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In a recent paper, Komaki studied the second-order asymptotic properties of predictive distributions,

using the Kullback±Leibler divergence as a loss function. He showed that estimative distributions with

asymptotically ef®cient estimators can be improved by predictive distributions that do not belong to

the model. The model is assumed to be a multidimensional curved exponential family. In this paper

we generalize the result assuming as a loss function any f divergence. A relationship arises between á
connections and optimal predictive distributions. In particular, using an á divergence to measure the

goodness of a predictive distribution, the optimal shift of the estimate distribution is related to á-

covariant derivatives. The expression that we obtain for the asymptotic risk is also useful to study the

higher-order asymptotic properties of an estimator, in the mentioned class of loss functions.
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1. Introduction

The main goal of this work is to provide distributions that are close, in the sense of an f

divergence, to an unknown distribution belonging to a curved exponential family

P � fp(x; è(u)) � exp [èi(u)xi ÿ ø(è(u))]g:
In order to obtain this, we could estimate u by û and consider p(x; û). This kind of

distribution is called an estimative distribution. The procedure ensures that they belong to the

model. However, perhaps we could obtain a better result by considering predictive

distributions, i.e. distributions outside the model.

Let p̂(x; x1�N ) be a predictive distribution obtained by some rule from the sample of size

N, x1�N � (x(1), . . . , x(N )). An f divergence Df of the predictive distribution to the true

one is de®ned as
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Df ( p(x; u), p̂(x; x1�N )) �
�

f
p̂(x; x1�N )

p(x; u)

� �
p(x; u)ì dx,

where f is a smooth, strictly convex function that vanishes at 1. We measure the closeness

by

Eu(Df ( p, p̂)) �
�

Df ( p(x; u), p̂(x; x1�N )) p(x1�N ; u) dx1�N : (1)

In order to choose p̂, we could try to ®nd the distribution that minimizes (1), uniformly in u,

among `all probability distributions' equivalent to p. Since there are some technical pro-

blems in giving a structure of differentiable manifold to this in®nite-dimensional space, we

follow the procedure suggested by Komaki (1996) and try to solve the problem only for

distributions belonging to a ®nite-dimensional model containing P . We construct this model

by enlarging P in orthogonal directions. We shall see that, for large samples, there is a

special direction such that the improvement on the estimative density is maximum if and only

if this direction belongs to the tangent space associated to the enlarged model. The solution

does not change if we add more orthogonal directions and in this sense we can consider the

problem solved in the in®nite-dimensional space of all probability distributions equivalent

to p.

For simplicity, we shall work with á divergences Dá (for their use in statistical inference,

see Amari (1985, Chapter 3)), i.e. f divergences with

f (z) � fá(z) �

4

1ÿ á2
(1ÿ z(1�á)=2), á 6� �1,

z log z, á � 1,

ÿlog z, á � ÿ1:

8>>><>>>:
In the ®nal remark, we extend the results to any f divergence.

2. The enlarged model

Let E be a n-dimensional full exponential family, i.e.

E � fp(x; è) � exp [èixi ÿ ø(è)], è 2 Èg,
where the probability functions p(x; è) are densities with respect to some ó-®nite reference

measure ì and

È � è:

�
exp (èixi)ì dx ,1

� �
is an open subset of Rn. We consider the model P to be a (n, m)-curved exponential family

of E , m < n,

P � fp(x; u) � exp [èi(u)xi ÿ ø(è(u))], u 2 Ug,
with U a smooth m-dimensional submanifold of È.
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Let

lá(x; u) �
2

1ÿ á
[ p(1ÿá)=2(x; u)ÿ 1], á 6� 1,

log p(x; u), á � 1,

8<:
be the so-called á representation of p(x; u) (Amari 1985, p. 66). From now on, the index á
will be used to denote all that regards á representation of geometric quantities. The tangent

space Tu of P in u is identi®ed with the vector space spanned by

@a lá(x; u) � @ lá(x; u)

