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Consider N particles, which merge into clusters according to the following rule: a cluster of size x

and a cluster of size y merge at (stochastic) rate K(x, y)=N , were K is a speci®ed rate kernel. This

Marcus±Lushnikov model of stochastic coalescence and the underlying deterministic approximation

given by the Smoluchowski coagulation equations have an extensive scienti®c literature. Some

mathematical literature (Kingman's coalescent in population genetics; component sizes in random

graphs) implicitly studies the special cases K(x, y) � 1 and K(x, y) � xy. We attempt a wide-ranging

survey. General kernels are only now starting to be studied rigorously; so many interesting open

problems appear.
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1. Introduction

Models, implicitly or explicitly stochastic, of coalescence (i.e. coagulation, gelation,

aggregation, agglomeration, accretion, etc.) have been studied in many scienti®c disciplines

but have only tangentially appeared in the `̀ applied probability'' literature. This is

paradoxical, in that the `̀ dual'' process of splitting or fragmentation is, in an analogous

mean-®eld model, very close to the classical topic of branching process in applied

probability. The purpose of this survey is to bring the existence of this large body of scienti®c

literature to the attention of theoretical and applied probabilists. We shall provide pointers to

the science literature, outline some of the mathematical results developed therein, comment

on the duality between coalescence and branching processes and pose some mathematical

problems. That an opportunity arises to outline recent work of the author and colleagues is,

of course, purely coincidental.
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1.1. Verbal description of basic model

Clusters with different masses move through space. When two clusters (masses x and y,

say) are suf®ciently close, there is some chance that they merge into a single cluster of

mass x� y. A completely detailed model would incorporate mass, position and velocity (or

diffusive rates) of each cluster, together with the exact rule for coalescence of two clusters.

Such models seem far too complicated for analysis; so a natural ®rst approximation is the

following. We may regard mass x as discrete (x � 1, 2, 3, . . . ; so the cluster consists of x

particles of unit mass) or continuous (0 , x ,1, a real number). Imagine the process to be

spatially stationary in in®nite d-dimensional space, so that by stationarity there exist, at

time t, the densities n(x, t) de®ned as the average number of clusters of mass x per unit

volume in the discrete case, and the densities n(x, t) dx de®ned as the average number of

clusters of mass 2 [x, x� dx] per unit volume in the continuous case. Next, there is a rate

kernel K(x, y) whose interpretation in the discrete setting is as follows. Consider a tagged

cluster of mass x. We assume that the instantaneous rate at which it merges with some

cluster of mass y is proportional to the density n(y, t) of such clusters, and take K(x, y) as

the constant of proportionality. In other words, if we write a coalescence fx, yg ! x� y as

(x, y)! x� y or (y, x)! x� y with equal chance, then

average number of coalescences (x, y)! x� y per unit time per unit volume

� 1
2
n(x, t)n(y, t)K(x, y): (1)

The idea is that the details of the local motion and local coalescence rule, which arise from

the physics of what is being modelled, are subsumed into the rate function. In the

continuous setting there is an obvious analogue of (1): 1
2
n(x, t)n(y, t)K(x, y) dx dy is the

average number of coalescences with masses in (x, x� dx) and (y, y� dy). On the basis of

this, we can write down differential equations (2) and (3) for the densities n(x, t), and this

is the starting point of Section 2. A physicist would call this the `̀ in®nite-volume mean-

®eld theory''.

Next we make some minor comments.

(i) K(x, y) is not a `̀ pure rate'' because it has dimensions volume=time instead of

1=time.

(ii) We may assume K to be symmetric: K(x, y) � K(y, x).

(iii) By scaling time, we can eliminate a multiplicative constant from the kernel; so we

talk about, for example, K(x, y) � xy instead of K(x, y) � cxy for constant c.

(iv) Throughout the paper, time t is always a continuous variable; discrete and

continuous refer to cluster masses.

Table 1 gives examples of kernels used in the physical chemistry literature. The table is

taken from Smit et al. (1994), who cite references to each case. Most of these examples,

and others, have been explained by Drake (1972, Section 4.3). Note that we parametrize the

`̀ size'' of clusters by mass x rather than length l; these kernels are often written in terms of

l / x1=3 instead of x.
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1.2. Why should probabilists care?

Section 2 reviews the deterministic Smoluchowski coagulation equations which formalize (1);

this is the aspect of coalescence which has been most intensely studied in the scienti®c

literature. This aspect is not `̀ probabilistic'', but the remainder of the survey is. Section 3

gives `̀ probabilistic'' interpretations of some deterministic results about the Smoluchowski

coagulation equations, using duality with branching-type processes. However, our main focus

(Sections 4 and 5) is on the `̀ ®nite-volume mean-®eld theory'' of the Marcus±Lushnikov

process. This is a N-particle stochastic model, and we seek to understand its large-N

behaviour. In Section 4 we emphasize the three simplest speci®c kernels K (constant, additive

and multiplicative), for which a rich and fairly explicit theory exists, with connections to

other parts of mathematical probability (Kingman's coalescent, discrete and continuum

random trees; random graphs). Section 5 discusses general kernels, where open problems

outnumber rigorous results.

1.3. Digression: theorem±proof and scienti®c modelling mathematics

To ask `̀ what is known'' in this subject leads inexorably to philosophical issues concerning

pure and applied mathematics. A typical paper (Friedlander and Wang 1966; Ernst 1983;

Wetherill 1990) we cite from the scienti®c literature would be described by a layman as

`̀ mathematics'' rather than `̀ science''; it is devoted to analysis of a mathematical model rather

than to a description of experimental or observational results, although some reference to the

latter is made in motivation and conclusion. I call this scienti®c modelling (SM) mathematics,

as opposed to theorem±proof (TP) mathematics, which is the style of all `̀ pure'' and much of

what is called `̀ applied'' mathematics. In SM mathematics, models may be incompletely or

inconsistently speci®ed; the focus is on obtaining conclusions about the model, allowing

appeals to physical realism, unquanti®ed approximations, and arguments by analogy. In TP

mathematics, one is supposed to have explicit assumptions and conclusions, as well as a

rigorous argument linking them. A lively recent debate on these matters can be found in the

Table 1. Some speci®c kernels (Smit et al. 1994)

K(x, y) Comment

(x1=3 � y1=3)(xÿ1=3 � yÿ1=3) Brownian motion (continuum regime)

(x1=3 � y1=3)2(xÿ1 � yÿ1)1=2 Brownian motion (free molecular regime)

(x1=3 � y1=3)3 Shear (linear velocity pro®le)

(x1=3 � y1=3)7=3 Shear (nonlinear velocity pro®le)

(x1=3 � y1=3)2jx1=3 ÿ y1=3j Gravitational settling

(x1=3 � y1=3)2jx2=3 ÿ y2=3j Inertia and gravitational settling

(xÿ y)2(x� y)ÿ1 Analytic approximation of Berry's kernel

(x� c)(y� c) Condensation and/or branched-chain polymerization

(x1=3 � y1=3)(xy)1=2(x� y)ÿ3=2 Based on kinetic theory
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discussion of Jaffe and Quinn (1993; 1994). Much of this survey deals with issues which have

not been studied systematically as TP mathematics, and our `̀ open problems'' concern proofs

of matters which mostly appear implicitly or explicitly in the SM literature.

1.4. Fields of application

Where possible I cite papers giving an accessible overview of a ®eld, rather than the seminal

paper in a ®eld.

By far the largest application area is physical chemistry.

(i) Aerosols (Drake 1972; Seinfeld 1986), i.e. solid or liquid particles suspended in a gas

(such as smoke, smog, dust; water droplet or snow¯ake formation in clouds).

(ii) Phase separation in liquid mixtures (Anon. 1996)

(iii) Polymerization (Ernst 1983).

The kernels shown in Table 1 arise in such areas. Other areas include the following.

(iv) Astronomy: the formation of large-scale structure in the Universe (Silk and White

1978); the formation of protostellar clusters within galaxies (Silk and Takahashi 1979; Allen

and Bastien 1995); the formation of planets within solar systems (Wetherill 1990).

(v) Biological entities, e.g. algae (Ackleh et al. 1984).

(vi) Bubble swarms (Stewart et al. 1993).

In all these settings, the clusters were physical entities in physical space, and have been

studied as SM mathematics. A different area of application, which has caught the attention

of TP mathematicians, is the following.

(vii) Mathematical population genetics (Tavare 1984).

Here the entities are `̀ lines of descent'', i.e. number of ancestors in past generations of a

sample of genes in the current generation, and the speci®c kernal K(x, y) � 1 arises (Section

4.2). An area of TP mathematics which turns out to be related to our topic is as follows.

(viii) Random graph theory (BollobaÂs 1985) where the speci®c kernel (K(x, y) � xy has

implicitly been studied in great detail (see Section 4.4).

In addition to the SM study of particular physical phenomena, there is a body of

literature (see, for example, van Dongen (1987a) and van Dongen and Ernst (1987a; 1988))

devoted to mathematical study, with varying levels of rigour, of the kinds of model that we

discuss here. When we discuss detailed mathematical results, we shall most often be

referring to that literature. Let us also mention the graduate textbook by van Kampen

(1981) as a standard introduction to SM stochastic processes.

1.5. One speci®c application

In some of the application areas mentioned above, the use of our mean-®eld model would be

regarded as old fashioned; current research focuses on more physically realistic models.
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However, to show that this topic is not completely moribund, we mention recent experimental

work of White and Wiltzius (1995), recounted for laymen by Anon (1996). Certain liquids

(e.g. olive oil and alcohol) mix at high temperatures but separate at low temperatures; how in

detail does separation occur as the temperature is lowered very slowly through the critical

point? At some point, microscopic droplets of one liquid form, but what then? One theory is

that these droplets tend to form, and to dissolve back into the mixture, very quickly, except

that two droplets which form adjacent to each other may merge into one. In this theory the

process of pure droplets is rather like a branching process with immigration; above the

critical temperature this is a subcritical process and the droplets stay small, but below the

critical temperature the process becomes supercritical and a large component very rapidly

forms. An alternative theory is that creation and dissolution of droplets occur comparatively

slowly and that the dominant mechanism is diffusion of droplets, which coalesce when they

meet, and repeated coalescence creates large drops comparatively slowly. This is the

`̀ Brownian motion±continuum regime'' case of our model. White and Wiltzius (1995) give

experimental results showing (at least for a certain very viscous pair of liquids) a better ®t to

the diffusion and coalescence model.

2. Deterministic models

2.1. The Smoluchowski coagulation equations

Equation (1) and its continuous analogue can be rewritten without words as the differential

equations

d

dt
n(x, t) � 1

2

Xxÿ1

y�1

K(y, xÿ y)n(y, t)n(xÿ y, t)ÿ n(x, t)
X1
y�1

K(x, y)n(y, t) (discrete x),

(2)

d

dt
n(x, t) � 1

2

�x

0

K(y, xÿ y)n(y, t)n(xÿ y, t) dyÿ n(x, t)

�1
0

K(x, y)n(y, t) dy (continuous x):

(3)

We shall refer to (2) and (3) jointly as the Smoluchowski coagulation equations. (Note that

the phrase `̀ Smoluchowski equation'' is used in a different context, diffusion under a

potential.) These equations have been studied in great detail in the SM community, and we

outline some of their results. Note that from the verbal description of the model we expect

solutions to have the property that mass density is preserved:

m1(t) �
X1
x�1

xn(x, t) or

�1
0

xn(x, t) dx is constant in t: (4)

We shall also use the cluster density m0(t) and the second moment m2(t) de®ned in the

continuous case as
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m0(t) �
�1

0

n(x, t) dx,

m2(t) �
�1

0

x2 n(x, t) dx:

Clearly m0(t) is decreasing and m2(t) is increasing.

