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1. Introduction

Consider the linear regression model

yi � xT
i â� Ei, i � 1, . . . , n, (1:1)

where x1, . . . , xn are p-dimensional non-stochastic regressors, â is an unknown p-vector of

the regression coef®cients, y1 . . . , yn are observations of a real-valued dependent variable

and E1, . . . , En are independent and identically distributed random errors having a density

f (:). To infer about â, a Bayesian puts a prior on it and looks at the posterior distribution. A

primary question related to the Bayesian analysis is posterior consistency, i.e. whether the

posterior distributions concentrate near the unknown true value of the parameter. Secondly,

the posterior distributions are, in general, very complicated and good approximations are

desired. It is therefore of importance to study whether the posterior distribution is consistent

and asymptotically normal. The normal approximation has a theoretical importance even if

the posterior is actually calculated by some other methods such as the Markov chain Monte

Carlo method. For ®nite-dimensional smooth families, the phenomenon of the normal

approximation to the posterior distributions is well known as the Bernstein±von Mises

theorem or the Bayesian central limit theorem. Several researchers have contributed in this

area including Le Cam (1953), Bickel and Yahav (1969) and Johnson (1970). For a recent

work, see Ghosal et al. (1995) where a necessary and suf®cient condition for posterior

convergence is obtained in a general framework. When the dimension p of the parameter â in
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(1.1) remains ®xed as the sample size n increases, results on consistency and approximate

normality of the posterior for linear models may be obtained from Theorem 1 of Ghosal et al.

(1995). However, to the best of the present author's knowledge, the problem of approximating

posterior distributions in the regression problem (even for the ®xed dimension) has not been

addressed explicitly in the literature.

In this paper, we study the behaviour of the posterior distribution as the sample size n

tends to in®nity where the dimension of the parameter space p � pn is also allowed to

grow to in®nity with increasing n. This problem is of signi®cant practical importance since,

in data analysis, one often uses a delicate model (i.e. with a large number of parameters) if

one has enough data. In other words, one allows the dimension of the parameter to grow

with increasing sample size. Moreover, nonparametric models can be approximated by

parametric models with increasing dimension as discussed by Shibata (1981) and Diaconis

and Freedman (1993). The frequentist version of this problem, namely consistency and

asymptotic normality of M estimates, has been studied by Huber (1973), Yohai and

Maronna (1979), Ringland (1983) and Portnoy (1984; 1985; 1986). In this paper we show

that, under certain growth restrictions on the dimension depending on the design variables,

the posterior distributions concentrate in the neighbourhoods of the true value of the

parameter and admit a normal approximation. It seems that the present paper is the ®rst

attempt to study Bayesian asymptotic properties in models of increasing dimension. We

observe that the condition required on the growth rate of the dimension pn is more stringent

than its frequentist counterparts. Although no claim is made about the necessity of this

condition on the growth of pn, we believe that there are at least three reasons to expect

some dif®culties if pn grows very rapidly with increasing n. First, there is a long tail area

which may substantially contribute to the posterior probabilities although the likelihood is

small there. Secondly, our choice of the L1 metric to measure the distance between densities

is quite strong in high dimension. Finally, we approximate the posterior distribution of the

entire parameter while the available frequentist results concern asymptotic normality of

linear functionals of the frequentist estimate. It may be expected that the conditions

required for the validity of the normal approximation of the posterior distribution of a linear

functional may be weaker, particularly if the distance between densities is measured in some

weaker sense such as the Kolmogorov±Smirnov distance or the weak topology.

In this paper, we assume for simplicity that there is no unknown scale parameter present

in the model (1.1). Results can be extended to the case with an unknown scale parameter

along a similar line (see Remark 2.2). Extensions to nonlinear models, stochastic regressors

and regressors measured with errors are also expected to follow in a similar fashion.

The paper is organized as follows. In Section 2, we formally describe the assumptions

and prove the main theorem on the asymptotic normality of the posterior distributions. The

consistency of the posterior distributions and some other related facts are easily obtained

from the arguments used in the theorem. For clarity of the proof, the main theorem is split

into several auxiliary lemmas whose proofs are presented in Section 3.

Our notation will be as follows. We shall use bold letters to denote vectors and matrices.

Vectors will be represented in the column form and xT will stand for the transpose of a

vector x. The capital and lower-case oh notation O, o, Op and op will be used with their

usual meanings. The symbol !p will indicate convergence in probability.
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2. Main results

2.1. Set-up and assumptions

Consider a triangular array setup of the linear regression model (1.1) where the yi, xi, Ei, p

and f all can depend on n. Let Xn stand for the design matrix de®ned by XT
n � (x1, . . . , xn).