@ua
, a � 1, . . . , m,

that are the components of what we call the á-score function. The ®rst and second derivatives

of lá(x; u) are related to those of l(x; u) � log p(x; u) � l1(x; u) by

@a lá � p(1ÿá)=2 @a l

and

@a@b lá � p(1ÿá)=2 @a@b l � 1ÿ á

2
@a l @b l

� �
:

De®ning

Eá( f (x)) �
�

f (x) pá(x; u)ì dx,

we have that the inner product of vectors @a lá and @b lá,

h@a lá, @b láiá � Eá(@a lá @b lá) �
�
@a lá @b lá páì dx �

�
@a l @b l pì dx � h@a l, @b li,

does not depend on the á representation; it is the (a, b) component of the Fisher information

matrix gab. In the sequel, we omit the subscript á in the inner product and in the expectation,

since it will be clear from the representation used. We indicate by gab the inverse of gab and

use the repeated index convention.

Following Amari et al. (1987), we can construct a vector bundle on P by associating to

each point p(x; u) 2 P a linear space Hu de®ned by

Hu � h(x):

�
p(1�á)=2(x; u)h(x)ì dx � 0,

�
pá(x; u)h2(x)ì dx ,1

� �
:

If h, g 2 Hu we can de®ne an inner product on Hu by

hh, gi �
�

pá(x; u)h(x)g(x)ì dx:
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Then, since Hu is a closed linear subspace of L2( páì), it is a Hilbert space. It is easy to

see that Tu � Hu and the inner product de®ned on Tu is compatible with that in Hu.

Attached to different points we have different but isomorphic Hilbert spaces. In order to see

this, let p � p(x; u) and q � p(x; u9) be two different points of P and consider the

transformation

I u9
u : Hu ! Hu9

h 7! p

q

� �á=2

hÿ q(1ÿá)=2

�
q(1�á)=2 p

q

� �á=2

hì dx:

In fact, it is easy to see that I u9
u (h) 2 Hu9, since�

q(1�á)=2 I u9
u (h)ì dx � 0

and �
qáfI u9

u (h)g2ì dx �
�

páh2ì dxÿ
�

q(1�á)=2 p

q

� �á=2

hì dx

" #2

,�1: (2)

Moreover, I u9
u is linear, its inverse is

(I u9
u )ÿ1(g) � q

p

� �á=2

g ÿ q(1ÿá)=2

�
p(1�á)=2 q

p

� �á=2

gì dx

" #� �
p(1�á)=2 q

p

� �á=2

ì dx

" #( )
and, by (2), it is bounded. I u9

u is then a continuous linear bijection, i.e. an isomorphism

between Hu and Hu9. The aggregate

H (P ) �
[
u2U

Hu

constitutes Amari's Hilbert bundle. It is necessary to establish a one-to-one correspondence

between Hu and Hu9, when p(x; u) and p(x; u9) are neighbouring points, in order to express

the rate of variation in a vector ®eld as an element of the Hilbert bundle. If we move in the

direction @a lá and hu 2 Hu, @a hu =2 Hu in general. Anyway, if

h: U !H (P )

is a smooth vector ®eld, in the sense that we can interchange the integral and the derivative,

0 � @a

�
p(1�á)=2 hì dx

�
�

p(1�á)=2 @a h ì dx� 1� á

2

�
pá @a lá hì dx

�
�

p(1�á)=2 @a h� 1� á

2
p(1ÿá)=2 E(@a lá h)

� �
ì dx:
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Thus, we can de®ne the á-covariant derivative in H as

=
á

(H )
@a lá

h � @a h� 1� á

2
p(1ÿá)=2 E(@a lá h),

whenever =
á

(H )
@a lá

h 2 L2( páì). If h(u) � @b lá(x; u), we have

=
á

(H )
@a lá

@b lá � @a@b lá � 1� á

2
p(1ÿá)=2 gab

and the á-covariant derivative in P is the projection of =
á

(H )
@a lá

@b lá on Tu:

=
á

@a lá @b lá � h=
á

(H )
@a lá

@b lá, @ c láigcd @d lá � Ã
á

abc gcd@d lá:

These connections coincide with the á connections de®ned by Amari (1985, p. 38). We use

the superscripts m and e respectively for the ÿ1 and �1-covariant derivatives.

