

In Nualart and Tindel (1995) we proved the existence and uniqueness of the solution to a
quasilinear stochastic elliptic equation with reflection of the type

—Au(x) + f(u(x)) = W) +7, x€D,

with Dirichlet-type boundary conditions, where D is a bounded open domain of RX,
k=1,2,3, f is a continuous non-decreasing function and {W(x); x € D} is a white noise
on D. The solution is a pair (u, 77) where u is a non-negative continuous random field on D
and 7 is a random measure satisfying [pudy = 0. In this paper, we shall prove that the
solution u(x) has a density on (0, oo) for any x € D, using the approximating sequence u‘
introduced by Nualart and Tindel (1995), and the classical tools of Malliavin’s calculus.

Note that a similar problem has been treated by Lépingle et al. (1989) for the one-
dimensional case. As far as the existence and uniqueness are concerned, the parabolic case
has also been studied by Nualart and Pardoux (1992) when the diffusion coefficient is
constant, and by Donati-Martin and Pardoux (1993) in the case of a general diffusion
coefficient. Donati-Martin and Pardoux (1995) showed a density result for the solution of
the general parabolic problem with reflection. In this case, one of the main technical
difficulties is due to the diffusion coefficient, which has to be removed in a certain way.
However, the elliptic case is simpler, since we can only deal with an additive white noise
(there is no existence and uniqueness result for a general diffusion coefficient), and we shall
be able to prove the positivity of the norms of the derivatives || Du¢||; much more easily
than was done by Donati-Martin and Pardoux (1995).
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This paper is organized as follows: Section 2 is dedicated to preliminary results on
Malliavin’s calculus, ordinary partial differential equations (PDEs) and stochastic partial
differential equations (SPDEs) that we shall need later. Then, in Section 3, we shall prove
the differentiability of the solution, and the existence of a density for the law of the solution
on (0, c0).

2. Preliminaries

2.1. General notation

Let D be an open bounded subset of R¥, with k € {1, 2, 3}. We shall consider a Gaussian
family of random variables {W = W(B), B € .%(D)}, defined in a complete probability
space (L2,.7, P) such that E(W(B)) = 0 and

E(W(A)W(B)) = |4 B,

where |4 N B| denotes the Lebesgue measure of the set 4 N B.

We shall call H the space L?(D). The symbol A denotes the Laplace operator in H and
7z 2 (D) denotes the set of infinitely differentiable functions on D with compact support
included in D. We shall denote by (-, -) the scalar product in H, and by |-/« the supremum
norm on D. We shall also denote by .#(D) the set of bounded measures on D, and by
w{4(D) the (p, g) Sobolev space on D with Dirichlet boundary conditions, i.e.,

WD) = {f € Z(Dy; D" f € LY(D) Ym < p, fiop = 0}.

Let Gp be the fundamental solution of the Poisson equation with Dirichlet boundary
conditions. That is, for any % € H,

ngh%mwmwy

is the unique solution of

—Ag(x) = h(x), xe D,

glap = 0.
Let us recall that, by Donati-Martin (1992),
Sup||GD(x, )”H =M < oco. (1)
xeD

2.2. Malliavin’s calculus associated to the white noise in D

With the notation given above, for any # € H we shall call W(h) the Wiener integral on % on
D, ie.,
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W(h) = J h(x)W dx.
D

Let us consider the space
B ={w e Z(D); wpp = 0},
the function

i: H— B,
e i) = | Got. )y
and u, the process with paths in B defined by
up(x) = JDGD(x, nWWdy = W(Gp(x, .)).

Then, if u is the law of ug, it has been shown by Donati-Martin (1992) that (B, H, u) is an
abstract Wiener space.
The space . of smooth functionals on B will be the set of random variables of the form

F=7W(h), ..., W(hy)),

where n € N, h; € H, 7/ € C;°(R"). For such a variable, we can define a derivative DF as an
H-valued random variable, by

D.F — ;%(W(hl), oo W(ha))hi(2), z € D.

Xi
For p>1, we shall denote by D!” the closure of .”” with respect to the seminorm
|7l = {ELFIT+ELI DF 137

We shall use the two following rules to get our density result (see Nualart (1995) for the
demonstrations of this).