The standard reference is the 1972 de facto monograph by Drake (1972). This cites 250

papers from the SM literature and provides a very clear exposition of both the science

background and the (fairly unsophisticated) mathematics being used at that time. I have not

found any similarly wide-ranging survey of subsequent research. The 1994 monograph by

Dubovskii (1994) focuses narrowly on mathematical issues of existence and uniqueness of

solutions. Snapshots of recent research results and interests are provided by the introductions

to the papers by Smit et al. (1994), Trizac and Hansen (1996) and Sheth and Pitman (1997).

We now give a quick overview of three aspects of the Smoluchowski coagulation

equations: exact solutions, gelation and self-similar solutions.

2.2. Exact solutions

It has long been recognized that three particular kernels K(x, y) are mathematically tractable:

1, x� y and xy. Table 2 gives, for each of these three kernels, a special solution to (2) and

(3). In the discrete case this is the (`̀ obviously unique'') solution with the monodisperse

initial con®guration n(x, 0) � ä1(x); in the continuous case it is a solution arising from

in®nitesimally small initial clusters (where uniqueness is hardly obvious). Some involve the

Borel distribution (Consul 1989, Section 2.7), which for our purposes is best regarded as the

total population size Zë in a Galton±Watson branching process with one progenitor and

Poisson (ë) offspring distribution. Explicitly,

B(ë, x) � P(Zë � x) � (ëx)xÿ1 eÿëx

x!
, x � 1, 2, 3, . . . , 0 < ë < 1: (5)

Table 2. Formulae for n(x, t)

n(x, t)

K(x, y) � 1 K(x, y) � x� y K(x, y) � xy

Discrete 1� t

2

� �ÿ2
t

2� t

� �xÿ1

eÿ t B(1ÿ eÿ t , x) xÿ1 B(t, x)

0 < t ,1 0 < t ,1 0 < t < 1

(Smoluchowski 1916) (Golovin 1963) (McLeod (1962)

Continuous 4tÿ2 eÿ2x= t (2ð)ÿ1=2 eÿ t xÿ3=2 eÿeÿ2 t x=2 (2ð)ÿ1=2xÿ5=2 eÿ t2 x=2

0 , t ,1 ÿ1, t ,1 ÿ1, t , 0

(Schumann 1940)
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We included the conventional attributions of four of these formulae, which have been

rediscovered many times. The remaining two continuous solutions arise by rescaling time in

the corresponding discrete solutions and taking limits as t!1 or t! 1. These continuous

solutions are more implicit than explicit in the SM literature. The continuous x� y solution

has m1(t) � 1 but in®nite cluster density m0(t). The continuous xy solution has both m0(t)

and m1(t) in®nite and is therefore often called `̀ unphysical''; see Section 4.4 for its

interpretation.

There has also been considerable attention paid to the general bilinear kernel

K(x, y) � A� B(x� y)� Cxy, for which some more complicated explicit solutions are

available (Trubnikov 1971; Spouge 1983a,b; van Dongen and Ernst 1984).

2.3. Gelation

Consider the second moment of cluster mass m2(t) � �1
0

x2 n(x, t) dx. Because a coalescence

fx, yg ! x� y increases the sum of squares of masses by 2xy, the continuous Smoluchowski

coagulation equation implies that

d

dt
m2(t) �

��
xyK(x, y)n(x, t)n(y, t) dx dy (6)

and analogously in the discrete case. Now consider the assumption

K(x, y) < k0(1� x� y): (7)

Inserting into (6),

d

dt
m2(t) < k0f2m2(t)m1(t)� m2

1(t)g:

For an initial con®guration with m0(0) and m2(0) ®nite, this becomes (since m0(t) is

decreasing and m1(t) is constant)

d

dt
m2(t) < k0f2m2(t)m1(0)� m2

1(0)g,

implying that m2(t) ,1 for all t ,1.

It is not dif®cult to make this type of argument rigorous. See White (1980) and

Heilmann (1992) for the discrete case, and Dubovskii (1994, Chapters 3 and 4) for the

continuous case (in the more general setting of coagulation and fragmentation), and

extensive references to the literature. The exact results are rather technical in the continuous

case but can be summarized informally as follows.

Principle 1. For a kernel K satisfying (7) and extra technical conditions in the continuous

case, and an initial con®guration n(x, 0) such that

m1(t) � 1, m0(t) ,1, m2(t) ,1, (8)

holds for t � 0, the Smoluchowski coagulation equation has a unique solution, and this

solution satis®es (8) for all 0 < t ,1.
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In contrast, consider the case K(x, y) � xy. Here (6) reduces to

d

dt
m2(t) � (m2(t))2 (9)

in both discrete and continuous cases. Thus in the monodisperse discrete case (n(1, 0) � 1)

we have

m2(t) � (1ÿ t)ÿ1, 0 < t , 1,

while in the continuous case we have

m2(t) � 1

m2(0)
ÿ t

� �ÿ1

, 0 < t ,
1

m2(0)
:

Note that the continuous case special solution in Table 2 has m2(t) � 1=jtj, ÿ1, t , 0,

consistent with (9).

As discussed by numerous workers, this kernel xy is the prototype example where the

process exhibits a phase transition, typically called gelation in the context of coalescence

models. As the reader may know from a casual acquaintance with percolation theory, there

is a tendency in the scienti®c literature to de®ne such concepts via moment behaviour. Thus

one could say gelation occurs, or K is a gelling kernel, if the discrete model with the

monodisperse initial condition has no solution with

m2(t) ,1, 0 < t ,1: (10)

Then one can de®ne a critical time tc as the largest time such that m2(t) ,1 for all t , tc,

and seek, for example, ®rstly proofs that, for discrete and continuous mass, no initial

con®guration has a solution satisfying (10) and secondly estimates of the critical time in

terms of the initial con®guration.

Mathematically, it is more natural to de®ne critical times in terms of existence of solutions

of the Smoluchowski coagulation equations which have the mass-conserving property (4);

Tgel is the largest time such that the discrete model with the monodisperse initial condition

has a solution with m1(t) � 1 for all t , Tgel. The SM literature tends to assume that these

two de®nitions are equivalent. The physical interpretation of gelation is that, after the critical

time, a strictly positive proportion of mass lies in in®nite-mass clusters, the gel. One can

model post-gelation behaviour by explicitly modelling (Ziff 1980) the interaction between the

gel and the sol (®nite-mass clusters), but in this survey we shall only consider pre-gelation

behaviour, except for brief comments on the K(x, y) � xy case in Section 4.4.

For probabilists, the interpretation of gelation in terms of stochastic models is a natural

question, to be discussed in Section 5.2.

In discussing general kernels, we shall often assume that the kernel K is homogeneous

with some exponent ã:

K(cx, cy) � cãK(x, y), 0 , c, x, y ,1: (11)

In fact, one could use a weaker notion of asymptotic homogeneity:

lim
c!1 cÿãK(cx, cy) � K(x, y), 0 , x, y ,1: (12)
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Note that all except one of the kernels in Table 1 is homogeneous, with exponents ÿ1
6
, 0, 1

6
, 7

9
,

1, 4
3
. Principle 1 says that for ã < 1 the kernel is non-gelling. For some time it has been

widely accepted in the SM literature (van Dongen and Ernst 1986; 1988) that for ã. 1 the

kernel is gelling. The ®rst general rigorous result was given only recently by Jeon (1996;

1997), who showed that Tgel ,1 provided that

9ã. 1, 0 , c1, c2 ,1 such that c1(xy)ã=2 < K(x, y) < c2xy:

Moreover it is believed that for ã. 2 the kernel is instantaneously gelling, i.e. Tgel � 0.

Precisely, an argument given by van Dongen (1987b) (rewritten rigorously by Carr and da

Costa (1992) in the discrete case) shows that Tgel � 0 provided that

9ã. 2á. 2 such that xá � yá < K(x, y) < (xy)ã=2 8x, y:

2.4. Self-similarity

Consider the continuous setting, and as above suppose that the kernel K is homogeneous with

some exponent ã. It is natural (Friedlander and Wang 1966) to seek a solution which is self-

similar (also called self-preserving or scaling), in the following sense:

n(x, t) � sÿ2(t)ø
x

s(t)

� �
, (13)

where ø(x) > 0 satis®es �1
0

xø(x) dx � 1: (14)

Here the 1 is a normalization convention. As in (4), we want the mean density
�

xn(x, t) dx to

be constant in time, which explains the sÿ2 term in (13). Of course, the interpretation of (13)

is that clump mass scales with time as s(t).

Following van Dongen and Ernst (1988), here is a brief analysis of self-similarity. By

substituting into (3), routine manipulations show that (13) is a solution provided that

1
2

�x

0

K(y, xÿ y)ø(y)ø(xÿ y) dyÿ ø(x)

�1
0

K(x, y)ø(y) dy � wf2ø(x)� xø9(x)g (15)

for some constant w 6� 0, and we may take s(t) as the solution of

s9(t) � wsã(t): (16)

In fact the integrals may diverge at zero, in which case we simply replace (15) by its

integrated version (the ô � 2 case of (20) later). Solving (16),

s(t) / t1=(1ÿã), ÿ1, ã, 1,

s(t) / ewt, ã � 1:
(17)

The SM literature tends to take for granted the existence and uniqueness (up to scaling) of

solutions of (15) and proceeds to speculations (see Section A.1) on the asymptotic (x! 0,
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x!1) form of ø(x). Apparently nothing has rigorously been proved, outside the realm of

the exact solutions. The solution in Table 2 for K(x, y) � 1 (where ã � 0) is of the form (13)

and (17), with ø(x) � eÿx and s(t) � t=2. The solution for K(x, y) � x� y, where ã � 1, is

also of the form (13) and (17), with ø(x) � (2ð)ÿ1=2xÿ3=2 eÿx=2 and s(t) � e2 t. In this

connection, it has long been known that the two kernels x� y and max(x, y) have no self-

similar solution satisfying (14) and
�1

0
ø(x) dx ,1 (see Drake (1972, Section 6.4) and

Knight (1971) respectively).

If a unique self-similar solution exists, it is natural to expect convergence to self-

similarity from rather general initial con®gurations. See Section 3.1 for a simple proof for

K(x, y) � 1.

It has long been noted by numerical methods that certain of the kernels arising in Table

1 (e.g. K(x, y) � (x1=3 � y1=3)(xÿ1=3 � yÿ1=3) (Friedlander and Wang 1966)) appear to have

self-similar solutions which are roughly log-normal (see Olivier et al. (1992), Vemury et al.

(1994) and Koutzenogii et al. (1996) for recent work). It is sometimes stated in the SM

literature that this is to be expected when large±small coalescences (rather than large±

large) predominate. I have not found any convincing mathematical elaboration of this

assertion; see Section A.4 for further comments.

For the record, let us state explicitly some open problems implicit in this and previous

sections.

Open Problem 1. Consider a homogeneous kernel K with exponent ã < 1. Give rigorous

proofs, under explicitly stated extra hypotheses, that the following hold.

(a) There exists a unique ø satisfying (14) such that (13), (17) is a solution of the

continuous Smoluchowski coagulation equation.

(b) For ã, 1 we have
�1

0
ø(x) dx ,1.

(c) The solution n(x, t) of the discrete Smoluchowski coagulation equation with

monodisperse initial con®guration is asymptotically self-similar, in the sense that

sup
x

����s2(t)n(x, t ÿ t0)ÿ ø
x

s(t)

� �����! 0 as t!1, for some t0: (18)

(d) (18) remains true for initial con®gurations n(x, 0) satisfying speci®ed `̀ not too

spread-out'' conditions, in continuous and discrete space, assuming aperiodicity of n(x, 0)

in the discrete case.