Put An � XT
nXn. We assume that An is non-singular. Let A1=2

n denote the positive de®nite

square root of An and Aÿ1=2
n � (A1=2

n )ÿ1. For vectors, let i:i stand for the usual Euclidean

norm while, for a matrix A, let iAi stand for the operator norm de®ned by

iAi � supfiAxi: ixi < 1g. Set çn � max1<i<n iAÿ1=2
n xi i and än � iAÿ1=2

n i (i.e. ç2
n �

max1<i<n(xT
i Aÿ1

n xi) and ä2
n � iAÿ1

n i). Fix a (sequence of) parameter point(s) â0. All the

probability statements are made under the true parameter â0. As a general convention, we

shall not write the subscript n if its presence is solely due to the triangular array situation.

Although not re¯ected in our notation, the model density f (:) is allowed to vary with n for

which we implicitly assume the uniform version (in n) of assumption (A1) below.

The conditions are as follows.

(A1) The function h(z) � log f (z) is thrice differentiable in z and for some ä. 0,

supj tÿzj,äjh-(t)j < H(z) where
�

H2(z) f (z) dz ,1. The Fisher information ã ��
(h9(z))2 f (z) dz � ÿ � h 0(z) f (z) dz satis®es 0 , ã,1. Also,

�
(h 0(z))2 f (z) dz ,1.

(A2) The true parameter satis®es

max
1<i<n

jxT
i â0j < K, (2:1)

where K is a constant. Note that if
� jzj f (z) dz ,1, (2.1) is equivalent to saying that

max1<i<n Ejyij is bounded.

We also assume that all â in the parameter space (È, say) satisfy

max
1<i<n

jxT
i âj < K9, (2:2)

where K9 is a constant not changing with n.

From a frequentist view, (2.2) is a compactness assumption used to ensure that the

posterior mass does not escape to in®nity. From a Bayesian point of view, (2.2) can be

regarded as a belief in (2.1) while proposing the model or the prior. The knowledge about

the upper bound K helps us to reduce the parameter space to a suitable compact set. In

practice, it may not be very dif®cult to ®nd an upper bound for K subjectively.

As a referee pointed out, (2.1) is satis®ed always (in fact, can take â0 � 0) if we rede®ne

the model (1.1), although we then need to know the unknown true value of the parameter.

For (2.2) however, a rough conservative upper bound (independent of n) of K (in the

original form) suf®ces as a choice of K9.
(A3) The prior distribution is proper, has a density ð(:) which satis®es (at â0) the

positivity requirement

ð(â0) . ç p
0 for some ç0 . 0 (2:3)

and the Lipschitz condition
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jlogð(â)ÿ logð(â0)j < Ln(C)iâÿ â0 i, whenever iâÿ â0 i < Cp(log p)1=2än, (2:4)

where the Lipschitz constant Ln(C) is subject to some growth restriction (see assumption

(A4) below).

Note that, if the components of â are a priori independently distributed with the jth

component â j following a density ð j(:), j � 1, . . . , p, and for some M , ä, ç0 . 0 and for

all j � 1, . . . , p, ð j(â0 j) . ç0 and

jlogð j(â j)ÿ logð j(â0 j)j < M jâ j ÿ â0 jj, whenever jâ j ÿ â0 jj < ä, (2:5)

then (2.3) and (2.4) are satis®ed with Ln(C) � Mp1=2 (for all suf®ciently large n) provided

that p(log p)1=2än ! 0.

(A4) The growth of the dimension p is restricted by the constraints

8C . 0, Ln(C)än p(log p)1=2 ! 0 and p3=2(log p)1=2çn ! 0, (2:6)

where Ln(C) is as de®ned in (2.4). Further, the design satis®es

tr(An) �
Xn

i�1

Xp

j�1

x2
ij � O(np): (2:7)

Note that a condition on the smallness of çn is a uniform asymptotic negligibility

condition while smallness of än is a natural requirement on the normalizer. The last

condition on the trace of An is also used by Portnoy (1984, Condition X4) and is a mild

requirement. When the xi behave like a random sample from a non-singular distribution on

R p (Portnoy 1984) and Ln(C) � O( p1=2), the growth restrictions stated above are satis®ed if

( p4 log p)=n! 0.