Theorem 2.1. Let {F,; n = 1} be a family of elements of D'? converging to F in LP(Q) for
p>1. Suppose that {DF,; n= 1} is a bounded family in LP(Q; H). Then F € D"?,
F, € DV for every n =1, and there exists a subsequence of {DF,; n = 1} converging to
DF in the weak topology of LP(Q; H).

Theorem 2.2. Let F be a real random variable defined on Q. Suppose that F € D'? and that
there exists A € .7 such that |DF||;>0 as. on A. Then the measure (1,P)F~' is
absolutely continuous with respect to the Lebesgue measure.

The following rule, due to (Sugita 1985), will ensure the differentiability of the solution
to an elliptic SPDE.
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Theorem 2.3. Let F € L*(Q). Then F € D'? if and only if the two following conditions are
verified.

(1) For all h € H, there exists a version Fy of F such that, for all ® € Q, the mapping
t — Fylo + ti(h)] is absolutely continuous.
(2) There exists y € L*(Q; H) such that, for all h € H,

P- ygglt {Flo + ti(h)] - F@)} = (), h).

2.3. Ordinary elliptic partial differential equations

We shall recall here some results given by Boccardo and Gallouét (1992). Consider the
domain D and the equation
—Au(x) + g(x, u(x)) = A(x), x €D,
2

ulaD = 07

where g is a measureable function from D X R to R, and 1 € .Z(D). We say that u is a
weak solution to (2) if u € Wy'(D), Au € L\ (D), g(u) € L\ (D), and for any v € # (D),

loc loc
(s Ap) + (gw), ) = JDw(x)A dx,

where g(u)(x) stands for g(x, u(x)). Then the following result (which is a very particular case
of those of Boccardo and Gallouét) holds.

Theorem 24. If g: D X R — R is a measurable function such that

(1) s — g(x, s) is continuous a.e. in x € D,

2) g(x, s)s =0 for every s € R, ae. in x € D,

(3) sup{|g(x, s)|; |s| < t,x € D} < M(t)<oo for every t € R and

(4) there exist by, by >0 such that |g(x, s)| < by + by|s| for any s € R for almost any
x €D,

then there exists a solution u to (2) for any A € .Z(D).

Remark 1. In order to prove the existence part of the result, Boccardo and Gallouét use a
sequence {/,; n =1} of functions of W~'2N LY (D) converging to A in the distribution
sense. They call u” the solution of

—Au"(x) + g(u")(x) = 7 'n(x), x €D,
u|8D =0.

Then they prove that
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lim u#"(x) = u(x) a.e. in x € D,
n—0o0

1 .
Wyt — lim u" = u,

n—oo

for every 1 < ¢ < k/(k— 1), i.e, g<oo if k=1,¢<2if k=2 and ¢ <3 if k = 3.

Remark 2. Boccardo and Gallouét do not show the uniqueness of the solution to (2) in their
general case. However, we shall apply the result of Theorem 2.4 when g is an increasing
function and, in this case, if u and v verify ujgp = vjpp = 0 and

—Au(x) + g(u(x)) = Ax),
—Av(x) + g(v(x)) = Ax),
then the difference u — v verifies

(=A(u =), u—v) = —(gu) — g), u —v),

IV — 0)|[3 = —(g(w) — g@), u—0).

By positivity of [g(u) — g(v)](u — v), the right-hand term of the above equality is negative,
and thus ¥ = v a.e. on D, which proves the uniqueness of the solution.

2.4. Elliptic stochastic partial differential equations

Let D be an open bounded subset of R*, with k € {1, 2, 3}. We shall recall some results on
a nonlinear stochastic elliptic equation with Dirichlet boundary condition of the type

—Au(x) + f(u(x)) = W(x), x €D,
(3)

ugp =0,

where W(x) is the formal derivative of ¥ with respect to the Lebesgue measure, and
f: R — R is a measurable function. We shall call Eq(f) such an equation, and assume from
now the following hypothesis on f.

(H1) The function fis a ¢ function such that f’>0.
The precise definition of the solution to (3) is given as follows.