In (18) we have asked for local (as in the local central limit theorem (CLT)) convergence

of densities, but proving the weaker notion of convergence of distributions would be just as

welcome.

For gelling kernels, we can seek self-similarity as t " Tgel. The continuous solution in

Table 2 for K(x, y) � xy can be written as the special case

ø(x) � (2ð)ÿ1=2xÿ5=2 eÿx=2, s(t) � jtjÿ2, ô � 5
2
,

of the general form
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n(x, t) � sÿô(t)ø
x

s(t)

� �
, ÿ1, t , 0: (19)

In this case
�

xø(x) dx � 1, i.e. the mass density is in®nite; so we cannot (as in the non-

gelling case) use conservation of mass density to say ô � 2. Substituting into the

Smoluchowski coagulation equation shows that (19) is a solution provided that it satis®es

the analogue of (15) with ô in place of 2 but, to avoid divergent integrals at zero, we replace

(15) by its integrated version

w

�1
x0

fôxø(x)� x2ø9(x)g dx � ÿ
�x0

0

dx

�1
x0ÿx

dy xK(x, y)ø(x)ø(y): (20)

van Dongen and Ernst (1988) give a non-rigorous analysis of the gelling case, and we

incorporate their conclusions into the following open problem.

Open Problem 2. Consider a homogeneous kernel K with exponent 1 , ã < 2, and suppose

that 0 , Tgel ,1. Give rigorous proofs, under explicitly stated extra hypotheses, that the

following hold.

(a) There is a unique (up to scaling) solution ø of (20), and for this solution

ô � (3� ã)=2. Moreover
�1

0
xø(x) dx � 1 while

�1
0

x2ø(x) dx ,1.

(b) The solution n(x, t) of the discrete Smoluchowski coagulation equation with

monodisperse initial con®guration is asymptotically self-similar as t " Tgel, in the sense

that for some a

n(x, t) � a(Tgel ÿ t)(3�ã)=(1ÿã)ø(x(Tgel ÿ t)2=(ãÿ1)) as t " Tgel, (21)

uniformly on fx(Tgel ÿ t)2=(ãÿ1) . x0g.
(c) (21) remains true for initial con®gurations n(x, 0) satisfying speci®ed `̀ not too

spread-out'' conditions, in continuous and discrete space, assuming aperiodicity of n(x, 0)

in the discrete case, and where Tgel now depends on the initial con®guration.

To connect (b) with (a), the conclusion of (a) implies (by setting up and solving the

equation analogous to (16)) that

n(x, t) � jtj(3�ã)=(1ÿã)ø(xjtj2=(ãÿ1)) (22)

is a self-similar solution of the Smoluchowski coagulation equation.

2.5. Other aspects of the Smoluchowski coagulation equations

(a) For the record, we mention some other aspects of the Smoluchowski coagulation

equations which we shall not pursue in this review.

(i) General polydisperse initial conditions. The solutions presented in Table 2 are the

special solutions. Much of the literature studies solutions of the Smoluchowski coagulation

equations from general (`̀ polydisperse'') initial con®gurations. Some explicit solutions for

the three special kernels in Table 2 and the general bilinear kernel K(x, y) �
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A� B(x� y)� Cxy, under polydisperse initial conditions, have been discussed by Scott

(1968), Drake (1972, Section 6.3), Spouge (1983a,b), Binglin (1987), Treat (1990) and

Shirvani and Roessel (1992). Some discussion of physically reasonable or mathematically

tractable initial con®gurations (e.g. in the continuous setting, the gamma, log-normal or

n(x, 0) � xÿâ, x > x0 densities) in the context of the `̀ applied'' kernels in Table 1 has been

given by Drake (1972, Section 4.5).

(ii) Time to approach self-similarity (Vemury et al. 1994).

(iii) Numerical methods. See Koutzenogii et al. (1996) for references, and Sabelfeld et

al. (1996) for Monte Carlo procedures.

(iv) The inverse problem. How to estimate the rate kernel K from experimental or

observational data (Ackleh et al. 1984, Muralidar and Ramkrishna 1985, Smit et al. 1995).

(b) This paper deals only with `̀ pure coalescing'' models, but much of the scienti®c

literature considers coalescence together with other effects, in particular the following.

(i) Fragmentation (splitting) (Dubovskii 1994).

(ii) Removal of clusters (sedimentation, condensation and crystallization) (Hendriks and

Ziff 1985).

(iii) Continuous addition of new particles (Smit et al. 1994).

In fact, much of the literature we cite relating to existence of solutions of the

Smoluchowski coagulation equations deals with such more general settings. Whittle (1986)

provides a mathematical introduction to reversible mean-®eld models of coalescing and

fragmentation, and Ernst (1983) relates this topic to broader topics in statistical physics.

(c) There has been much study, mostly using Monte Carlo simulation, of fractal structure

of cluster±cluster aggregation models, in the spirit of the well known DLA model of cluster

growth by adding single particles. See Vicsek (1992, Chapter 8) for a survey. In the setting

of the Smoluchowski coagulation equations this possibility has classically been ignored (in

specifying rate kernels, it is often assumed that clusters are spherical), but an assumed

fractal exponent could be built into the kernel.

2.6. Hydrodynamic limits and reaction±diffusion processes

From the viewpoint of TP mathematics, the verbal description of the Smoluchowski

coagulation equations in Section 1.1 is just motivation; we can use the Smoluchowski

coagulation equations as starting point for mathematical analysis, but we have not attempted

to say that they arise as part of a more detailed rigorous stochastic model. To establish these

rigorously as a limit of the type of model in Section 1.1 is a topic called hydrodynamics or

propagation of chaos. Lang and Nguyen (1980) study a model of discrete particles

performing Brownian motion in three dimensions, coalescing when they approach within a

®xed distance, the diffusion rate of clusters being unaffected by cluster size. In an appropriate

limit they justify that the cluster-size distribution does converge to the solution of the

Smoluchowski coagulation equation with K(x, y) � 1. Undoubtedly more general results of

this type can be proved, although there is a conceptual problem. Derivation of speci®c rate
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kernels K often presupposes that physical parameters are within certain ranges; so taking

mathematical limits may not make much sense if we cannot preserve such constraints.

Conversely, there is SM discussion (Jiang and Leyvraz 1993, Trizac and Hansen 1996) of

models in the spirit of Section 1.1 where the Smoluchowski coagulation equations do not

provide satisfactory solutions over time intervals of interest.

A more substantial body of recent mathematical literature concerns hydrodynamic limits

for reaction±diffusion processes, where several types of particle diffuse and interact to

produce new particles, but that work mostly focuses on equilibrium behaviour and on a

®nite number of types (see Section 5.1 for elaboration) and so has a different ¯avour from

our size asymptotics in irreversible coalescence.

3. Stochastic structures encoding solutions of the Smoluchowski
coagulation equations

One answer to the question `̀ what is the relationship between the deterministic Smoluchowski

coagulation equations and stochastic models?'' is to seek the type of limit theorems indicated

in Section 2.6. However, we can pose the question differently: is there any rigorous stochastic

model involving coalescence in which the exact solutions of the Smoluchowski coagulation

equations appear as ergodic averages? It turns out that in ®ve of the six cases in Table 2 there

are special constructions, to be described in Section 3.1. Loosely, these involve replacing the

`̀ physical space'' of Section 1.1 (in which we imagine particle clusters moving) with an

`̀ arti®cial'' spatial structure. In Section 3.2 we discuss duality (via time reversal) between the

deterministic Smoluchowski coagulation equations and deterministic pure fragmentation

equations, which can be interpreted as expectations within branching-type stochastic

processes. This idea of coalescence as the time reversal of splitting is implicit in the special

constructions of Section 3.1 and is used explicitly in Section 3.3 to give a general

constructions for general kernels.

3.1. Special constructions

Construction 1. K(x, y) � 1; continuous (Figure 1).

Take the line L � (ÿ1, 1) as `̀ space''. At each time t create a Poisson point process of

marks on L, with rate r(t), where r(t) . 0 is decreasing with t. Couple the point processes

1 unit

t 5 2

t 5 4

Figure 1. Construction for K(x, y) � 1; continuous.
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as t varies in the natural way; each point present at time t1 remains present at time t2 . t1

with probability r(t2)=r(t1), independently for different points.

At time t there is a process of line segments (between successive marks). Writing

`̀ mass'' for `̀ length'' and `̀ cluster'' for `̀ line segment'', the probability density for mass x

per cluster is r t(x) � r(t) expfÿxr(t)g and the density of mass per unit length of L is

n(x, t) � r2(t) expfÿxr(t)g: (23)

As t increases, a mark disappears at rate ÿr9(t)=r(t); so a tagged cluster of mass x will

merge with a neighbouring cluster of some mass y with rate

2
ÿr9(t)

r(t)
r t(y) � 2

ÿr9(t)

r(t)

n(y, t)

r(t)
:

Here the 2 comes from the two end-points, and we appeal to the fact that adjacent line

segments have independent lengths, as a property of the Poisson process. Choosing

r(t) � 2tÿ1 to solve r9(t) � ÿ1
2
r2(t) makes this rate equal n(y, t). So the n(x, t) satisfy the

continuous Smoluchowski coagulation equation with K(x, y) � 1, and (23) is the density in

Table 2.

Remarks. Here L � (ÿ1, 1) is our `̀ arti®cial space''. Construction 1 describes a stochastic

model with extra structure (an ordering of intervals) and incorporating this extra structure

gives a coalescing model rather different from the Smoluchowski coagulation equation, but

the point is that the `̀ ergodic densities'' n(x, t) in the model do indeed satisfy the

Smoluchowski coagulation equation, even if this is not a priori obvious.

Construction 2. K(x, y) � 1; discrete (Figure 2).

This is the discrete analogue of the previous construction. Put unit mass at each integer

ÿ1, i ,1. Let an edge from i to i� 1 appear at a random time T with P(T . t) �
2=(t � 2) � G(t), say, independently for different edges.

t 5 0

t 5 2

t 5 4

t 5 `

Figure 2. Construction for K(x, y) � 1; discrete.
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At time t a connected cluster has mass x with probability r t(x) �
(1� t=2)ÿ1ft=(t � 2)gxÿ1 and hence the density of mass-x clusters per unit length is

n(x, t) � 1� t

2

� �ÿ2
t

t � 2

� �xÿ1

, x � 1, 2, 3, . . . : (24)

Arguing as above, a tagged cluster of mass x will merge with a neighbouring cluster of some

mass y with rate

2
ÿ(d=dt)P(T . t)

P(T . t)
r t(y) � n(y, t):

So the n(x, t) satisfy the discrete Smoluchowski coagulation equation with K(x, y) � 1, and

(24) is the density in Table 2.

The general solution for K(x, y) � 1 is obtained as follows. We can use the same method

to show that for any initial con®guration (discrete or continuous) with 0 , m1(0) ,1 and

m0(0) � 1 we have asymptotic self-similarity in the following sense:

t

�at

0

n(x, t) dx! 1ÿ eÿa=m1(0) as t!1, 0 , a ,1: (25)

Start at time t � 0 with a stationary renewal process of marks on L � (ÿ1, 1), with inter-

renewal density n(x, 0). Let the marks disappear at independent times T with

P(T . t) � 2=(t � 2) � G(t). At time t the marks form a renewal process with some inter-

renewal distance Lt. Writing the density of Lt as n(x, t)=G(t), the analysis above shows that

n(x, t) satis®es the Smoluchowski coagulation equation. Classical (and easy) results on

thinning of renewal processes (see, for example, Daley and Vere-Jones (1988, Prop. 9.3.1))

imply that G(t)Lt converges in distribution to the exponentialf1=m1(0)g distribution,

establishing (25).