Let M be any regular parametric model containing P . We can consider on M the

coordinate system (u, s), where ua, a � 1, . . . , m, is the old coordinate system on P and

sI , I � m� 1, . . . , r, r . m, are new coordinates on M . We suppose that s � 0 for the

points in the original manifold P and u and s are orthogonal in P . The tangent space to

the enlarged model M is now spanned by vectors @a lá(x; u, s), a � 1, . . . , m, and

@ I lá(x; u, s), I � m� 1, . . . , r. Let hI (x; u) � @ I lá(x; u, s)js�0, I � m� 1, . . . , r; then the

hI values belong to Hu and we can formally write

p(x; u, s) � p(x; u)� p(1�á)=2(x; u)sI hI (x; u) � � � � : (3)

3. Predictive distributions

We consider predictive distributions p(x; ûN (x), ŝ(x)), with ŝ(x) � Op(Nÿ1), so that

ŝ(x) � 1

N
s(x)� op(Nÿ1), (4)

and ûN (x) is a smooth, asymptotically ef®cient estimator, and hence ®rst-order equivalent to

the maximum-likelihood estimator, of the form

ûN (x) � û1(x)� 1

N
u(x)� op(Nÿ1): (5)

For ®xed x, both

û1(x) � lim
N!1

ûN (x)

and

u(x) � lim
N!1

NfûN (x)ÿ û1(x)g

depend on N only through x.
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For each N, ûN is a map

ûN : E ! P ,

since x can be identi®ed with the point in E having expectation parameters çi � xi. Then,

û1 is also a map from E to P and we can associate with ûN a family of ancillary (nÿ m)-

dimensional submanifolds of E , A � fA(u)g, where A(u) � ûÿ1
1 (u). In some discrete cases,

even though the exponential model is regular, x could correspond to the expectation

parameters of a point in E with a probability different from one. However, since this

probability goes to one exponentially in N, we can consider a modi®cation of x, say x�, such

that x� � x� op(Nÿ2) and x� are the expectation coordinates of some point in E . Then, all

the results could be rewritten in terms of x� instead of x.

Following Amari (1985, p. 128), it can be shown that û1 is consistent if and only if

every p(x; u) 2 P is contained in the associated submanifold A(u) and û1 is asymp-

totically ®rst-order ef®cient if and only if A(u) is orthogonal to P in u. On the other hand,

since

lim
N!1

û1(x) � lim
N!1

ûN (x)

in probability and

lim
N!1

[N 1=2fû1(x)ÿ ug] � lim
N!1

[N 1=2fûN (x)ÿ ug]

in distribution, the results still hold for ûN.

If we introduce a coordinate system vk, k � m� 1, . . . , n on each A(u), every point in

the full exponential family containing P is uniquely determined by a pair (u, v). It is

convenient to ®x v � 0 for the points in P . We denote by indices a, b, c, . . . 2 f1, . . . , mg
the coordinates u in P , by k, ë, ì, . . . 2 fm� 1, . . . , ng the coordinates v in A(u) and by

á, â, ã, . . . 2 f1, . . . , ng the new coordinates w � (u, v) in E . Since ûN is asymptotically

ef®cient,

gak(u) � 0:

Indices i, j, . . . 2 f1, . . . , ng are used to denote the natural parameters è in E and indices I,

J, K, . . . 2 fm� 1, . . . , rg for the coordinates s that we add to enlarge the model P . By the

coordinate system we choose on M ,

gaI (u) � 0:

Under these assumptions, we have the following theorem.