To see an example, consider the p-population problem where each population

corresponds to a value of è in the location family f (:ÿ è). Suppose that we have

n1, . . . , np observations respectively from each of these populations and let

n � n1 � � � � � np. With the help of p categorical or dummy variables, the model can

be expressed in the form (1.1). In this case, it is easy to see that än � çn �
(minfn1, . . . , npg)ÿ1=2. Let us think of n as an indexing variable also and suppose that

n1, . . . , np as well as p are allowed to grow with increasing n. Assumption (A2) will be

satis®ed if the possible values of è lie in a compact set. A prior satisfying (A3) is easy to

specify. For example, the p-fold product of a continuous and positive density (on the

compact range of the possible values of è) satis®es the required conditions. Condition (2.7)

is satis®ed always as tr(An) � n. If all n1, . . . , np are of the same order (i.e. of the order of

n=p), then (2.6) holds if ( p4 log p)=n! 0.

In the proof, we shall actually assume that some power of p grows faster than n, i.e.

log p and log n are of the same order. When this condition fails, the situation is very close

to the classical case of ®xed dimension and can be treated using reasonings similar to

(although simpler than) those presented here; the only difference is that one has to use

different central and tail regions (see (2.21) below). For de®niteness, a splitting into

iui < n1=4 and iui . n1=4 in the proof of Theorem 2.1 suf®ces in this case.

For a speci®ed prior ð(:), the posterior distribution of â given the observations y1, . . . , yn

is given by
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ðn(â) / ð(â)
Yn

i�1

f (yi ÿ xT
i â): (2:8)

Normalize â as u � A1=2
n (âÿ â0), put

Zn(u) �
Yn

i�1

f (yi ÿ xT
i â0 ÿ xT

i Aÿ1=2
n u)

f (yi ÿ xT
i â0)

, u 2 A1=2
n (Èÿ â0), (2:9)

and set Zn(u) � 0 otherwise. The posterior distribution of u is then given by

ð�n (u) � ð(â0 � Aÿ1=2
n u)Zn(u)�

ð(â0 � Aÿ1=2
n w)Zn(w) dw

: (2:10)

Also set Än � ÿ
Pn

i�1 h9(yi ÿ xT
i â0)Aÿ1=2

n xi. Note that EÄn � 0 and E(ÄnÄ
T
n) �

ãAÿ1=2
n (

Pn
i�1xix

T
i )Aÿ1=2

n � ãI, where I is the identity matrix of order p. In particular, it

follows from the Chebyshev inequality that iÄn i � Op( p1=2).

2.2. Statements of the results

The main result of this paper is given below.

Theorem 2.1. Under assumptions (A1)±(A4),�
jð�n (u)ÿ ö(u; ãÿ1Än, ãÿ1I)j du!p 0, (2:11)

where ö(:; ì, Ó) is the density of N (ì, Ó) and I is the identity matrix of order p.

To prove Theorem 2.1, we state some auxiliary lemmas. The proofs of the lemmas are

deferred to Section 3.

The following lemma gives an approximation to the likelihood ratio Zn(u).

Lemma 2.1. Let C . 0 be any given constant.

(a) With probability tending to one, uniformly on iui < Cp(log p)1=2,����log Zn(u)ÿ uTÄn ÿ ã

2
iui2

� ����� < ën iui2, (2:12)

where ën � O( p(log p)1=2çn).

(b) With probability tending to one, uniformly on iui < C( p log p)1=2,����log Zn(u)ÿ uTÄn ÿ ã

2
iui2

� ����� < ë�n iui2, (2:13)

where ë�n � O(( p log p)1=2çn):
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The following lemma will be used to bound the central portion of the integral in (2.11).

Set ~Z n(u) � expfuTÄn ÿ (ã=2)iui2g.

Lemma 2.2. With probability tending to one, for any C . 0, there exist B9 . 0 such that�
~Z n(u) du

� �ÿ1�
iui<C( p log p)1=2

jZn(u)ÿ ~Z n(u)j du < B9 pë�n : (2:14)

The most dif®cult part of a theorem on approximation of the posterior is obtaining a

good estimate of the tail integral of the posterior density. We borrow a very powerful

technique from Ibragimov and Has'minskii (1981, Lemma I.5.2) for this purpose and

suitably adapt in our set-up (see Lemma 2.5 below). It is worthwhile to mention here that

the classical technique of Wald (1949) used by Bickel and Yahav (1969), Johnson (1970)

and others is not useful in models where the dimension increases. In fact, for linear models,

Wald's technique is not helpful even if the dimension is ®xed.

To exploit the above-mentioned technique of Ibragimov and Has'minskii (1981), we need

good bounds on EjZ1=2
n (u1)ÿ Z1=2

n (u2)j2 and EZ1=2
n (u). These bounds are obtained in the

following lemma.

Lemma 2.3. There exist B0, E1 . 0 such that

EjZ1=2
n (u1)ÿ Z1=2

n (u2)j2 < B0 iu1 ÿ u2 i2, if u1, u2 2 A1=2
n (Èÿ â0), (2:15)

and

EZ1=2
n (u) < exp(ÿE1 iui2), if u 2 A1=2

n (Èÿ â0): (2:16)

The next lemma will be used to estimate the posterior probability of the tail region in

Lemma 2.5. It asserts that, on a set of large probability, the denominator in (2.10) is not too

small.