Without this easy probability argument, rather tedious analysis (Kreer and Penrose 1994)

seems needed to prove (25).

Remark. The key feature of these two constructions is that there is an `̀ invariance'' property

(stationarity under shifts of the line) which enables us to de®ne the deterministic quantities

n(x, t) as ergodic averages. The next constructions have more sophisticated invariance

properties, which we shall not attempt to say precisely, but which enable the n(x, t) to be

de®ned rigorously as ergodic averages.

Construction 3. K(x, y) � x� y; discrete (Figure 3).

Take unit mass at positions 0, 1, 2, . . . and connect with edges (i, i� 1). Make each of

these atoms the progenitor of a Galton±Watson branching process with Poisson(1) offspring

distribution, and draw the individuals as unit masses and the parent±child relationships as

edges. This construction gives a random in®nite tree, with root � at position 0, illustrated in

the bottom part of Figure 3. Grimmett (1980) ®rst described this tree and showed that it

arises as a n!1 limit of uniform random n-vertex trees. The ®nite-n property that `̀ the
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tree has the same distribution relative to each vertex'' extends to the limit in®nite tree; see

Aldous (1991a) for one statement of this invariance property. Now regard each edge as

appearing at a random time T with exponential(1) distribution, independently for different

edges. At times 0 , t ,1 we see a con®guration of `̀ clusters'' (®nite trees), rooted at the

vertex nearest the path to in®nity. By invariance, the distribution of cluster size at time t is

the distribution of the cluster rooted at �, given that � is the root of a cluster, and this is

just the size of total population in a Galton±Watson branching process with

Poisson(1ÿ eÿ t) offspring distribution. This total population has mean e t, and so the

density of clusters of size x is

n(x, t) � eÿ t B(1ÿ eÿ t, x), x � 1, 2, 3, . . . : (26)

A computation (Aldous 1997b, Lemma 3.2(b)) shows that the way clusters merge in this

example follows the Smoluchowski coagulation equation with K(x, y) � x� y. Section 4.3

elaborates this construction.

Construction 4. K(x, y) � x� y; continuous.

It is natural to regard Construction 1 as the continuous limit of Construction 2. It is true,

but less obvious, that we can take an analogous continuous limit in Construction 3. Recall

the t � 1 random graph in Construction 3. We viewed each vertex as having mass 1, and

each edge as having length 1. It turns out that the number of vertices within distance d of a

t 5 2

t 5 `

★

★

Figure 3. Construction for K(x, y) � x� y; discrete.
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speci®ed vertex grows as order d2. So, if we rescale by taking each vertex to have mass

1=n and each edge to have length 1=n1=2, then the mass of the region within distance 1 of

a speci®ed point is bounded away from 0 and 1, and we can take a n!1 limit. The

limit is called the self-similar continuum random tree (SSCRT), and has been described

rigorously in Aldous (1991b,c, Section 2.5). Figure 4 illustrates the SSCRT; of course, by

(statistical) self-similarity there are smaller and smaller branches not shown. The lines in

Figure 4 are part of the `̀ skeleton'' of the SSCRT; all the mass is on the `̀ leaves''.

For our purposes here, the SSCRT plays the role that the line L � (ÿ1, 1) plays in

Construction 1. Take the time interval ÿ1, t , 0. At each time t, construct a Poisson

process of marks on the skeleton, with rate jtj per unit length, coupled in the natural way

as t varies. Cutting the SSCRT at these marks splits it into subtrees of ®nite mass; write

n(x, t) for the density of mass-x subtrees. For ®xed t, this is the rescaled limit of

Construction 3 with t9 de®ned via eÿ t9 � eÿ t nÿ1=2. Taking limits in (26) gives

n(x, t) � (2ð)ÿ1=2 eÿ t xÿ3=2 eÿeÿ2 t x=2,

the formula that we recorded in Table 2.

Construction 5. K(x, y) � xy; discrete (Figure 5).

This construction, was used for different purposes by Aldous (1992).

Root

Figure 4. The SSCRT.
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Start with a distinguished edge between vertices ö and ö̂. Let 0 , ôö1 , ôö2 , . . . be the

points of a Poisson (rate 1) point process on R�, create new vertices 1, 2, . . . and create

edges (ö, i) with edge-weights ôöi . Recursively, for each created vertex v let

0 , ôv
1 , ôv

2 , . . . be the points of a Poisson (rate 1) point process on R�, create new

vertices v1, v2, . . . and create edges (v, vi) with edge weights ôv
i . (Figure 5 shows only the

®rst three children and early generations.) Repeat for descendants of ö̂. Finally, give the

distinguished edge a weight chosen from the uniform (Lebesgue) measure on (0, 1). This

construction yields a ó-®nite measure on the space of all edge weights. As explained

rigorously by Aldous (1992), we can view this random object as a n!1 limit of a

process of i.i.d. random edge weights on the complete bipartite graph on 2n vertices, and

the ®nite-n invariance property extends to an invariance property for the limit object; `̀ the

tree has the same distribution relative to each vertex''.

At each time t . 0 we may consider the subgraph consisting of only those edges with

weight of t or less, and let the clusters at time t be the connected components of this

subgraph. Figure 6 illustrates t � 0:75.

The cluster containing a speci®ed vertex at time t < 1 is a Galton±Watson branching

process with Poisson(t) offspring and so has size distribution B(t, x) given by (5). This is

the size biasing of the cluster-size density n(x, t), and so

n(x, t) � xÿ1 B(t, x):
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Figure 5. An in®nite tree.
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For a cluster of size x at time t, as t increases each vertex grows a new edge at rate 1, and so

the rate of merging with some size-y cluster is

xB(t, y) � xyn(y, t):

So the n(x, t) satisfy the discrete Smoluchowski coagulation equation with K(x, y) � xy,

Remark. In contrast with the previous constructions, there seems to be no easy way to take

limits to obtain a construction for the continuous case K(x, y) � xy. Rather sophisticated

ideas are needed (see Section 4.4).

Remark. There is a long history, going back to Flory (1941), of using branching process

models in the theory of polymerization. The idea that certain such models were equivalent to

the Smoluchowski coagulation equation with certain kernels seems to have emerged slowly; a

clear discussion has been given by Ziff (1980). Our three discrete constructions are in the

same spirit as the discussion by Ziff (1980), but that paper has in mind some imprecise

notion of `̀ ensemble of clusters'', while our point is that by using the constructions with ó-

®nite invariant measures we can rigorously de®ne stochastic models where ergodic averages

evolve as the Smoluchowski coagulation equation.

3.2. Dual splitting models

In the spirit of the Smoluchowski coagulation equations for pure coalescence, one can write

down deterministic equations for pure fragmentation. We adopt the continuous setting (the
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Figure 6. Construction for K(x, y) � xy; discrete.
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discrete case is analogous). Consider a splitting kernel S(l; x), 0 , x , l. Assume that a

cluster of mass l splits at rate S(l; x) into two fragments of masses x and l ÿ x, where the

ordering of fx, l ÿ xg is random; so S(l; x) � S(l; l ÿ x). Write as usual n(x, t) dx for the

average number of clusters of mass 2 [x, x� dx] per unit volume. Then the deterministic

pure fragmentation equation is

d

dt
n(l; t) � ÿn(l; t)

� l

0

St(l; x) dx� 2

�1
0

n(l � y; t)St(l � y; l) dy, (27)

where we have more generally allowed time dependence in the splitting kernel.

Consider now the duality formula

n(x, t)n(y, t)Kt(x, y) � 2n(x� y, t)St(x� y; x): (28)

The duality relationship is as follows. If n(x, t) is a solution of the Smoluchowski

coagulation equation with time-dependent kernel Kt, then (reversing the direction of time)

n(x, t) is a solution of (27) for St de®ned at (28), and conversely. As we shall see, duality

typically changes a time-independent kernel to a time-dependent kernel. Table 3 gives the

dual splitting kernels for the special solutions in Table 2. In these examples, the dual splitting

kernel has the form St(l; x) � a(t)S(l; x) and so the time dependence can be removed by a

deterministic time change.

Write b(i) � iiÿ2=i!.
Given a splitting kernel S, there is a natural stochastic model of fragmentation, the

Markovian branching-type process where different clusters fragment independently according

to the rate kernel S. There is a simple connection between the stochastic process and the

deterministic equations (27); the mean frequency of cluster-masses in the stochastic model

evolves exactly as (27). (We mention this because the analogous assertion for pure

coalescence is false; cf. Section 4.1.) The issue of self-similar solutions (clearly analogous to

stable-type structure (Nerman and Jagers 1984) for supercritical branching processes) for

pure fragmentation was studied by Brennan and Durrett (1987). We summarize their results

in Section A.3. An initially promising idea is to use branching process theory with tractable

special splitting kernels to obtain, via the duality relation (28), explicit solutions of the

Smoluchowski coagulation equation for further kernels K, but unfortunately (see (A3)) this

leads to time-dependent kernels. Section A.4 explores this idea further.

Table 3. The dual splitting kernel St(l; x)

St(l; x)

K(x, y) � 1 K(x, y) � x� y K(x, y) � xy

Discrete
2

t(t � 2)

eÿ t

2(1ÿ eÿ t)

x(l ÿ x)b(x)b(l ÿ x)

b(l)

1

2t

x(l ÿ x)b(x)b(l ÿ x)

b(l)

0 < t ,1 0 < t ,1 0 < t < 1

Continuous 2tÿ2 (8ð)ÿ1=2 eÿ t l5=2xÿ3=2(l ÿ x)ÿ3=2 (8ð)ÿ1=2 l5=2xÿ3=2(l ÿ x)ÿ3=2

0 < t ,1 ÿ1, t ,1 ÿ1, t , 0
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3.3. General constructions

In this section we outline one approach to the problem of de®ning abstract probabilistic

structures which encode the solutions of the Smoluchowski coagulation equation for a general

kernel K. This approach is closely analogous to the theory (Aldous 1991a) of asymptotic

fringe distributions. We consider the discrete case, and abstract the idea of Construction 2.

Figure 7 illustrates the construction, where we imagine the initial t � 0 con®guration having

a single mass-1 particle at each integer position ÿ1, x ,1. At a typical time t we see

clusters, each cluster being an interval of particles (pictured as the particles between

successive vertical lines). Mathematically, such a process is succinctly represented by a

sequence (îi; ÿ1, i ,1), where îi . 0 indicates the time at which the cluster ending with

particle i coalesces with the cluster beginning with particle i� 1.

It can be shown that such a construction is possible, for 0 < t , Tgel, with the following

property.

(�) At each time t the left end-points of clusters form a stationary ergodic process with

cluster-size distribution m1(t)n(x, t).

In other words, the chance that particle 0 is the ®rst particle in a size-x cluster is n(x, t).

To outline the construction, ®x t0 and create at time t0 a stationary renewal process with

inter-renewal distribution m1(t0)n(x, t0). Then run time backwards from t0 to 0, and split

each cluster according to the dual splitting kernel (28), independently for each cluster. This

de®nes a process with property (�) on 0 < t < t0, representable as (î( t0)
i ), where î( t0)

i � 1
if i is the ®nal particle in a time-t0 cluster, and otherwise is the time at which particles i

and i� 1 are split into distinct clusters. We now let t0 !1 and de®ne (îi) as a

subsequential weak limit of the (î( t0)
i ). It is not hard to check that property (�) remains true

in the limit.