Theorem 3.1. The average á divergence from the true distribution p(x; u0) to a predictive

distribution p(x; ûN (x), ŝ(x)) is given by
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Eu0
fDá( p(x; u0), p(x; ûN (x), ŝ(x)))g

� m

2N
� 1

4N 2
[2(H

e
2
P )� (H

m
2
A)]

� 1

2N 2
gab(ua ÿ 1

2
H
m

kë
agkë)(ub ÿ 1

2
H
m

ìí
bgìí)

� 1

N 2
=

(1ÿá)=2

a (ua ÿ 1
2

H
m

kë
agkë)

� 1

2N 2
(gIJs Is J ÿ H

á

abI gabs I )

� áÿ 3

12N2
TabcT abc � (áÿ 11)(áÿ 1)

32N2
Qabcdgabgcd

� 1

4N 2
gacgbd

�
(@a@b pÿ Ã

m

ab
e @e p)(@c@d pÿ Ã

m

cd
f @ f p)

1

p
ì dx

ÿ 3

8N 2
gabgcd

�
(@a@b pÿ Ã

m

ab
e @e p)(@c@d pÿ Ã

m

cd
f @ f p)

1

p
ì dx

ÿ 1

N 2
gacgbd

�
@a p @b p (@c@d pÿ Ã

m

cd
f @ f p)

1

p2
ì dx

� á� 1

8N2
gabgcd =

m

d Tabc � o(Nÿ2),
(6)

where all the quantities are evaluated in u0,

u � u(E(x)),

s � s(E(x)),

Qabcd � E(@a l @b l @c l @d l),

H
á

rst � h=
á

@ r lá@ s lá, @ t lái,

Tabc � E(@a l @b l @c l),

(H
e

2
P ) � H

e
ack H

e
bdë gcdgkë gab,

(H
m

2
A) � H

m
këa H

m
ìíb gkì gëí gab

and =
á

a is the a component of the general covariant derivative of a tensor with respect to the

á connection.
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Proof. Only an outline of the proof is given; see Corcuera and GiummoleÁ (1996) for detailed

calculations. Since, from the de®nition of fá,

fá(1) � 0, f 0á(1) � 1, f -á (1) � áÿ 3

2
, f (4)

á (1) � (áÿ 3)(áÿ 5)

4
,

and ŝ(x) � Op(Nÿ1), the expansion of an á divergence from p(x; u0) to p(x; ûN , ŝ) is

Dá( p(x; u0), p(x; ûN , ŝ)) � 1
2
gab(u0)~ua~ub � 1

2
gIJ (u0) ŝ I ŝ J � 1

2
Ã
á

abc(u0)� á

3
Tabc(u0)

� �
~ua~ub~uc

� [1
2
(Ã
á

abI (u0)� 2Ã
á

aIb(u0))� áTabI (u0)]~ua~ubŝ I

� Kabcd(u0)~ua~ub~uc~ud � op(Nÿ2),

where ~u � ûN ÿ u0 and

Kabcd � 1

24

�
(áÿ 3)(áÿ 5)

4

�
@a p @b p @c p @d p

p3
ì dx� áÿ 3

2

�
@a@b p @c p @d p

p2
ì dx [6]

�
�
@a@b@c p @d p

p
ì dx [4]�

�
@a@b p @c@d p

p
ì dx [3]

�
: (7)

The brackets [ ] refers to the sum of a number of different terms obtained by permutation of

free indices, e.g.