Lemma 2.4. For 0 , ä, 1,

P

�
Zn(u)ð(â0 � Aÿ1=2

n u) du ,
ð(â0)ä p

4

� �
< 4B

1=2
0 ä, (2:17)

where B0 is the constant obtained in Lemma 2.3.

Lemma 2.5. For any m > 0, there exists B1, C . 0 such that

E

�
iui.Cp(log p)1=2

ð�n (u) du

 !
< B1 pÿm: (2:18)

The following lemma is needed to obtain a bound on the posterior probability of an

intermediate region.
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Lemma 2.6. For any C2 , c . 0 there exist B2, C1 . 0 such that, with probability tending to

one, �
C1( p log p)1=2<iui<C2 p(log p)1=2

Zn(u) du < B2 exp(ÿcp log p): (2:19)

Finally, the next lemma estimates the contribution of the tail of the approximating normal

density.

Lemma 2.7. For any c . 0, there exists C . 0 such that, with probability tending to one,�
iui.Cp1=2

ö(u; ãÿ1Än, ãÿ1I) du < exp(ÿcp): (2:20)

2.3. Proof of the main theorem

We are now in a position to prove Theorem 2.1. In what follows and in Section 3, B will

stand for a generic positive constant.

Proof of Theorem 2.1. Observe that, for any C . 0,�
jð�n (u)ÿ ö(u; ãÿ1Än, ãÿ1I)j du

<

�
iui<Cp(log p)1=2

���� Zn(u)ð(â0 � Aÿ1=2
n u)�

Zn(w)ð(â0 � Aÿ1=2
n w) dw

ÿ ð(â0)~Z n(u)�
ð(â0)~Z n(w) dw

���� du

�
�

iui .Cp(log p)1=2

ð�n (u) du�
�

iui .Cp(log p)1=2

ö(u; ãÿ1Än, ãÿ1I) du,

(2:21)

where, as before, ~Z n(u) � expfuTÄn ÿ (ã=2)iui2g.
Using Lemmas 2.5 and 2.7 respectively, the last two terms can be made as small as we

please with probability arbitrarily close to one by choosing C large enough. For this chosen

C, let F denote the set fu: iui < Cp(log p)1=2g. Using Lemma A.1 of Appendix 1, we

obtain the following upper bound for the ®rst term on the right-hand side of (2.21):�
F c

ð�n (u) du�
�

F c

ö(u; ãÿ1Än, ãÿ1I) du� 3

�
~Z n(u)ð(â0) du

� �ÿ1

3

�
F

jZn(u)ð(â0 � Aÿ1=2
n u)ÿ ~Z n(u)ð(â0)j du: (2:22)

Also observe that
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�
~Z n(u)ð(â0) du

� �ÿ1�
F

jZn(u)ð(â0 � Aÿ1=2
n u)ÿ ~Z n(u)ð(â0)j du

<

����ð(â0 � Aÿ1=2
n u)

ð(â0)
ÿ 1

���� � F Zn(u) du�
~Z n(u) du

�
�

~Z n(u) du

� �ÿ1�
F

jZn(u)ÿ ~Z n(u)j du:

Now for large n, uniformly on F,����ð(â0 � Aÿ1=2
n u)

ð(â0)
ÿ 1

���� < 2jlogð(â0 � Aÿ1=2
n u)ÿ logð(â0)j

< 2Ln(C)än p(log p)1=2 ! 0:

(2:23)

Also, �
~Z n(u) du

� �ÿ1�
F

jZn(u)ÿ ~Z n(u)j du < (2ðãÿ1)ÿ p=2

�
Ec\F

Zn(u) du

�
�

Ec

ö(u; ãÿ1Än, ãÿ1I) du

� (2ðãÿ1)ÿ p=2

�
E

jZn(u)ÿ ~Z n(u)j du, (2:24)

where E � fu: iui < C1( p log p)1=2g and C1 is to be chosen later.

The ®rst term on the right-hand side of (2.24) is small by Lemma 2.6 while the second

term is small by Lemma 2.7 with probability arbitrarily close to one, if we choose C1 large

enough. Since pë�n ! 0 by assumption (see (2.6)), it follows by Lemma 2.2 that the last

term on the right-hand side of (2.24) goes to zero in probability. In particular, the last

assertion implies that (
�

F Zn(u) du)=(
�

~Z n(u) du) remains bounded in probability. Hence

(2.22) is small with probability approaching unity, proving the theorem. u

2.4. Some remarks

As a corollary to Lemma 2.5, we get the following.