One might hope that we could arrange that the left end-points of the clusters formed a

renewal process at each time t, but the following argument shows that this is impossible in

general. Consider the kernel with K(1, 2) . 0 and K(x, y) � 0 otherwise. Take an initial

con®guration with clusters of masses 1 and 2. Suppose that this process was represented as

25 24 23 22 21 0 1 2 3 4 5 6 7 8 9

Time

t

t 5 0

Figure 7. A general construction.
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a renewal process at time 0 and at time 1. Then at time 1 there would be clusters of

masses 1, 2 and 3, but there could be no successive clusters of masses (1, 2); so it could

not be a renewal process.

We pictured the clusters as linear chains, but it is perhaps more natural to regard them as

trees by specifying that, when two clusters merge, we pick at random (uniformly) one

vertex from each cluster, and join these two vertices by an edge. Thus the cluster containing

vertex 0 in Figure 7 merges just after time t with the cluster shown on its left, and this

merger might create a new edge $ as in Figure 8.

We may de®ne the stochastic process (T (t); t > 0) where T (t) is the tree containing

vertex 0 at time t. This provides a rigorous formalization of the notion of `̀ the history of

coalescences containing a typical particle in the Smoluchowski coagulation equation''. A

detailed study of the cases K(x, y) � x� y and xy was made by Aldous and Pitman

(1997b).

The construction extends without essential change to the continuous setting. Here the

property (�) becomes as follows.

(�) At each time t there is a stationary ergodic point process on the line, in which the

inter-point distances have density m1(t)n(x, t).

The tree process T (t) becomes a process of `̀ continuum trees'' in the spirit of

Construction 4.

4. Stochastic models: the ®nite-volume setting

4.1. The stochastic coalescent

The Smoluchowski coagulation equations provide an in®nite-volume mean-®eld description of

coalescence in terms of deterministic equations. The corresponding ®nite-volume mean-®eld

description is intrinisically stochastic. In the discrete setting, ®x N and consider a state space

25 24 26 23 22

27

28

21

0

1

Figure 8. The general construction, pictured as a tree.
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consisting of unordered (multi)sets x � fx1, . . . , xmg where the xi are positive integers

summing to N. So x represents a con®guration with clusters of masses x1, . . . , xm. We can

now de®ne a continuous-time ®nite-state Markov chain by declaring that

each pair fxi, xjg, j 6� i coalesces into a cluster of mass xi � xj at rate
K(xi, xj)

N
: (29)

The elementary way to formalize this idea is by taking the state space as n �
(n1, n2, . . . , nN ), where nx represents the number of mass-x clusters and

P
xnx � N . Then

the transitions are of the form

(n1, . . . , nN )!
(n1, . . . , niÿ1, ni ÿ 1, ni�1, . . . , n jÿ1, n j ÿ 1, n j�1, . . . , ni� jÿ1, ni� j � 1, ni� j�1, . . .)

with rate K(i, j)ninj=N . This model was perhaps ®rst introduced by Marcus (1968) and re-

introduced by several workers (Gillespie 1972; Tanaka and Nakazawa 1993) and in particular

by Lushnikov (1978a) as a model of gelation. We call it the Marcus±Lushnikov process

ML(N )(t). The state of this process at time t may be written in two equivalent ways. We may

write ML(N )(x, t) for the (random) number of mass-x clusters. Alternatively, we may write

ML
(N)
i (t) for the mass of the ith largest cluster. The Marcus±Lushnikov process is the natural

stochastic analogue of the discrete Smoluchowski coagulation equation, when we study only

®nite-sized clusters (see Section 5.1).

For developing a mathematical theory, a slightly different formulation is more convenient.

For any model of coalescence with ®nite total mass, the total mass is conserved over time;

so we may rescale and assume the total mass equals 1. So consider the state space

consisting of ®nite or in®nite con®gurations x � fxig with x1 > x2 >. . . . 0 and
P

ixi � 1.

De®ne the stochastic coalescent with kernel K to be the Markov process X (t) �
(X i(t); i > 1) on this state space whose time dynamics are described informally by

each pair fxi, xjg, j 6� i coalesces into a cluster of mass xi � xj at rate K(xi, xj): (30)

This differs from (29) in that the coalescence rate is does not depend on N, but note that for a

homogeneous kernel, i.e.

K(cx, cy) � cãK(x, y), 0 , c, x, y ,1,

the Marcus±Lushnikov process and the stochastic coalescent are the same process up to

time±space rescaling:

Xi(t) � Nÿ1 ML
(N )
i (tN 1ÿã): (31)

Thus for a homogeneous kernel, whereas the Marcus±Lushnikov process is formally a

different process with different state space for different N, (31) permits rephrasing in terms of

a single process with a single state space, the stochastic coalescent. In particular, the

stochastic coalescent provides a natural setting for studying N !1 asymptotics of Marcus±

Lushnikov-type processes. Our discussion deals with homogeneous kernels for simplicity, but

one expects the same asymptotic behaviour to hold for asymptotically homogeneous (12)

kernels, using the limit K to specify the stochastic coalescent.
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We defer to Section 5.4 technical issues in making precise the de®nition of stochastic

coalescent. In the following three sections we discuss, from the modern theoretical

stochastic processes viewpoint, the standard stochastic coalescent for the three special

kernels 1, x� y and xy (standard as in `̀ standard Brownian motion'', i.e. a scaling

convention). These standard stochastic coalescents have constructions closely related to

those of Section 3, and appear naturally as N !1 limits of the Marcus±Lushnikov

processes. The SM literature on Marcus±Lushnikov processes emphasizes combinatorial

methods, brie¯y reviewed in Section 4.5.

4.2. Kingman's coalescent

We start by giving a construction. Take independent exponential, rate
k

2

� �
, RVs (îk , k > 2).

Since

E
X1
k�2

îk �
X1
k�2

1

�
k

2

� �( )
� 2

we can de®ne random times 0 , . . . , ô3 , ô2 , ô1 ,1 by ô j �
P1

k� j�1îk. Take (Uj, j > 1)

independent uniform on (0, 1). For each j, draw a vertical line from (Uj, ô j) down to (Uj, 0)

(Figure 9). The vertical axis shows time. At time t the construction splits the unit interval

(0, 1) into j subintervals, where j is de®ned by ô j , t , ô jÿ1, and where the end-points of the

subintervals are f0, 1, U1, . . . , U jÿ1g. Figure 9 illustrates t � 0:5, with ®ve subintervals.

Writing X (t) for the lengths of these subintervals, the process X is a version of the stochastic

coalescent with K(x, y) � 1, and this version is called Kingman's coalescent. The

construction goes back to Kingman (1982). Kingman's coalescent has been used extensively

τ1

τ2

τ3

τ5

τ10

t 5 0.5

0 1

Figure 9. Kingman's coalescent.
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in mathematical population genetics (Tavare 1984), where the emphasis is on the number of

`̀ lines of descent'' (clusters, in our terminology) and mutations along lines of descent. This

emphasis is rather different from our emphasis on masses of clusters.

It is easy to show (see Section A.5) that Kingman's coalescent is the unique version of

the K(x, y) � 1 stochastic coalescent such that

X 1(t) � max
i

X i(t)! 0 a:s: as t # 0: (32)

In our terminology, (32) singles out X as the standard K(x, y) � 1 stochastic coalescent. The

connection with the K(x, y) � 1 Marcus±Lushnikov process is that, if the initial distributions

satisfy

Nÿ1 ML
(N )
1 (0)!d 0 as N !1, (33)

then

(Nÿ1 ML(N)(Nt), 0 , t ,1) !d (X(t), 0 , t ,1) (34)

in the natural sense of weak convergence of l1-valued processes on the time interval (0, 1).

Note that

Eô j �
X1

k� j�1

1

�
k

2

� �( )
� 2

j
, var ô j �

X1
k� j�1

1

�
k

2

� �2
( )

� 4

3 j3
,

and that ô j satis®es the assumptions of the (non-identically distributed) CLT for independent

sums. As in the CLT for renewal processes, it follows that N (t), the number of clusters at

time t, is asymptotically normal(2=t, 2=3t) as t # 0. From this, and standard results about

i.i.d. uniform order statistics, it is routine to derive various t # 0 asymptotics for Kingman's

coalescent. Writing C(x, t) for the number of clusters of mass x or less at time t,

sup
0<x,1

����C(xt, t)ÿ 2

t
(1ÿ eÿ2x)

����! 0 a:s: (35)

The ®rst-order N !1 asymptotics of the K(x, y) � 1 Marcus±Lushnikov process under

initial assumption (33) are now rather clear. For ®xed t . 0, (34) implies that for large N the

Marcus±Lushnikov process at time Nt has a ®nite number of clusters with masses distributed

approximately as N X (t), and (35) implies that, if tN # 0 suf®ciently slowly, then ML(N )(NtN )

consists of about 2=tN clusters with empirical mass distribution approximately exponential

(mean, NtN=2). How fast can tN decrease, for this to remain true? It is not hard to see that

the following natural condition is suf®cient: the proportion of mass initially in massÙ(NtN )

clusters is negligible, i.e.

Nÿ1
X

x.ENt N

ML(N)(x, 0)!p 0, each E. 0:

It is interesting to observe that a Gaussian limit for ¯uctuations of cluster frequencies

of X (t) as t # 0 follows from classical results. Recall that Brownian bridge B0(:) appears
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as a limit of empirical distributions for i.i.d. RVs (çi) with continuous distribution function

F:

Nÿ1=2
XN

i�1

1(çi<x) ÿ NF(x); x > 0

 !
!d (B0(F(x)); x > 0):

Now the N spacings obtained from N ÿ 1 independent uniform points on [0, 1] are

distributed as (ç1=S, . . . , çN=S), where the (çi) are independent exponential(1) and S �PN
i�1çi. It follows that

A(x, N ) � number of spacings of length < x

satis®es

Nÿ1=2 A
x

N
, N

� �
ÿ N (1ÿ eÿx)

� �
!d B0(1ÿ eÿx):

This is classical (see, for example, Pyke (1965, Theorem 6.4)). Since C(x, t) � A(x, N (t)),

we ®nd that

t

2

� �1=2

C(xt, t)ÿ 2

t
(1ÿ eÿ2x)

� �
!d B0(1ÿ eÿ2x)� 2

3

� �1=2

(1ÿ eÿ2x)Z, (36)

where Z is standard normal, independent of B0.

Variance calculations of this type for the constant-rate stochastic coalescent have been

made by van Dongen (1987a) and Donnelly and Simons (1993), only the latter making the

explicit connection with Kingman's coalescent.

There is a simple connection between Kingman's coalescent and Construction 1 (which

exhibited the solution of the continuous Smoluchowski coagulation equation for K(x, y) � 1

via a process of coalescing intervals on the in®nite line). Given Kingman's construction,

rescale the unit interval [0, 1] to the interval [ÿm=2, m=2] and rescale the times (ô j) to

(mô j). Then the m!1 limit is the process in Construction 2. Of course, the appearance

of the exponential distribution in (35) ®ts in with its appearance as the self-similar solution

of the continuous Smoluchowski coagulation equation. See (49) for the corresponding

conjecture for general non-gelling kernels.