@a@b p @ c@d p [3] � @a@b p @c@d p� @a@c p @b@d p� @a@d p @b@c p:

The mean value of Dá is

Eu0
fDá( p(x; u0), p(x; ûN , ŝ))g � 1

2
gab(u0)Eu0

[~ua~ub]� 1
2
gIJ (u0)Eu0

[̂s Iŝ J ]

� 1
2
Ã
á

abc(u0)� á

3
Tabc(u0)

� �
Eu0

[~ua~ub~uc]

� (1
2
Ã
á

abI (u0)� Ã
á

aIb(u0)� áTabI (u0))Eu0
[~ua~ubŝ I ]

� Kabcd(u0)Eu0
[~ua~ub~uc~ud]� o(Nÿ2): (8)

The mean squared error of ûN can be written as

Eu0
[~ua~ub] � 1

N
gab � 1

N
@c ûa

bias gbc[2]� Eu0
[(~ua ÿ gac~xc)(~ub ÿ gbd~xd)], (9)

where ~xi � xi ÿ @ iø. We can easily calculate the moments of ~x:

Eu0
[~xi] � 0, Eu0

[~xi~xj] � gij

N
,

Eu0
[~xi~xj~xk] � 1

N 2
Tijk , Eu0

[~xi~xj~xk~xh] � 1

N 2
gijgkh[3]� O(Nÿ3):

(10)
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By using geometrical properties of curved exponential families, it can be shown that

~ua � gab~xb ÿ 1
2
Ã
m
áâa~xá~xâ � 1

N
ua(x)� op(Nÿ1): (11)

Moreover, by (11) and (10),

ûa
bias � ÿ

1

2N
Ã
m

bc
agbc ÿ 1

2N
H
m

kë
agkë � 1

N
ua � o(Nÿ1), (12)

where u � u(Eu0
(x)). If we substitute (11) and (12) in (9), we can ®nally write

Eu0
[~ua~ub] � 1

N
gab ÿ 1

2N2
gcb@ c(Ã

m

de
agde)[2]ÿ 1

2N 2
gcb@c(H

m

kë
agkë)[2]� 1

N 2
gcb @cua [2]

� 1

4N2
(Ã

m

cd
agcd � H

m

kë
agkë)(Ã

m

ef
bgef � H

m

ìí
bgìí)� 1

2N2
Ã
m

cd
a Ã

m

ef
bgcegdf

� 1

2N2
(H

m
këa H

m
ìíb gkì gëí � 2 H

e
ack H

e
bdë gcd gkë)

� 1

N2
uaub ÿ 1

2N2
ua Ã

m

cd
bgcd[2]ÿ 1

2N2
ua H

m

kë
b gkë[2]� o(Nÿ2): (13)

By (4), we also have that

Eu0
[̂s Iŝ J ] � 1

N2
s Is J � o(Nÿ2), (14)

where s � s(Eu0
(x)). By (11) and (10),

Eu0
[~ua~ub~uc] � 1

N 2
(T abc ÿ 1

2
Ã
m
áâa gbcgáâ[3]ÿ Ã

m
abc[3]� gabuc[3])� o(Nÿ2), (15)

Eu0
[~ua~ubŝ I ] � 1

N 2
gabs I � o(Nÿ2) (16)

and

Eu0
[~ua~ub~uc~ud] � 1

N2
gabgcd[3]� o(Nÿ2): (17)

We can now use (13)±(17) and (7) to calculate each term of (8). With some further

calculations we obtain the result. u

From (6) we can obtain a decomposition of the average á divergence from the true

distribution to any predictive one, in two parts:

Eu0
fDá( p(x; u0), p(x; ûN (x), ŝ(x)))g � Eu0

fDá( p(x; u0), p(x; ûN (x)))g

� 1

2N2
(gIJs Is J ÿ H

á

abI gabs I )� o(Nÿ2): (18)

The ®rst term in (18) depends on the choice of the estimative distribution and the other on
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the shift orthogonal to the model P . It is well known that the problem of choosing a second-

order ef®cient estimator ûN (x) has not, in general, a unique solution. On the other hand the

following theorem solves the problem of the choice of the optimal shift orthogonal to the

model.

Theorem 3.2. The optimal choice of ŝ I (x), with respect to an á divergence, is given, up to

order Nÿ1, by

ŝI
opt(x) � 1

2N
H
á

ab
I (ûN (x))gab(ûN (x)), (19)

where ûN (x) is any asymptotically ef®cient estimator.