Definition 2.1. A process u is said to be a solution to (3) if

(1) {u(x), x € D} is a continuous stochastic process on D, with upp =0 a.s. and
(2) for all ¢ € (D) we have

L AP+ (F), §) = JD¢(x)de.
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With the general notation introduced in Section 2.1, we can define the Gaussian random
field

up(x) = JDGD(x, VW dy.

It has been shown by Buckdahn and Pardoux (1990) that u has a version which is a-Holder
continuous on D (a <% if k=3, a<1if k=2 and a =1 if k = 1). Moreover, u satisfies
the stochastic elliptic equation

—Aug(x) = W(x), x €D,
ugop = 0,

in the distribution sense. This means that, for every ¢ € (D),
—(uo, AP) = J Pp(xX)Wdx as.
D
Then (3) is equivalent to its integral form

u(x) + JD Gon(x, )f (u(y)) dy = JD Golx, YW dy. @)

In order to have a functional form of (4), we can introduce the map
T-B— B
o — T(w) =+ i(f(w)).
Then (4) can be written
T(u) = ug.

It has been shown by Donati-Martin (1992) that, if f verifies (H1), then T is bijective, which
proves that (3) has a unique solution. Moreover, the transformation

T(w) = o +i(f(w))

verifies the hypothesis given in Theorem 6.2 of Kusuoka (1982, p. 583) in (B, H, ). In
particular, for every x € D, the law of u(x) has a density, and f(w): B — H isa H — ¢!
function. We also have the following differentiation rule.

Theorem 2.5. If f verifies (H1), the solution u to (3) is such that u(x) € D'?. The process
{D.u(x); z € D} verifies

D-u(x) + JDGD(X» VD-u(y)f'(u(y) dy = Gp(x, 2). ®)

Proof. We shall divide the proof into two steps.
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Step 1 Differentiability of T~'. We proved in Tindel (1996) that T~! is a continuous
function from B to B. Let us prove now that 7T is a differentiable function such that L,, the
differential of T in v is a non-degenerate linear function from B to B, for any v € B. Indeed,
if f verifies (H1), T is a differentiable function of v and for any w € B, L,w is defined by

Lyw(x) = w(x) + JDGD(x, NS ey)wy)dy, xeD.

Then it is easily seen that L, is non-degenerate; if L,w = 0, we have, in the non-integral
form

—Aw + f'(v(x))w(x) = 0, x € D,
Wiop = 0.

Since f' is continuous and positive, this equation verifies the hypothesis of Thereom 2.4, and
thus has a unique solution (cf. Remark 2 of that theorem), which is the null function.
Moreover (Friedman 1975, p. 145), if w is Holder continuous, L, can be inverted as

[L,'wl(x) = Ex U w(&(1)) exp (—J J'(@0(E(5))) dS> dt},

where & is an R¥-valued Brownian motion on a complete probability space (Q, 7, P) T its
exit time from D, and where E, denotes the mathematical expectation with respect to P with
initial condition x for &. In particular, if we set

R = supE,[1],

xeD

we get [|L; ! < R for every v € B, by extension to a general continuous function w.
Step 2 Differentiability of u(x). We shall apply Theorem 2.3 to F(w) = u(x, w) for a fixed
x € D. From Step 1, we have almost surely

lulloe = 17" uolloc < Rllutollsc,

which proves that u(x) € L*(Q) for all x € D, since u is a Gaussian process. Let us denote
by Gph the function

Gph(x) = JDGD(x, Wh()dy.

With the same type of argument, for any 4 € H,
Flow + ti(h)] = {T " [ug(w) + tGph]}(x)

is an absolutely continuous function of 7. We have also that, almost surely, L,, is non-
degenerate and ||L, || < R. Thus, almost surely,

lim %{F[w + ti(h)] — F(w) — L, Gph} = 0.

Finally, by (1),
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Iz, Gohlle < L, MIGphllc < RM|A] 1,

i
which proves that, for a random variable 1 € L*(Q; H),
L,'Gph = (1, h). m

The last result that we shall need on elliptic SPDEs will be a comparison theorem given
by Buckdahn and Pardoux (1990).