Corollary 2.1. Assume that conditions (A1), (A2) and (A3) hold and suppose that

p(log p)1=2çn ! 0 and, for all C . 0, Ln(C)än ! 0. Then for any given ä. 0, the

posterior probability of the ä neighbourhood of â0 tends to one in probability.

Remark 2.1. Using arguments similar to those used in Theorem 2.1, one can prove that�
iuijð�n (u)ÿ ö(u; ãÿ1Än, ãÿ1I)j du!p 0, (2:25)

provided that (A1)±(A3) hold and (A4) is strengthened to the following: for all C . 0,
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Ln(C)än p3=2 log p! 0 and çn p2 log p! 0:

Let ~ân denote the posterior mean of â. Then (2.25) implies that

A1=2
n (~ân ÿ â0) � ãÿ1Än � o p(1): (2:26)

If e is a unit vector in R p, it follows from (A4) and the Lindeberg central limit theorem that

eTÄn is asymptotically N (0, 1). Consequently, ã1=2eTA1=2
n (~ân ÿ â0) is asymptotically N (0, 1).

Remark 2.2. Theorem 2.1 should be regarded as a theoretical result and is itself not very

useful for the actual approximation of the posterior as the approximation involves Än, which

in turn involves the unknown value â0 of â. Thus it will be more useful to obtain a version of

Theorem 2.1 which replaces the unknown value of the parameter by its estimate. To this end,

observe that the maximum-likelihood estimate (MLE) â̂n of â satis®esXn

i�1

h9(yi ÿ xT
i â̂n)Aÿ1=2

n xi � 0: (2:27)

Thus if max1<i<njxT
i (â̂n ÿ â0)j � op(1) (which is implied by iA1=2

n (â̂n ÿ â0)i2 � Op( p3 log p)),

arguments similar to those used in the proof of Lemma 2.1 (see Section 3) imply that

Än �
Xn

i�1

fh9(yi ÿ xT
i â̂n)ÿ h9(yi ÿ xT

i â0)gAÿ1=2
n xi

� ÿ
Xn

i�1

h 0(yi ÿ xT
i â0)Aÿ1=2

n xix
T
i (â̂n ÿ â0)

� 1
2

Xn

i�1

h-(yi ÿ xT
i â
�
n )Aÿ1=2

n xifxT
i (â̂n ÿ â0)g2 (â�n is an intermediate point)

� ãA1=2
n (â̂n ÿ â0)� o p(1):

(2:28)

Now letting v � A1=2
n (âÿ â̂n), the posterior distribution ð̂n(v) (say) of v is approximated by

ö(v; ãÿ1Än ÿ A1=2
n (â̂n ÿ â0), ãÿ1I) which is further approximated by ö(v; 0, ãÿ1I). Thus

asymptotically the posterior distribution of ã1=2A1=2
n (âÿ â̂n) is p-dimensional standard

normal; here, as before, closeness is measured by the L1 distance and convergence is

interpreted in the sense of convergence in probability. Note that, above, the MLE can be

replaced by any estimate â̂n so that A1=2
n (â̂n ÿ â0) has a linearization ãÿ1Än. Note that by

Remark 2.1 the posterior mean has the above linearization, but it cannot be used for plugging

in for the obvious reason that it cannot be evaluated without knowing the posterior.

Unfortunately, neither is it known that the MLE â̂n satis®es iA1=2
n (â̂n ÿ â0)i2 � O p( p3 log p)

nor is a frequentist estimator readily available with linearization ãÿ1Än. However, we expect

these to be true under reasonable conditions.

Remark 2.3. Usually, in regression models, the error distribution involves an unknown scale

parameter ó (say). By arguments similar to those used in the proof of Theorem 2.1, it can be
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checked that the joint posterior distribution of A1=2
n (âÿ â0) and n1=2(ó ÿ ó0) can be

approximated by the product of the normal distribution in Theorem 2.1 (with ã replaced

by óÿ2
0 ã) and N (ôn, ó 2

0ã
ÿ1
1 ) as long as the scale parameter ó remains con®ned in a

compact subset of (0, 1); here ó0 stands for the true value of ó, ôn �
ÿnÿ1=2ãÿ1

1

Pn
i�1fEi h9(Ei=ó0)� ó0g and ã1 �

�f1� zh9(z)g2 f (z) dz. Although the basic idea

of the proof is the same as before, the expressions become complicated. For this reason, the

proof is presented assuming that the scale parameter is known.

3. Proof of the lemmas

Proof of Lemma 2.1. We prove only part (a); proof of the other part is exactly analogous.