4.3. The additive coalescent and the continuum random tree

Cayley's formula (see, for example, van Lint and Wilson (1992, Chapter 2)) says there are

N Nÿ2 trees on N labelled vertices. Pick such a tree T1 at random. To the edges e of T1
attach independent exponential(1) RVs îe. Write F(t) for the forest obtained from T1 by

retaining only the edges e with îe < t. Write Y (N)(t) for the vector of sizes of the trees

comprising F(t). It can be shown that (Y (N )(t); 0 < t ,1) is the Marcus±Lushnikov

process associated with the additive kernel K(x, y) � x� y, with monodisperse initial

conditions. This construction was apparently ®rst explicitly given by Pitman (1996), although

various formulae associated with it had previously been developed in the combinatorial
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literature (Yao 1976; Pavlov 1977) and the SM literature (Hendriks et al. 1985). Here are two

examples of simple formulae. The number D(N )(t) of clusters satis®es

D(N )(t)ÿ 1�d binomial(N ÿ 1, eÿ t):

The cluster sizes (in random order) of Y (N )(t), given D(N)(t) � d, are distributed as

(çi; 1 < i < djPd
i�1çi � N ), where the (çi) are i.i.d. Borel(1).

Construction 3 was the discrete N !1 limit of this construction, and we saw in (26) how

the solution of the discrete Smoluchowski coagulation equation for K(x, y) � x� y arises in

this limit. We can make a continuous-space construction analogous to Construction 4. That is,

take the construction above and rescale by taking each vertex to have mass 1=N and each

edge to have length 1=N 1=2. The N !1 limit is called the continuum random tree (CRT)

and has been described rigorously by Aldous (1991c, 1993). (In the SSCRT of Construction 4

the root is attached to an in®nite baseline; the CRT here is compact, with total mass 1.) Now,

similarly to Construction 4, at each time ÿ1, t ,1 construct a Poisson process of marks

on the skeleton, with rate eÿ t per unit length, coupled in the natural way as t varies. Figure

10 illustrates the CRT and the marks, for some ®xed t. Cutting the CRT at these marks splits

it into subtrees of ®nite mass; write X (t) for the vector of masses of these subtrees at time t.

Then (as we expect by analogy with the discrete case above) the process

(X (t), ÿ1, t ,1) evolves as the stochastic coalescent for K(x, y) � x� y. This process,

the standard additive coalescent, has been studied in detail by Aldous and Pitman (1997a).

4.4. Random graphs and the multiplicative coalescent

In the random graph model G (N , p), there are N vertices, and each of the
N

2

� �
possible

edges is present with probability p, independently for different edges. Study of this model

goes back to ErdoÍs and ReÂnyi (1960; 1961), and the monograph by BollobaÂs (1985) surveys

results up to 1984. Sizes of the connected components have been a classical topic of study. A

moment's thought shows that for the kernel K(x, y) � xy the Marcus±Lushnikov process

ML(N )(t) with monodisperse initial con®guration is exactly the process of component sizes in

G (N , 1ÿ eÿ t=N ). Recall from Table 2 that n(x, t) � xÿ1 B(t, x) is the solution of the

Smoluchowski coagulation equation for K(x, y) � xy in the discrete setting. The fact that

expectations behave like the deterministic solution in the pre-gelation interval, i.e. that

Nÿ1EML(N )(x, t)(t)! n(x, t) as N !1 for fixed x > 1, t , 1 (37)

is classical (ErdoÍs and ReÂnyi 1960) and easy (relative to a given vertex, the random graph

looks locally like a Galton±Watson branching process). Barbour (1982) proved the CLT; for

®xed x,

Nÿ1=2fML(N )(x, t)(t)ÿ Nn(x, t)g!d normal[0, n(x, t)f1� (t ÿ 1)x2 n(x, t)g] (38)

and Pittel (1990) established joint convergence to the mean-zero Gaussian process with

covariances
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(t ÿ 1)xyn(x, t)n(y, t), y 6� x: (39)

(Note that these results are stated in the literature for tree components, but for t , 1 only

O(1) vertices are outside tree components (BollobaÂs 1985, p. 97).) Remarkably, van Dongen

and Ernst (1987a) had previously given (39) and its extension to two times (t1, t2), in the

context of the multiplicative Marcus±Lushnikov process.

Figure 10. The CRT and the additive coalescent.
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It is interesting to probe more deeply into the behaviour of the stochastic model around the

`̀ critical time'' corresponding to the gelation time Tgel � 1 in the deterministic model. Rather

detailed rigorous results are known; see Janson et al. (1993) for recent exhaustive analysis.

We give a probabilistic discussion, following Aldous (1997a). Recall that ML
(N )
1 (t) is the

mass of the largest cluster in the Marcus±Lushnikov process, that is the size of the largest

component of G (N , 1ÿ eÿ t=N ). It is classical (ErdoÍs and ReÂnyi 1960, BollobaÂs 1985) that

ML
(N )
1 (t) �

È(log N ) , t , 1,

È(N2=3) , t � 1,

È(N ) , t . 1:

8<:
The next step is the idea that the giant component emerges over the time interval

1�È(Nÿ1=3). That is, for large s, at time t � 1ÿ s=N 1=3 there are numerous components

whose sizes are small constants times N 2=3, and no larger components, whereas at time

t � 1� s=N 1=3 there is a unique component whose size is a large multiple of N2=3, and other

components whose sizes are small constants times N2=3. BollobaÂs (1985, Chapter 6) develops

some aspects of this idea, via s!1 asymptotics. It was subsequently realized that it is

natural to study emergence of the giant component by studying the process

(Z N (t): ÿ1, t ,1), where Z N (t) is de®ned to be Nÿ2=3 times the vector of component

sizes of G (N , Nÿ1 � tNÿ4=3). Aside from a negligible time change, Z N (t) evolves as the

stochastic coalescent, started at time ÿNÿ1=3 with N clusters of masses Nÿ2=3 each. We can

now let N !1, and it turns out (Aldous 1997a) that

Z N!d Z, (40)

where the limit process (Z(t); ÿ1, t ,1) is de®ned to be the standard multiplicative

coalescent. The novel feature is that the total mass
P

i Z(t, i) is in®nite. As shown by Aldous

(1997a), the natural state space is the space l2 of con®gurations x � (xi) with
P

ix
2
i ,1. As

remarked in Section 3.1, we do not have any simple `̀ process'' explanation of the special

solution in Table 2 for the continuous kernel K(x, y) � xy

n(x, t) � (2ð)ÿ1=2xÿ5=2 exp ÿ t2x

2

� �
: (41)

So it is surprising that there is a process description of the standard multiplicative coalescent Z,

or at least of its distribution Z(t) at ®xed time t. Take (B(s); 0 < s ,1) to be inhomogeneous

re¯ecting Brownian motion on [0, 1) with drift rate t ÿ s at time s, and with B(0) � 0. Then

the vector of lengths of excursions of B from 0 is distributed as Z(t) (Aldous 1997a). One

simple corollary of this representation applies when t is large and positive. There, the process

B(s) initially stays close to the deterministic path b(s) � tsÿ 1
2
s2, over 0 , s , 2t, implying

that the `̀ giant component'' of Z(t) has mass approximately 2t. The connection between the

standard multiplicative coalescent and the special solution (41) is as follows. Write

~n(x, t) dx � E(number of clusters of Z(t) with mass 2 [x, x� dx]):

Then, as t! ÿ1, the function ~n(:, t) approaches n(:, t) in the following sense: if xa(t) is

de®ned by
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�1
xa( t)

n(x, t) x � a,

then �1
xa( t)

~n(x, t) dx! a: (42)

In particular,

max
i

Zi(t)! 0 a:s: as t! ÿ1: (43)

It is natural to guess that the standard multiplicative coalescent is in some sense the

`̀ essentially unique'' version of the multiplicative coalescent on ÿ1, t ,1 satisfying (43):

the precise result has been proved by Aldous and Limic (1997).

The convergence (40) extends to polydisperse Marcus±Lushnikov processes as follows.

For r � 2, 3 write ó r(N ) �PifML
(N )
i (0)gr, and write c(N ) � fó3(N )g2=3=fó2(N )g2. The

appropriate scaling is

Z N (t) � c1=2(N )ML(N) N c(N )t � 1

ó2(N )

� �� �
,

and Proposition 4 of Aldous (1997a) shows that the conclusion

Z N!d Z

remains valid provided that

ML
(N)
1 (0) � ofó 1=3

3 (N )g: (44)

Note that in the case where ML(N )(x, 0) � Nr(x) for some r(x) not depending on N, with

r(x) � xÿâ�o(1) as x!1, the condition â. 4 is enough to imply (44).

Turning to the SM literature, the solution (41) of the Smoluchowski coagulation equation

is usually called `̀ unphysical'' because the total mass density m1(t) is in®nite. The

description of the multiplicative coalescent illuminates what is going on; we are measuring

mass relative to the size of large clusters at the critical time, rather than in absolute terms.

The Smoluchowski coagulation equations with K(x, y) � xy have been studied many

times in the SM literature. In particular, Ziff et al. (1983) and Ernst et al. (1984) observe

that (41) arises as a `̀ scaling limit'' as t " 1 for the monodisperse initial conditions and

discuss the extent to which this remains true for more general initial conditions, and also

discuss different models of post-gelation behaviour. McLeod (1964) showed that with the

initial con®guration n(x, 0) � á eÿáx the continuous Smoluchowski coagulation equation has

the explicit solution

n(x, t) � á eÿ( t�á)x I1(2xá1=2x1=2)

x2 t1=2

on 0 < t < á, where I1 is the modi®ed Bessel function. In the stochastic setting, van Dongen

and Ernst (1987a) gave a detailed study of the multiplicative Marcus±Lushnikov process.
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They derived the variance±covariance formulae (38) and (39) and also (p. 911) gave a

heuristic discussion of the 1�È(Nÿ1=3) transition, from the viewpoint of the breakdown in

the Gaussian approximation. It is not clear exactly when the explicit connection with random

graph theory was made in the SM literature: Buffet and PuleÂ (1991) gave one account in

1991. Conversely, even present-day accounts of random graphs (Janson et al. 1993) made no

mention of the Smoluchowski coagulation equation connection.

Let us brie¯y discuss post-gelation behaviour. For t . 1, the deterministic quantities

n(x, t) derived as the limit (37) densities of size-x components in the random graph model

are no longer solutions of the Smoluchowski coagulation equation, because in the random

graph model the gel and the sol are interacting. In physics terminology, these n(x, t) arise

in a Flory model of gelation. The Smoluchowski coagulation equation itself represents the

Stockmayer model in which sol and gel do not interact, and in this case the post-gelation

solution has the surprisingly simple form

n(x, t) � n(x, 1)tÿ1, t > 1,

which goes back to Stockmayer (1943). This has not been studied in the random graphs

literature, but a probabilistic elaboration has been given by Aldous (1997b, Section 3.7).

4.5. Combinatorial approaches

A different approach to the monodisperse Marcus±Lushnikov process is to seek to write

down and to exploit a combinatorial expression for the exact distribution p(n; t) �
P(ML(N )(x, t) � nx, x > 1). For the multiplicative kernel (i.e. the classical random graph

process) this is easy because G (N , 1ÿ eÿ t=N ) has an intrinsic description which does not

involve analysing time evolution, and we obtain

p(n; t) � N !
Y

k

1

nk !

q(k, 1ÿ eÿ t=N )eÿ tk(Nÿk)=N

k!

� �n k

,

where q(k, p) is the chance that G (k, p) is connected, and q(k, p) is determined by an

elementary recurrence formula (BollobaÂs 1985, Exercise 7.1).

Similarly, there is a discrete reformulation of the construction of Kingman's coalescent

which enables one to write down a partition function (Bayewitz et al. 1974).