Theorem 2.6. Let f, g: R — R be locally bounded continuous and non-decreasing functions
such that f < g. Let u be the solution of Eq(f) and v the solution of Eq(g). Then u = v a.s.

2.5. Elliptic stochastic partial differential equations with reflection
Keeping the general notation of Section 2.1, let us consider the nonlinear stochastic elliptic
equation with reflection and Dirichlet boundary condition of the type

—Au(x) + f(u(x)) = W(x) + 1, x € D, ©

ugp =0,
where the function f is measurable. We shall call Eq,(f) such an equation. A precise
definition of the solution will be the following.
Definition 2.2. A pair (u, ) is said to be a solution to (6) if

(1) {u(x), x € D} is a non-negative continuous stochastic process on D, with ugp =0
a.s.,

(2) ndx is a random measure on D such that n(K)<oo for all compact subset K C D,
(3) for all ¢ € Z7(D) we have

L, AP+ (Fu), §) = JD¢<x>de + Jqu(X)n dr

and

@) [pu(xydx = 0.

The main result of Nualart and Tindel (1995) is as follows.
Theorem 2.7. Assume that f is locally bounded, continuous and non-decreasing. Then there
exists a unique solution (u, 1) to Eq,(f).
3. Existence of a density

We shall still suppose here that f verifies (H1). In order to differentiate (in the sense of
Malliavin’s calculus) the approximating solution of u‘ of u, we have to get a smoother
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approximation than that constructed by Nualart and Tindel (1995). We shall use here the
same method as Donati-Martin and Pardoux (1995), let # be a # ! non-increasing function
with bounded derivative such that

h(x) =0, x =0,
0<h(x)<x", x<0,

and set f©= f — h/c for every 0<<¢ < 1. We shall also call u° the unique solution to
Eq(f).

Lemma 3.1. Let u be the solution to Eq,(f). Then almost surely, u‘(x) increases as ¢
decreases to 0 for every x € D, and lim._o u“(x) = u(x). Moreover, for any x € D, p>1, we

have LP(Q) — lim,_o u(x) = u(x), and |ullo € LP(RQ).

Proof. The sequence u¢ is increasing by the comparison with Theorem 2.6, and we can prove,
as in Nualart and Tindel (1995), that u¢ converges to u almost surely. To get the LP(2)
convergence, we only have to prove that |[u‘|, is bounded in LP(Q), for any p>1: set
z¢ = u“ — uy, and z¢ the solution to the deterministic equation

—AZ(x) + f(E(x) = %h(ﬁ((X)), x €D,
Zop = 0.
The process z¢ verifies
—AZ () + £ () + uo(x)) = %h(z‘(x)), xeD,
Zop = 0.

Hence, as in Nualart and Tindel (1995), we have

Iz = 2oc < ol
and thus
leelloc = [lue* — w0 + o]l
< ll*lloc + ol
= [l = 2+ 2c + Juollc
< [0 + [l = 2lloc + lluollc

< [12°lse + 2fluo e

which implies that, for a constant &k, >0,
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Eflu 8] < kp(ELIZ(] + Ellluol2D
= kp(|2°lI% + Elluolf2.D

since z¢ is a deterministic function. Moreover, the sequence z¢ is increasing towards the
unique solution z € Z°(D) of the elliptic ordinary equation with reflection (Bensoussan and
Lions 1978)

AN+ f() = ndx,  xeD,
Zpp = 0,

26

which proves that, if 0 <e < 1, then [|2‘]oc < (||2"]l V ||Z]|s0), and that there exists a constant

K such that

sup |20 = K.
0<e<l

Finally, (B, H, ) is an abstract Wiener space, and by Fernique’s lemma (see, for example,
Kuo (1976)), there exists a constant a >0 such that

Elexp (aluo|%)] < o

In particular, ||u]l. has moments of any order, which ends the proof. O

Using this approximating sequence, we shall be able to prove that u(x) is an element of
[D)l,oc _ ﬂ pngl,p.