Let C . 0 be a given constant and iui < Cp(log p)1=2. By (A1),

log Zn(u) �
Xn

i�1

fh(yi ÿ xT
i â0 ÿ xT

i Aÿ1=2
n u)ÿ h(yi ÿ xT

i â0)g

� uTÄn ÿ 1
2
uTAÿ1=2

n

Xn

i�1

h 0(Ei)xix
T
i

 !
Aÿ1=2

n u� Rn(u),

(3:1)

where

Rn(u) � 1
6

Xn

i�1

h-(yi ÿ xT
i â�)(uTAÿ1=2

n xi)
3 (3:2)

and â� is an intermediate point. Thus, for n large,

jh-(yi ÿ xT
i â�)j < H(Ei), i � 1, . . . , n: (3:3)

Hence with probability tending to one and uniformly on iui < Cp(log p)1=2,

jRn(u)j < C

6
p(log p)1=2çnuTAÿ1=2

n

Xn

i�1

H(Ei)xix
T
i

 !
Aÿ1=2

n u

� C

6
p(log p)1=2çn EH(E1)iui2

� C

6
p(log p)1=2çn

Xn

i�1

fH(Ei)ÿ EH(E1)g(uTAÿ1=2
n xi)

2:

(3:4)

We claim that, given any ç. 0, there exists a set E with probability greater than 1ÿ ç and a

constant B1 . 0 such that, on E,����Xn

i�1

fH(Ei)ÿ EH(E1)g(uTAÿ1=2
n xi)

2

���� < B1 p1=2çn iui2 for all u 2 R p: (3:5)

To prove (3.5), it suf®ces to restrict attention to the unit vectors. Let e1, . . . , e p stand for the

324 S. Ghosal



standard basis in R p and let uj denote the jth component of a vector u. Note that, for any

unit vector u,����Xn

i�1

fH(Ei)ÿ EH(E1)g(xT
i Aÿ1=2

n u)2

����2

<

����Xp

j�1

Xp

k�1

Xn

i�1

fH(Ei)ÿ EH(E1)gujuk(xT
i Aÿ1=2

n e j)(x
T
i Aÿ1=2

n ek)

 !����2

<
Xp

j�1

Xp

k�1

u2
j u

2
k

 !Xp

j�1

Xp

k�1

Xn

i�1

fH(Ei)ÿ EH(E1)g(xT
i Aÿ1=2

n e j)(x
T
i Aÿ1=2

n ek)

 !2

�
Xp

j�1

Xp

k�1

Xn

i�1

fH(Ei)ÿ EH(E1)g(xT
i Aÿ1=2

n e j)(x
T
i Aÿ1=2

n ek)

 !2

: (3:6)

Thus

P sup

����Xn

i�1

fH(Ei)ÿ EH(E1)g(xT
i Aÿ1=2

n u)2

����: u is a unit vector

 !
> B1 p1=2çn

( )

< P
Xp

j�1

Xp

k�1

Xn

i�1

fH(Ei)ÿ EH(E1)g(xT
i Aÿ1=2

n e j)(x
T
i Aÿ1=2

n ek)

 !2

> B2
1 pç2

n

8<:
9=;

< Bÿ2
1 pÿ1çÿ2

n

Xp

j�1

Xp

k�1

E
Xn

i�1

fH(Ei)ÿ EH(E1)g(xT
i Aÿ1=2

n e j)(x
T
i Aÿ1=2

n ek)

 !2

� Bÿ2
1 pÿ1çÿ2

n

Xp

j�1

Xp

k�1

Xn

i�1

varfH(Ei)g(xT
i Aÿ1=2

n e j)
2(xT

i Aÿ1=2
n ek)2

� Bÿ2
1 pÿ1çÿ2

n varfH(E1)g
Xn

i�1

iAÿ1=2
n xi i4

< Bÿ2
1 pÿ1 varfH(E1)g tr

Xn

i�1

Aÿ1=2
n xix

T
i Aÿ1=2

n

 !

� Bÿ2
1 varfH(E1)g:

(3:7)

Posterior distributions in linear models 325



Therefore (3.5) follows if we choose B1 large enough.