Proof. It is easy to see, by ®nding the derivative of (18) with respect to s, that the minimum

value of the asymptotic risk corresponds to

s I
opt � 1

2
H
á

ab
I gab:

The result follows by (4). u

Let us now de®ne, for a, b � 1, . . . , m,

hab � =
á

(H )
@a lá

@b lá ÿ =
á

@a lá @b lá

� p(1ÿá)=2 @a@b l � 1ÿ á

2
@a l @b l � 1� á

2
gab ÿ Ã

á

ab
c @c l

� �
:

(20)

Vectors hab are, by de®nition orthogonal to the original model P . Moreover they belong to

Hu. The following theorem explains the important role that they play in our analysis.

Theorem 3.3. The difference in average á divergence from the true distribution, between the

estimative distribution p(x; ûN (x)) and the optimal predictive distribution p(x; ûN (x),

ŝopt(x)), is maximal if and only if the vector gabhab belongs to the linear space spanned by the

hI . In this case, the optimal predictive distribution is

p(x; ûN , ŝopt) � p(x; ûN ) 1� 1

2N
gab @a@b l � 1ÿ á

2
@a l @b l � 1� á

2
gab ÿ Ã

á

ab
c @ c l

� �� �
� op(Nÿ1): (21)

Proof. By (20) and the de®nition of H
á

abI , we have that

hhab, hIi � h@a@b lá � 1� á

2
p(1ÿá)=2 gab ÿ Ã

á

ab
c @c lá, hI i � H

á

abI : (22)

By substituting (19) in (18),
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Eu0
fDá( p(x; u0), p(x; ûN (x)))g ÿ Eu0

fDá( p(x; u0), p(x; ûN (x), ŝopt(x)))g

� 1

8N 2
i H

á

abI gab g IJ@ J lá i2 � o(Nÿ2)

� 1

8N 2
ihgab hab, hIigIJ hJ i2 � o(Nÿ2),

which depends only on the projection of gabhab on the linear space spanned by the hI . Thus,

it is maximal if and only if gabhab is included in this space and its maximal value is

1

8N2
i gabhab i2 � o(Nÿ2): (23)

In this situation, by (19), (22) and (20), we have that

ŝ I
opt hI � 1

2N
H
á

ab
I gabhI

� 1

2N
gabhhab, hIigIJ hJ

� 1

2N
gabhab

� 1

2N
p(1ÿá)=2 gab @a@b l � 1ÿ á

2
@a l @b l � 1� á

2
gab ÿ Ã

á

ab
c @c l

� �
,

(24)

and the result follows by substituting (24) in (3). u

Remark. Including the vector gabhab on the enlarged model allows us to attain the best

improvement on the estimative distribution. For any regular parametric model M containing

P and gabhab we obtain the same optimal predictive distribution. In this sense, (21) gives a

predictive distribution that can be considered optimal among all probability distributions

equivalent to p.

In the case when P itself is a full exponential family, we can write (21) in a simpler

form

p(x; ûN , ŝopt) � p(x; ûN ) 1� 1ÿ á

4N
gab(@a l @b l ÿ gab ÿ Tab

c @c l

� �
� op(Nÿ1)

� p(x; ûN ) 1� 1ÿ á

4N
fgab(xa ÿ @aø)(xb ÿ @bø)ÿ mÿ gabTab

c(xc ÿ @cø)g
� �

� op(Nÿ1): (25)