Lemma 3.2. For every x € D, p> 1, u(x) € D", and there exists a subsequence of Du‘(x)
converging to Du(x) in LP(Q; H).
Proof. For every x € D, p>1, by Lemma 3.1, we know that
LP(Q; H) — lirré u‘(x) = u(x).
In order to apply the rule of Theorem 2.1, we have to verify that u‘(x) € D" and

{Du‘(x); 0<c <1} is bounded in LP(Q; H). Recall that, for any 0<e < 1, u‘(x) € D'?
and that Du‘(x) verifies (see (5)), for any z € D,

!

h
D-u‘(x) + JDGD(X: ¥) (f - ?) [u MID-u(y)dy = Gp(x, 2). (7

We have chosen f and 4 such that ' =0, 2’ <0. Hence f' — h'/e =0 and is non-
decreasing as ¢ \, 0. Set

h/
D.u(x) = Yi(x), (f’ )[ME(X)] = 0(x).

€

Then (7) can be written
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Vo) + jD Golx, o) Y)dy = Gp(x, 2),

or, in its non-integral form,

—AY{(x) + 0.(x)Yi(x) = 5.(x), xe D,
Yop =0,

where O, denotes the Dirac measure in z. We shall prove that 0 < Y{(x) < Gp(x, z) as.

Step I Y{(x) = 0. Let Y(x) be the solution of the ordinary elliptic PDE
—AY(x) + o(x)Y(x) = 0.(x), x € D,

Yjop =0,

with z € D, 0 € Z(D) (and thus bounded), 0 = 0. Note that Y¢(x) verifies these conditions
with 0(x) = 0.(x). As in Theorem 2.4, Remark 1, take a sequence {f,; n = 1} of Lipschitz
functions converging to J, in the distribution sense. By positivity of the Dirac measure, we
can also suppose that f,, = 0 for every n = 1. Let Y” be the solution of

—AY"(x) + 0(x)Y"(x) = fau(x), zeD
Yn(x)\az) =0.
The function g: D X R — R such that
gx, r)=oX)r

verifies the conditions of Theorem 2.4, and thus lim,_,., Y "(x) = Y(x) for almost any x € D,
and

Wyt — limY" =Y

n—oo

where 1< ¢ < k/(k—1). Moreover, as in the proof of Theorem 2.5, Y" has the
representation

Y"(x) = E, Uof n(£(0) eXp(—LO (&(s)) dS> df], ®)

where & is a R¥-valued Brownian motion. From this expression, we get directly that
Y”"(x) = 0, and by convergence of Y ”(x), we obtain that Y(x) = 0 for almost every x € D. In
our random case, by continuity of x — Y¢(x), we have that for a given (z, €), almost surely,
Y¢(x) = 0 for every x € D.

Step 2 Y.(x) < Gp(x, z). With the notation of Step 1, let Y3" be the solution of
—AYZ"(x) + 0 ()Y (x) = [fu(x), x €D,

Y2"sp =0,
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and Y%" the solution of

—AY?"(x) = fu(x), x €D,
Y(z)’n|éD =0.

With the representation (8), we get

Ye'(x) = E, Uof n(E(0) exp (—LOE(E(S)) dS> dt] ,

T
Y2"(x) = Ex <J Fn(&(0) dt>,
0
and by positivity of o, for every 0 <e <1, z, x € D, we have Y{"(x) < Yg’”(x). Moreover,
for every x € D,

lim Y$"(x) = Yi(x),
lim Y%"(x) = Gp(x, 2),

which proves, by continuity of Y¢(x), that a.s. Yi(x) < Gp(x, z) for every x € D.
By Step 1 and Step 2, we get that almost surely, for any ¢ € [0, 1] of the form ¢ = 1/n,
with n =1,
1Du )| 1 < |Gp(x, )l - ©)

Hence, by inequality (1), almost surely,

sup sup || Du‘(x)|| g < M

0<es<1xeD

and Du‘(x) € L>®(Q; H), which proves that u(x) € D>, O
We can now prove the main result of this paper.

Theorem 3.1. Let u be the solution of Eq,(f), where f verifies condition (H1). Then for every
x € D, the restriction of the law of u(x) to (0, 00) is absolutely continuous with respect to the
Lebesgue measure.