Using a similar argument we can show that, given any ç. 0, there exists a set E9 with

probability greater than 1ÿ ç and a constant B2 . 0 such that, on E9,����Xn

i�1

fh 0(Ei)� ãg(uTAÿ1=2
n xi)

2

���� < B2 p1=2çn iui2 for all u 2 R p: (3:8)

Combining (3.1), (3.4), (3.5) and (3.8), we obtain (2.12). u

Proof of Lemma 2.2. Let E � fu: iui < C( p log p)1=2g. Thus, for large n, with probability

close to unity, we have uniformly on u 2 E,

jZn(u)ÿ ~Z n(u)j < Bë�n iui2 ~Z n(u)exp[ë�n iui2], (3:9)

where ë�n is as in Lemma 2.1. Thus�
E

jZn(u)ÿ ~Z n(u)j du < Bë�n
�

E

iui2 exp uTÄn ÿ ã

2
1ÿ 2ë�n

ã

 !
iui2

( )
du

< Bë�n 1ÿ 2ë�n
ã

 !ÿ(1� p=2)

exp
ã

2
iÄn i2 1ÿ 2ë�n

ã

 !ÿ1
8<:

9=;
3

���������u� 1ÿ 2ë�n
ã

 !ÿ1=2

Än

��������2 exp ÿ ã

2
iui2

� �
du

< Bë�n 1ÿ 2ë�n
ã

 !ÿ(1� p=2)

exp
ã

2
iÄn i2 1ÿ 2ë�n

ã

 !ÿ1
8<:

9=;
3 p� 1ÿ 2ë�n

ã

 !ÿ1

iÄn i2

8<:
9=;(2ðãÿ1) p=2:

(3:10)

The result now follows since
�

~Z n(u) du � expf(ã=2)iÄn i2g (2ðãÿ1) p=2, iÄn i2 � Op( p) and

pë�n ! 0. u

Proof of Lemma 2.3. The arguments that we use are essentially borrowed from Ibragimov

and Has'minskii (1981, Chapters I±III). By (A1) and a well-known result of HaÂjek (see, for

example, Ibragimov and Has'minskii (1981, pp. 121±123)), the parametric family f (:ÿ è)

satis®es the condition of differentiability in quadratic mean at any è0, so that����� f 1=2(zÿ è)ÿ f 1=2(zÿ è0)� (èÿ è0)
d

dz
f 1=2(zÿ è0)

����2 dz � o(jèÿ è0j2) (3:11)

as è! è0. Thus, if xT
i Aÿ1=2

n u is suf®ciently small,
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����� f 1=2(yÿ xT
i â0 ÿ xT

i Aÿ1=2
n u)ÿ f 1=2(yÿ xT

i â0)� xT
i Aÿ1=2

n u
d

dy
f 1=2(yÿ xT

i â0)

� �����2 dy

� of(xT
i Aÿ1=2

n u)2g: (3:12)

Let Hi(u) stand for the Hellinger distance between the densities f (yi ÿ xT
i â0 ÿ xT

i Aÿ1=2
n u)

and f (yi ÿ xT
i â0), i.e.

H2
i (u) �

�
j f 1=2(yi ÿ xT

i â0 ÿ xT
i Aÿ1=2

n u)ÿ f 1=2(yi ÿ xT
i â0)j2 dyi: (3:13)

Equation (3.12) yields that there exist constants E0 and B0 such that

E0(xT
i Aÿ1=2

n u)2

1� (xT
i Aÿ1=2

n u)2
< H2

i (u) < B0(xT
i Aÿ1=2

n u)2: (3:14)

Since, by (2.2), the xT
i â values are uniformly bounded, the denominator on the left-hand side

of (3.14) is bounded above. Consequently, for some constant E1 . 0,

EZ1=2
n (u) �

Yn

i�1

f1ÿ 1
2
H2

i (u)g

< exp ÿE1

Xn

i�1

uTAÿ1=2
n xix

T
i Aÿ1=2

n u

 !

� exp(ÿE1 iui2):

(3:15)

Also,

EjZ1=2
n (u1)ÿ Z1=2

n (u2)j2 � 2 1ÿ
Yn

i�1

f1ÿ 1
2
H2

i (u1 ÿ u2)g
 !

<
Xn

i�1

H2
i (u1 ÿ u2)

< B0 iu1 ÿ u2 i2:

(3:16)

u

Proof of Lemma 2.4. Note that, by (2.4), for iui < 1 and suf®ciently large n,

ð(â0 � Aÿ1=2
n u) > ð(â0) exp(ÿLnän) .

ð(â0)

2
: (3:17)

Now the proof of Lemma I.5.1 of Ibragimov and Has'minskii (1981) goes through

verbatim. u

Proof of Lemma 2.5. The proof essentially follows the arguments of Ibragimov and

Has'minskii (1981, Lemma I.5.2), but there is an important difference that the dimension p
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can no longer be absorbed into the constants and must be expressed explicitly. A formal proof

is presented below.

Let H . 0 and set I � � Ãð(â0 � Aÿ1=2
n u)Zn(u) du, where Ã � fu: H < iui , H � 1g.