In the additive case, such results go back to Lushnikov (1978b) and have two somewhat

different extensions. Hendriks et al. (1985) gave an expression for the partition function for

the kernel K(x, y) � A� B(x� y), and implicit in the work of Lushnikov (1978b) (see

Hendriks et al. (1985) and Buffet and PuleÂ (1990) for clearer expositions) is the following

result.

Lemma 1. Consider the Marcus±Lushnikov process with K(x, y) � xf (y)� yf (x) for some f,

with monodisperse initial con®guration. Then

p(n; t) � N !
Y

k

(bk(t))n k

nk !
,
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where (bk(t)) are the solutions of the differential equations

d

dt
bk(t) �

Xkÿ1

i�1

if (k ÿ i)bi(t)bkÿi(t)ÿ (N ÿ k) f (k)bk(t)

with bk(0) � 1(k�1).

van Dongen (1987a) and van Dongen and Ernst (1987a) gave the most detailed SM

treatment of the special cases of the stochastic coalescent (see also Tanaka and Nagazawa

(1993; 1994).

5. Stochastic coalescence with general kernels

In Sections 4.2±4.4 we saw that the behaviour of the Marcus±Lushnikov process and the

stochastic coalescent for the three special kernels is mostly well understood. In contrast, very

little is rigorously known about general kernels. Our main purpose in this section is to pose

explicit open problems for general kernels.

5.1. The weak law of large numbers for the Marcus±Lushnikov process

In looking at the SM literature from a TP viewpoint, perhaps the most striking feature is the

lack of attention paid to the fundamental `̀ weak law of large numbers'' (WLLN) issue: does

the discrete Smoluchowski coagulation equation really represent a limit in the Marcus±

Lushnikov process? We state this in the simplest setting of monodisperse initial

con®gurations, although there are parallel problems in the polydisperse and the continuous-

space settings. To see why the problem arises at all, note that (in contrast with the setting of

pure fragmentation (Section 3.2)) the mean frequencies Nÿ1 EML(N)(x, t) in the Marcus±

Lushnikov process do not evolve exactly as the discrete Smoluchowski coagulation equation.

Open Problem 3. For a general kernel K, let n(x, t) be the solution of the discrete

Smoluchowski coagulation equation and let ML(N)(t) be the Marcus±Lushnikov process,

each with monodisperse initial conditions. Prove that, as N !1 for ®xed t,

Nÿ1 ML(N )(x, t)!p n(x, t), x > 1, (45)

provided that either of the following hold.

(a) K(x, y) � o(xy).

(b) t , Tgel.

This problem is closely related to the question of uniqueness of the solution n(x, t),

which in Section 2 we implicitly assumed, but in fact the only general result (Heilmann

1992) proving uniqueness assumes that K(x, y) � O(x� y), which implies non-gelling. In

case (a), recent results of Jeon (1996; 1997) imply (45), assuming uniqueness. Norris (1997)
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gives improved results on uniqueness and the WLLN. Note that in the multiplicative case

(45) fails for t . Tgel � 1, so that the hypothesis `̀ (a) or (b)'' is about as weak as possible.

Open Problem 3 is related to standard results on density-dependent population processes

(Ethier and Kurtz 1986, Chapter 11). Roughly, such a process has a ®nite number of types

of `̀ molecules'' which react in some ®nite number of ways, the total number N of `̀ atoms''

being constant in time. For such a process, one has not only a WLLN but also Gaussian

approximations (see Section 5.5). However, the `̀ ®nite number of types'' condition is

essential, and hence in our setting (interpret a cluster of mass x as a type-x molecule) these

standard results can seldom be applied. The recent results mentioned above rely on

truncation arguments to approximate by the ®nite case. Note that the kernel K(x, y) � xy

has the special property that the evolution of (ML(N )(x, t), 1 < x < x0) is itself Markov (in

other words, we can lump together clusters of mass greater than x0), so that the standard

results do imply Gaussian asymptotics of the form (38) and (39) for ®xed x, y as noted by

van Dongen and Ernst (1987a).

5.2. Gelling kernels

Perhaps the most interesting aspect of the subject is the general interpretation of gelation in

terms of stochastic models of coalescence. The natural counterpart to Open Problem 3,

dealing with post-gelation behaviour, is as follows.

Open Problem 4. In the setting of Open Problem 3, prove that for ®xed t . Tgel there exists

E(t) . 0 such that

lim
x0"1

lim sup
N!1

P Nÿ1
X
x.x0

xML(N )(x, t) . E(t)

 !
� 1:

In words, after gelation some non-vanishing proportion of the total mass is in clusters

whose size is not O(1).

Open problem 4 is one weak interpretation of gelation, but further conjectures are pure

speculation concerning how much of the well-understood qualitative behaviour for the

multiplicative coalescent extends to more general gelling kernels. Consider the following

three known properties of the Marcus±Lushnikov process for K(x, y) � xy.

(a) At time t . Tgel the giant component has mass Ù(N ).

(b) At time t . Tgel the WLLN assertion of Open Problem 3 no longer holds.

(c) The times TN (or T 9N ) at which Nÿ1 ML
(N )
1 (t) ®rst exceeds E (or 1ÿ E) satisfy

(T 9N ÿ TN )=TN!p 0.

Property (c) is too weak to use as a criterion for gelation, because it holds for

K(x, y) � x� y. I conjecture that (a) and (b) are too strong, in that they do not hold for

gelling kernels with exponent 1 , ã, 2. A more plausible stochastic interpretation of

gelation is as follows.

A unique `̀ giant cluster'' of ML(N)(t) can be identi®ed while its mass is still o(N ).
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More precisely, this can be stated as follows.

Open Problem 5. If Tgel ,1, prove that there exist random times TN!p Tgel such that

sup
t>TN

ML
(N )
2 (t)

ML
(N )
1 (t)

 !
!p 0,

Nÿ1 ML
(N )
1 (TN )!p 0:

Lemma 1 suggests one approach to studying the issues in Open Problems 4 and 5 for

kernels of the special form K(x, y) � xf (y)� yf (x). An alternative special form of kernel

(noted by Ziff (1980)) is

K(x, y) � 2 f (x) f (y)

f (x� y)ÿ f (x)ÿ f (y)
, (46)

where f (1) � 1 and f (x� y) . f (x)� f (y). Consider the solution n(x, t) of the discrete

Smoluchowski coagulation equation for such a kernel with monodisperse initial con®guration,

and consider

s(t) �
X

x

f (x)n(x, t):

It is easy to check (d=dt)s(t) � s2(t) and hence s(t) � (1ÿ t)ÿ1, 0 < t , 1. This suggests

(but does not quite prove) that Tgel � 1. It was shown by Aldous (1996) that for kernels of

this special form (46) one can use stochastic calculus to analyse the Marcus±Lushnikov

process and to prove the conclusion of Open Problem 5.

5.3. Dynamical scaling and entrance boundaries

We digress to mention an issue of mathematical formulation. When studying stochastic

processes, a natural way to take limits is as time increases to in®nity or to a critical point, as

in Open Problems 1 and 2, which in the language of statistical physics assert dynamical

scaling under the monodisperse initial distribution, and assert universality when the same

behaviour holds in the polydisperse setting. In the context of a ®nite-volume stochastic model

such as the Marcus±Lushnikov process, as t!1 the mass ultimately forms a single cluster;

the interesting question to study is how this happens. For an N !1 limit stochastic

coalescent process, this question asks for the behaviour at small times rather than at large

times. We saw in Sections 4.2±4.4 the existence of a standard stochastic coalescent for the

three special kernels 1, x� y and xy, which originates with the mass in in®nitesimally small

clusters. Parts of Open Problems 7 and 8 below seek generalizations of this behaviour. In the

language of theoretical stochastic processes, we are seeking the entrance boundary for the

general stochastic coalescent. Physically, the underlying story from Section 1.1 will typically

make sense only when cluster masses are in some ®nite range [x0, x1]; so neither of the limit

procedures (x0 # 0 or x1 " 1) corresponding to small-time and large-time limits seems more

natural than the other.
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5.4. Open problems for the general stochastic coalescent

Intuitively, the state space for the stochastic coalescent X (t) speci®ed at (30) consists of

unordered sets fxig of cluster masses, with xi . 0 and
P

ixi � 1. We can formalize this in

several ways, e.g. ®rstly by taking the decreasing ordering x1 > x2 > . . . of cluster masses, so

that the state space becomes the in®nite-dimensional simplex or secondly by identifying fxig
with the measure

P
xiäxi

(:).
Evans and Pitman (1996) give a careful account of the `̀ technical bookkeeping'' issues

involved in formalization (e.g. one wishes to track the previous history of mergers of a

particular cluster at time t). The details are not important for us; we shall just write l1 for

the state space. To use the general theory of continuous-space Markov processes we desire

some regularity property, and it seems natural to expect the Feller property; the distribution

at a ®xed time t varies continuously with the initial distribution. Evans and Pitman (1996)

prove the Feller property under the conditions

K(0, 0) � 0, jK(x1, y1)ÿ K(x2, y2)j < k0(jx2 ÿ x1j � jy2 ÿ y1j) 80 < xi, yi < 1:

This condition holds for six of the nine kernels in Table 1. A natural minimal assumption,

satis®ed by all nine kernels, is

K(x, y) is a symmetric, continuous function (0, 1)2 ! [0, 1): (47)

Open Problem 6. Prove that, under assumption (47), the stochastic coalescent exists as a

Feller process on l1.

This is conceptually just a technical issue; of more substance are the following open

problems, representing the stochastic analogues of Open Problems 1 and 2. Write

F(x, t) �
X

i

X i(t)1(X i( t) . x)

for the total mass in clusters of mass . x, in some version X (t) of the stochastic coalescent.

Write X (N ) for the stochastic coalescent started with N clusters of mass 1=N each, i.e. the

rescaling (31) of the monodisperse Marcus±Lushnikov process. As usual, we also seek

analogues of convergence assertions for suitable polydisperse initial distributions.

Open Problem 7. Consider a homogeneous kernel K with exponent ã < 1. Suppose that

there exists a unique ø satisfying (14) such that n(x, t) � sÿ2(t)ø(x=s(t)) is a solution of the

continuous Smoluchowski coagulation equation, for s(t) satisfying (17). Write Tinit � 0 if

ã, 1, Tinit � ÿ1 if ã � 1. Give rigorous proofs, under explicitly stated extra hypotheses, of

the following.

(a) There exists a version (X (t), Tinit , t ,1) of the stochastic coalescent such that

sup
x

����F(xs(t), t)ÿ
�1

x

yø(y) dy

����! 0 a:s: as t # Tinit,
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and so in particular

max
i

X i(t)! 0 a:s: as t # Tinit: (48)

(b) If ã, 1, then the version in (a) is the unique version satisfying (48).

(c) As N !1,

X (N ) ÿsÿ1 1

N

� �
� t

� �
; sÿ1 1

N

� �
, t ,1

� �
!d (X (t); Tinit , t ,1)

for some t0, where sÿ1 is the inverse function of s(t).

For Kingman's coalescent, these results are straightforward and indeed contained (in

slightly different form) in our discussion in Section 4.2. For the additive coalescent see

Aldous and Pitman (1997a).

Note that Open Problems 3 and 7 involve the behaviour of the Marcus±Lushnikov

process for non-gelling kernels over different time regimes. Speci®cally, for a homogeneous

kernel with ã, 1, Open Problem 3 involves t � Ù(1) whereas Open Problem 7 involves

t � Ù(N 1ÿã). The corresponding conjecture for intermediate times, that is for tN !1 with

tN � o(N1ÿã), is that

sup
x

����Nÿ1
X

x9.xs( t)

x9ML(N)(x9, tN )ÿ
�1

x

yø(y) dy

����!p 0 as N !1: (49)

The next open problem seeks to generalize the deeper structure of the multiplicative

coalescent. Recall that the multiplicative coalescent took values in l2.