Proof: By the rule of Theorem 2.2, we have to show that, if x € D, a >0, and if we set
Q, ={w € Q; u(x, w) = 3a}, then ||Du(x)||H >0 a.s. in Q,. Let us call first Q, the set of
convergence of u¢ towards u in D, and set

1
Qi = {a) € Qo; u(x, w) = 3a, u‘(x, w) = 2a, Ve < k}'
We have Q, = [Ji=1Qu., and thus we only have to prove that || Du(x)||z >0 almost surely

on Q.
For x € D, fix w € Q.. Then we have u'/¥(x) = 2a. Set then
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1
Qurj = {a) € Qs u(y) = a, Yy such that |y — x| < j}'

We have Q; = J;=1Q4,> and we shall prove that || Du(x)| 7 >0 almost surely on Q, ;.

For w € Q.1 ;, we call B; the ball of centre x and radius 1/;. By the increasing property of

u®, for any € <1/k, we shall also have u‘(y) = a, and hence A'(u‘(y)) =0 for any y € B;.
Let us recall that Y{(y) = D.u‘(y) is a positive process verifying the elliptic equation

’

€ ! h € €
—AY () + <f - ?> [wWMIYAy) =0:(y),  x€D,
Yilop = 0.
For ¢ < 1/k, set
v="Ylp, ¢ =Y|yg,
Then ¢ = 0, ¢ is continuous on JB; and v verifies the equation

=Av(y) + [ (w ()o(y) = 0(y), y € B},

v(y) = ¢(»), y € 0B;.

As in Lemma 3.2, we shall approximate 0, by a sequence of positive Lipschitz functions f,,
and v by the function v” defined by

—A0"(y) + [ W ()0 () = fa(y), y € By,
v"(y) = ¢(»), y € 0B;.

Keeping the notation of Lemma 3.2, by the representation result given by Friedman (1975),
we get that

0"(y) = E, Uofn@(r)) exp (—Lf’(u‘(é(s))) ds) dr}

+E, [¢(£(r>) exp (Lf’(u‘(&(s))) ds)] :

Furthermore, we have that
u'(x) < u‘(x) < u(x) (10)
and, by continuity of /', u' and u,
sup sup f'(u‘(x)) = L <oo.

0<es<l xeD

Thus, since ¢ is a positive function, v” = 0", where 9" is defined by

7"(») =E, (J Jn(&(0) exp(—Lt)dt>~ (11)

0
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Passing to the limit in n, we get that v = U, where v is the solution to
—Av(y) + Lo(y) = 0:(y),  y€ B,
(y) =0, y € 0By,
or in its integral form, for y € B,
509+ L] G (2 w00) o = G (02,
J

where Gp, is the fundamental solution to the Poisson equation on B; with Dirichlet boundary
cond1t10ns In particular, for y = x,

(x) = Gp,(x, z) — LJ Gp,(x, wyo(w)dw.
B;
Using (11), we can see that 0 < (y) < Gp,(y, z) for any y € B;. Thus,

o(x) = Gp,(x, z) — LJ Gp,(x, w)Gp,(w, z)dw

J
= Gp,(x, ) — LM?,

where M is defined by (1). The function Gp, is infinite on the diagonal. Thus, for a
deterministic neighbourhood A of x such that Ac B; and |4 >0, we get Gp,(x, z)>2LM
for every z € 4. Hence, if w € Q. ;, for any z € 4, O<e < 1/k, we have D Lu(x) = LM.

Let us take now a subsequence of Du‘(x), that we shall call again Du‘(x), converging to
Du(x) in the weak topology of L*(Q; H), and thus in the weak topology of L?(Q; L*(4));
for any ¢ € Z°(A4), X € L*(Q), we have

lim ELX(Du‘(x), @)] = ELX(Du(x), @)1

For any positive square integrable random variable X, and any ¢ € ©7;7(4), we have that,
almost surely on 2,4 ;,

X(@)(Du (x)@), 9*) = LMo} 4,

for any ¢ < 1/k. Hence

E[lq,,, X(Du(x), 9*)] = Ellq,, ,LM||o[1,],

which means that, almost surely in €2, ;, we have D.u(x)(w) = LM >0 for almost any
z € A. Thus ||Du(x)||z >0 a.s. on Qg ;. O
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