Divide [ÿ(H � 1), (H � 1)] p into L p identical cubes, where L is to be chosen later and

pick ui 2 Äi, where Ä1, Ä2, . . . are the cubes which intersect Ã and A1=2
n (Èÿ â0). Set

S �Pi

�
Äi

Zn(ui)ð(â0 � A1=2
n u) du. Then using Lemma 2.3 and the fact that ð(:) is proper,

for any 0 , b , 1
2
,

PfS . 1
2

exp(ÿbE1 H2)g < 2L p exp ÿ E1 H2

2

� � �
ð(â0 � Aÿ1=2

n u) du

� �1=2

< 2L p exp ÿ E1 H2

2

� �
(det An)1=4,

(3:18)

EjS ÿ I j < 2B
1=2
0 p1=2 Lÿ1

�
ð(â0 � Aÿ1=2

n u) du

< Bp1=2 Lÿ1(det An)1=2:

(3:19)

Choose the integer L so as to satisfy 1 < L p exp(ÿE1 H2=4) < 2 p. Then

PfI . exp(ÿbE1 H2)g < 2 p�1 exp ÿ E1 H2

4

� �
(det An)1=4

� Bp1=2(det An)1=2 exp ÿ 1

4 p
ÿ b

� �
E1 H2

� �
:

(3:20)

Choosing b � 1=8 p, we obtain

P I . exp ÿ E1 H2

8 p

 !
< Bp1=2(det An)1=2 exp ÿ E1 H2

8 p

 !
:

)(
(3:21)

Observe that

det An <
tr An

p

� � p

� fO(n)g p (3:22)

by (2.7). Thus, if C is large and H . Cp(log p)1=2, the bound in (3.21) can be reduced to the

form B exp(ÿEH2=p) for some E. 0. By Lemma 2.4 and making E smaller if necessary, we

obtain for 0 , ä, 1
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E

�
H<iui , H�1

ðn(u) du

 !
< P

�
Zn(u)ð(â0 � Aÿ1=2

n u) du ,
ð(â0)ä p

4

� �

� P I . exp ÿ EH2

p

 !( )
� 4fð(â0)gÿ1äÿ p exp ÿ EH2

p

 !

< Bä� Bçÿ p
0 äÿ p exp ÿ EH2

p

 !
: (3:23)

The choice ä � çÿ1
0 exp(ÿH2=2 p2) will reduce the right-hand side of (3.23) to

B exp(ÿEH2=2 p2). Replacing H by Cp(log p)1=2 � r, r � 0, 1, . . . , and adding the

corresponding bounds, we obtain (2.18) by choosing C suf®ciently large. u

Proof of Lemma 2.6. Fix C2, c . 0 and note that, by (2.12), with probability approaching

unity,�
B( p log p)1=2<iui<C2 p(log p)1=2

Zn(u) du

<

�
B( p log p)1=2<iui<C2 p(log p)1=2

exp uTÄn ÿ ã

2
iui2 1ÿ 2ën

ã

� �� �

<

�
B( p log p)1=2<iui<C2 p(log p)1=2

exp ÿ ã

2
iui2 1ÿ 2ën

ã

� �� �

< fC2 p(log p)1=2g p exp ÿ ã

4
Bp log p

� �
< exp(ÿcp log p), (3:24)

by choosing C1 � B suf®ciently large; in the above, we have used the fact that iÄn i �
Op( p1=2). u

Proof of Lemma 2.7. Fix c . 0 and recall that iÄn i � O p( p1=2). Thus, with probability

tending to one, �
iui .Bp1=2

ö(u; ãÿ1Än, ãÿ1I) du <

�
iui .Bp1=2

ö(u; 0, ãÿ1I) du

< Pr(÷2
p . Bp):

(3:25)

Thus the result follows from the well-known large deviation inequality for the chi-squared

distribution (Bahadur 1971) by choosing C � B suf®ciently large. u
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Appendix 1

Lemma A.1. Let f and g be two non-negative integrable functions not identically zero on a

measurable space S and let F � S. Then�
F

���� f�
f
ÿ g�

g

���� <

�
F c

f�
f
�
�

F c
g�

g
� 3

�
g

� �ÿ1�
F

j f ÿ gj:

Proof. The expression on the left-hand side is dominated by the sum of j(� f )ÿ1 ÿ
(
�

g)ÿ1j �
F

f and (
�

g)ÿ1
�

F
j f ÿ gj. Note that the ®rst expression is also expressible as�

f

� �ÿ1 �
g

� �ÿ1 �
F

f

� ������
F

f ÿ
�

F

g

����
and the last factor is at most

�
F c

f � �
F c

g � �
F
j f ÿ gj. Noting that

�
F

f <
�

F
g ��

F
j f ÿ gj also, the rest follows easily. u
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