Open Problem 8. Consider a homogeneous kernel K with exponent 1 , ã < 2. Suppose

that 0 , Tgel ,1, and suppose that the conclusions (a) and (b) of Open Problem 2 hold.

Give rigorous proofs, under explicitly stated extra hypotheses, that there exists a

version (X (t); ÿ1, t ,1) of the l2-valued stochastic coalescent with the following

properties.

(a) Writing X (t) � (X (1)(t), X (2)(t), . . .) in decreasing order of cluster masses,

X (1)(t)! 0 a:s: as t # ÿ1,

X (1)(t)!1 and X (2)(t)! 0 a:s: as t " 1:
(b) There is a self-similar solution (22) of the Smoluchowski coagulation equation

n(x, t) � jtj(3�ã)=(1ÿã)ø(xjtj2=(ãÿ1))

which satis®es the analogue of (42).

(c) As N !1

óÿ1=ã
N X (N )(tN � ó N t); ÿ tN

ó N

< t ,1
� �

!d (X (t); ÿ1, t ,1)

for certain constants tN and ó N .
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One expects the constants tN and ó N in (c) to grow as powers of N, with exponents

depending on ã, but it is not clear (even heuristically) whether these exponents can be

obtained from the exponent in Open Problem 2 which relates only to the behaviour near the

critical point. Uniqueness of the stochastic coalescent starting at time ÿ1 is a subtle issue

even in the multiplicative and additive cases (Aldous and Limic 1997, Aldous and Pitman

1997a); so we hesitate to speculate about general kernels.

5.5. Gaussian ¯uctuations

The WLLN (Open Problem 3) asserts that the solution of the Smoluchowski coagulation

equation gives the ®rst-order approximation of the Marcus±Lushnikov process for large N. It

is natural to seek a second-order approximation involving Gaussian ¯uctuations of order

N1=2. As noted in Section 5.1, in the restricted case where there are only a ®nite number of

different cluster sizes (so the limit Gaussian process takes values in some Rd), such a result is

part of the general weak convergence theory of Ethier and Kurtz (1986, Chapter 11), but

presumably the conclusions continue to hold without that restriction, at least under mild extra

assumptions.

Open Problem 9. In the setting of Open Problem 1 (with perhaps extra regularity

hypotheses), show that

Nÿ1=2fML(N )(x, t)ÿ Nn(x, t)g!d Z(x, t)

in the sense of weak convergence of R1-valued processes, where (Z(x, t); x � 1, 2, . . . ,

0 < t , Tgel) is the mean-zero R1-valued Gaussian diffusion speci®ed by

dZ(x, t) � ÿ
X

y

K(x, y)Z(x, t)n(y, t) dt �
X

y

fK(x, y)n(x, t)n(y, t)g1=2 dBfx, yg(t), (50)

where the Bfx, yg(t) are independent standard Brownian motions.

See van Dongen (1987a) for SM discussion of approximations in the spirit of Open

Problem 9.

Another way to think about Gaussian approximations is in the context of the (continuous-

space) stochastic coalescent at small times; cf. (36) for the case of the constant kernel.

Open Problem 10. Suppose, as in Open Problem 7 (a), that (X (t), Tinit , t ,1) is the

standard version of the stochastic coalescent for a kernel K which is homogeneous with

exponent ã < 1. Prove that, as t # Tinit,

1

s1=2(t)
F(xs(t), t)ÿ

�1
x

yø(y) dy

� �
; 0 , x ,1

� �
!d (Z(x); 0 , x ,1)

where Z(x) is a certain mean-zero Gaussian process.
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As stated, this involves looking at single times, but there is a natural extension to a time-

indexed Gaussian process (Z(x, t9)). Finally, in the spirit of the intermediate-time empirical

WLLN (49) there is a corresponding Gaussian approximation conjecture, featuring the same

limit Gaussian process (Z(x)) as in Open Problem 10. Ways of seeking to calculate the

covariance structure of Z(x) are mentioned in Section A.6.

6. Envoi

With gross oversimpli®cation, we can point to two waves of interest in our topic. The ®rst

was the deterministic theory developed by physical chemists in the 1960s and surveyed by

Drake (1972). The second was the stochastic theory developed by statistical physicists in the

early 1980s, culminating in the work of van Dongen, Ernst, Hendriks and others. Perhaps the

open problems in this survey and concurrent technical work such as Aldous (1997a), Evans

and Pitman (1996) and Jeon (1997) will stimulate a third wave of interest amongst theoretical

probabilists.
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Appendix 1

A.1. Self-similarity and tail behaviour

In the settings where one expects self-similar solutions of the Smoluchowski coagulation

equation (Section 2.4), there is some SM literature by Lushnikov (1973), van Dongen and

Ernst (1985), van Dongen (1987c), and van Dongen and Ernst (1987b) (surveyed by van

Dongen and Ernst (1988)) on the t!1 behaviour of n(x, t) for ®xed x, or for x(t) @ s(t).

To illustrate the type of result, in the homogeneous setting, van Dongen and Ernst (1987b)

argued that, for ®xed t , Tgel, as x!1
n(x, t) � A(x, t) eÿxz( t)

where

(í, 1) A(x, t) � A(t)xÿè

and when í � 1 there is also the possibility that

A(x, t) � expfÿd(t)xâg, for some 0 , â, 1:
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Here í is the `̀ balance'' parameter

K(1, y) � yí�o(1) as y!1:
This result is derived from heuristic self-consistency arguments; essentially, what is shown is

that

n(x, t) � A(x, t) eÿxù z( t)

is not possible for ù 6� 1.

It is generally believed that these `̀ large-deviation'' results re¯ect x! 0 or 1 behaviour

of the presumed self-similar solution ø(x). This is far from clear from the TP viewpoint.

See Krivitsky (1995) for numerical results for the kernels (x� y)ã and (xy)ã=2.

A.2. Synthesizing self-similar solutions

A way of synthesizing self-similar solutions has been described by Drake (1972, Section 6.4)

and attributed to Wang (1966). Write

K(x, y) � F(x, y)

ø(x)ø(y)
(A1)

and substitute into (15). Then (15) becomes

1
2

�x

0

F(y, xÿ y) dyÿ
�1

0

F(x, y) dy � wf2ø(x)� xø9(x)g: (A2)

Thus, if we start with some arbitrary positive kernel function F, and if we can solve (A2) for

ø which can be normalized to (14), then ø is a self-similar solution to the Smoluchowski

coagulation equation with kernel K de®ned in (A1).

A.3. Self-similar solutions for the pure fragmentation equation

We summarize the results of Brennan and Durrett (1987), promised from Section 3.2.

Consider a splitting kernel which is homogeneous:

S(cl; cx) � cáÿ1S(l; x)

for some á. 0. Then the pure fragmentation equation (27) has a self-similar solution

n(x, t) � t2=áø(xt1=á)

where ø is de®ned as follows. Let . . . , Vÿ1 , 0 , V0 , V1 , . . . be the renewal times of a

stationary renewal process with inter-renewal density

P(Vi�1 ÿ Vi 2 dv) � eÿvS(1; eÿv):

Let ö be the probability density function of the random variable

Y �
X1
m�0

îm exp(ÿáVm),
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where the (îm) are independent exponential(1) RVs. Then

ø(x) � áxáÿ2ö(xá):

Moreover in the special case S(l; x) � láÿ1 we have

ø(x) � á exp(ÿxá)

Ã(2=á)
:

This looks promising, suggesting that by duality we can get coalescing kernels K with these

ø as self-similar solutions. Unfortunately, applying the duality formula (28) gives

Kt(x, y) � 2Ã(2=á)(x� y)áÿ1

át2=á
expf(xá � yá ÿ (x� y)á)tg (A3)

and we cannot time-change to a time-independent kernel, except in the case á � 1 which

corresponds to the familiar kernel K(x, y) � constant.

A.4. Constant-rate interval splitting

Recall from Section 3.2 the notion of dual splitting kernel St(l; x). Here is another example.

Take [0, 1] as our `̀ arti®cial space''. At time t � 0 we see the unit interval; as t increases, the

interval is split into subintervals according to the rule; each interval [a, b] splits at rate 1 at a

uniform random position. Thus the splitting kernel is

St(l; x) � lÿ1: (A4)

Write Lt for the size-biased interval length density at time t, so that the density of Lt is

f t(l) � ln(l, t)

a(t)
, (A5)

where a(t) � � ln(l, t) dl. It is easy to see that log Lt has exactly the distribution ofQQt

i�1 log îi, where Qt has Poisson(t) distribution and îi has the `̀ size-biased uniform'' density

2x on 0 , x , 1. So for large t the distribution of log Lt is approximately normal(ÿìt, ó 2 t)

for certain constants ì and ó. Combining with (A5) gives an approximation

n(x, t) � a(t)xÿ2

ó (2ðt)1=2
exp ÿ (ìt � log x)2

2ó 2 t

� �
:

Combining with (A4) and substituting into (28) shows that the dual coalescence rate kernel is

approximately of the form b(t)K(x, y) for

K(x, y) � x2 y2(x� y)ÿ3: (A6)

This calculation suggests that kernel (A6) may have a self-similar density which is

approximately log-normal.
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A.5. Embedding the K(x, y) � 1 coalescent

A special feature of the K(x, y) � 1 setting is that asymptotics for the Marcus±

Lushnikov process can be obtained by embedding into Kingman's coalescent. More

exactly, let us consider the standard stochastic coalescent (X (t); t > 0) constructed in

Section 4.2, and let X (k) be the stochastic coalescent started with con®guration

(x
(k)
i , 1 < i < k), where X

i

x
(k)
i � 1: (A7)

Recall the de®nition of ôk . At time ôk we attach the weights (x
(k)
i ) to the k clusters of X (ôk),

in random order, and then de®ne X (k)(t) to be the weights of the clusters of X (ôk � t). This

provides an embedding of X (k) into X. Now recall the functional WLLN for sampling

without replacement.

Lemma 2. Suppose that (x
(k)
i ) satis®es (A7) and maxi x

(k)
i ! 0 as k !1. Let

S(k)(t) �Pi<ktx
(k)
ð(i), where ð is a uniform random permutation of f1, . . . , kg. Then

sup0,t,1jS(k)(t)ÿ tj!p 0.

Applying the lemma to the embedding, we deduce (34) and the uniqueness property (32)

of Kingman's coalescent.

A.6. Variance calculations

Open Problem 10 involves a Gaussian process (Z(x); 0 , x ,1) intended to represent

¯uctuations of cluster-size counts in the intermediate-time regime. For the three special

kernels, explicit description of this process is most easily done exploiting the special structure

(36) and (39). For a general K, a direct approach is to write down the differential equations

implied by (50) for EZ(x, t)Z(y, t), pass to the continuous-space limit and then to use the

presumed scaling invariance to derive an equation in the spirit of (15) for the covariance

function of Z(x).

A different approach to variance calculations is to use the general construction in Section

3.3, in which cluster sizes at time t in a certain model are represented as a stationary one-

dimensional process. Perhaps one can use a suitable CLT for stationary processes to obtain

a rigorous Gaussian limit in this model, and then relate this model to the Marcus±

Lushnikov process featured in Open Problem 9.

A.7. What was new in this paper?

As be®ts a survey, little in this paper is new. In the big picture, the general viewpoint of

Section 3 does seem rather novel, as does the sketched general construction in Section 3.3. In

details, the sketched `̀ slick proofs'' of (25) and (36) seem novel.
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