Note that for á � 1 there is no correction, i.e. we do not move out of the full exponential

model. Moreover, for á � ÿ1 we obtain exactly the same result as Vidoni (1995, p. 858,

equation (3.1)).
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Example 3.1. We consider m-dimensional multivariate distributions N (ì, Im):

p(x; ì) �
Ym

i�1

1

(2ð)1=2
exp fÿ1

2
(xi ÿ ìi)2g,

where ì � (ìi), i � 1, . . . , m, is unknown. We have that

gij(ì) � äij and Ã
á

ijk(ì) � 0,

for all á. Now let x(l), l � 1, . . . , N , be independent of N (ì, lm) and ì̂ � ì̂N (x) be any

estimator for the mean vector ì, where

x � 1

N

XN

l�1

x(l):

By (20),

hij �
1ÿ á

2
p(1ÿá)=2f(xi ÿ ìi)2 ÿ 1g, i � j,

1ÿ á

2
p(1ÿá)=2(xi ÿ ìi)(x j ÿ ì j), i 6� j:

8>><>>:
By (25),

p(x; ì̂, ŝopt) � p(x; ì̂) 1� 1ÿ á

4N

Xm

i�1

f(xi ÿ ì̂i)2 ÿ 1g
 !

� op(Nÿ1)

� 1

(2ð)1=2
1ÿ 1ÿ á

2N

� �1=2

exp ÿ1

2
1ÿ 1ÿ á

2N

� �Xm

i�1

(xi ÿ ì̂i)2

( )
� op(Nÿ1):

We thus have that the optimal predictive distribution can be written in a close form as

N ì̂, 1ÿ 1ÿ á

2N

� �ÿ1

Im

 !
:

For á � ÿ1, it coincides, up to order Nÿ1, with the result of Barndorff-Nielsen and Cox

(1994, p. 318). By (23), we can calculate the difference in average á divergence between the

estimative distribution and the predictive distribution:

1

8N 2
i gijhij i2 � (1ÿ á)2

32N 2

�������� p(1ÿá)=2
Xm

i�1

f(xi ÿ ì̂i)2 ÿ 1g
��������2

� (1ÿ á)2

32N 2

� Xm

i�1

f(xi ÿ ì̂i)2 ÿ 1g
 !2

p dx

� (1ÿ á)2

16N 2
m,
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which does not depend on ì̂, the ef®cient estimator used. Now let ì̂ be the James±Stein

estimator for ì, i.e.

ì̂(x) � 1ÿ (mÿ 2)

�
N
Xm

i�1

(xi)2

 !
x:

Then

ì̂1(x) � lim
N!1

ì̂ � x,

ì(x) � ÿ (mÿ 2)

�Xm

i�1

(xi)2

 !
x

and

ì � ì(ì) � ÿ (mÿ 2)

�Xm

i�1

(ìi)2

 !
ì:

We can use (6) with s � 0 to compare the two estimative distributions obtained respectively

from the maximum-likelihood estimator ì̂mle � x, and the James±Stein estimator:

EìfDá( p(x; ì), p(x; ì̂mle))g ÿ EìfDá( p(x; ì), p(x; ì̂))g

� ÿ 1

2N2
gijì

iì j ÿ 1

N2
@ iì

i � o(Nÿ2)

� 1

2N2
(mÿ 2)2

�Xm

i�1

(ìi)2 � o(Nÿ2):

Remark. Let us consider an f divergence Df as a loss function. Without loss of generality, we

can suppose that f 0(1) � 1. Theorem 3.1 can be easily generalized to this case by putting

á � 2 f -(1)� 3 and by substituting the coef®cient

(áÿ 11)(áÿ 1)

32

of the term

Qabcdgabgcd

N 2

by

â � f (4)(1)ÿ 2 f -(1)ÿ 4

8
:

In fact, in the expansion of Df , the ®rst- and second-order terms remain unchanged. The

coef®cient of the third-order term is
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( f -(1)� 3)

6
TABC � 1

2
Ã
e

ABC ,

and it can be written as

á

3
TABC � 1

2
Ã
á

ABC

with á � 2 f -(1)� 3. The coef®cient â is calculated by

f (4)(1)

8
ÿ á� 1

8
� f (4)(1)ÿ 2 f -(1)ÿ 4

8
:
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