
Estimation of ReÂnyi exponents in random

cascades

B R E N T M . T RO U T M A N 1 and ALDO V. VECCHIA2

1US Geological Survey, Denver Federal Center, BOX 25046, Mail Stop 413, Lakewood, CO

80225, USA. e-mail: troutman@usgs.gov
2US Geological Survey, 821 E. Interstate Avenue, Bismarck, ND 58501, USA. e-mail:

avecchia@usgs.gov

We consider statistical estimation of the ReÂnyi exponent ô(h), which characterizes the scaling

behaviour of a singular measure ì de®ned on a subset of Rd . The ReÂnyi exponent is de®ned to be

limä!0 [flog Mä(h)g=(ÿlog ä)], assuming that this limit exists, where Mä(h) �Piìh(Äi) and, for

ä. 0, fÄig are the cubes of a ä-coordinate mesh that intersect the support of ì. In particular, we

demonstrate asymptotic normality of the least-squares estimator of ô(h) when the measure ì is

generated by a particular class of multiplicative random cascades, a result which allows construction

of interval estimates and application of hypothesis tests for this scaling exponent. Simulation results

illustrating this asymptotic normality are presented.
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1. Introduction

We consider in this paper the estimation of the scaling exponents in a multiplicative random

cascade model. These models have been applied in a range of settings, including turbulence

(Novikov and Stewart 1964; Meneveau and Sreenivasan 1991; She and Waymire 1995),

rainfall modelling (Gupta and Waymire 1990; Lovejoy and Schertzer 1990; Over and Gupta

1994; Olsson 1995), river ¯ow modelling (Gupta and Waymire 1990; 1996; Marani et al.

1994), clouds (Davis et al. 1993) and nonlinear dynamics (Halsey et al. 1986). Cascade

models are used as a way of de®ning singular measures with a multifractal structure, which

are ideal for modelling the highly intermittent behaviour seen in many natural phenomena. If

ì is such a measure, possibly random and de®ned on a subset of Rd , then the singularities of

ì can be characterized by a set of generalized dimensions Dh introduced by Hentschel and

Procaccia (1983). For ä. 0, let fÄig be the cubes of a ä-coordinate mesh that intersect the

support of ì. Then Dh is de®ned, for h 6� 1, by

Dh � lim
ä!0

1

hÿ 1
log

X
i

ìh(Äi)

 !( )�
log ä

" #
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Bernoulli 5(2), 1999, 191±207

1350±7265 # 1999 ISI=BS



D1 � lim
ä!0

X
i

ì(Äi) log ì(Äi)

 !�
log ä

( )
:

D0 is the fractal dimension of the support of ì and D1 is the information dimension. Because

of the factor hÿ 1 in the denominator of this de®nition, Dh is not a concave function of h;

so it is usually more convenient to work with the ReÂnyi exponents ô(h) de®ned by

ô(h) � (1ÿ h)Dh:

These exponents constitute the main focus of this paper. In particular, we shall consider the

question of statistical estimation of ô(h) given a sample assumed to be generated from a

random cascade process which produces the singular measure ì.

Data which are assumed to be generated from such a process consist of observed masses

ì(Äi) in intervals Äi only down to a certain resolution. The main dif®culty from a

statistical point of view is that, because of the limited resolution of actual observations,

there is sampling error in estimating ô(h). Log-linear regression of spatial moments versus

ä is probably the most commonly used method for estimating ô(h) in applications. Despite

its widespread use, however, there seem to be few rigorous results on the sampling

properties of this least-squares estimator. In this paper, we demonstrate asymptotic

normality of the (generalized) least-squares estimator under a random cascade model, which

leads to a method of obtaining interval estimates for ô(h). Simulation results illustrating this

asymptotic normality are presented.

2. Preliminaries

We examine a multiplicative random cascade model de®ned on [0, 1]d , and without loss of

generality we take d � 1. To develop this model, we begin by letting b, known as the

cascade branching number, be an integer greater than 1, and let T be the set of in®nite

sequences of integers in f0, 1, . . . , bÿ 1g:
T � f(ã1, ã2, . . .): ãi 2 f0, 1, . . . , bÿ 1gg:

For n > 1, we use ãjn � (ã1, . . . , ãn) to denote the curtailment of a sequence

ã � (ã1, ã2, . . .) 2 T after n terms, and let T (n) be the set of n-term sequences of integers

in f0, 1, . . . , bÿ 1g:
T (n) � f(ã1, ã2, . . . , ãn): ãi 2 f0, 1, . . . , bÿ 1gg:

Our interest here is in a sequence of random measures on [0, 1]; so we associate elements of

T (n), which may be thought of as indices of the vertices at distance n from the root of a tree,

with subintervals in the nth generation b-adic partition of [0, 1] by letting

Äãjn �
Xn

j�1

ã jb
ÿ j,
Xn

j�1

ã jb
ÿ j � bÿn

 !
� [0, 1]:

With each ®nite sequence (ãjn) 2 T (n) we associate a non-negative random variable
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W (ãjn) de®ned on a probability space (Ù, F , P); these random variables constitute the

cascade generator process. We shall make the assumption throughout that the

fW (ãjn): (ãjn) 2 T (n), 1 < n ,1g are independent and identically distributed with mean

one, and we de®ne a sequence of random measures on [0, 1] by

ìn(dx) �
Yn

j�1

W (ãj j) dx, x 2 Äãjn:

This sequence of measures converges almost surely in the weak topology to a random

measure ì1 since, for each bounded continuous function f on [0, 1], the sequence

f� 1

0
f dìng is an L1-bounded martingale with respect to the sequence fF ng of sub-ó-®elds of

F de®ned by

F n � ófW (ãj j): (ãj j) 2 T ( j), 1 < j < ng:
The limiting mass in the interval [0, 1] is denoted by Z1 � ì1([0, 1]). Kahane and PeyrieÁre

(1976) proved that this random variable is non-degenerate in the sense that EZ1. 0 if and

only if ÷9b(1ÿ) , 0, where

÷b(h) � logb EW h ÿ (hÿ 1), (1)

and Z1 has a ®nite moment of order h . 1 if and only if

h , hc � supfh > 1: ÷b(h) , 0g:
We shall make the assumption throughout this paper that ÷9b(1ÿ) , 0.

In cases when W has an atom at zero, such as the beta model that is discussed in Section

4, the cascade measure is intermittent, with zero values on sets of positive Lebesgue

measure. It can be shown (Gupta and Waymire 1993) that the proportion of non-zero

masses at level n given by

pn(0) � bÿn
X
ãjn

I(ì1(Äãjn) . 0)

satis®es

pn(0)

P[W . 0]n
! YP[Z1. 0]

almost surely, where Y is a random variable with mean one. Therefore, pn(0) converges to

zero almost surely whenever P[W . 0] , 1. This illustrates that random cascade models are

non-ergodic in that statistics computed from sample realizations do not converge to the

corresponding ensemble statistics. As discussed below, sample moments of random cascades

are also non-ergodic owing to a power-law spatial correlation structure of random cascades

(see, for example, Cates and Deutsch (1987), Platt and Family (1993) and Meneveau and

Chabra (1990)).

De®ne the hth moment M n(h) by

M n(h) �
X
ãjn

9ìh
1(Äãjn),
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where the prime indicates summation over those subintervals which meet the support of ì1.

The ReÂnyi exponent ô(h) is de®ned to be the limit (when it exists; see Theorem 2.2 below) of

the sequence

ôn(h) � log M n(h)

n log b
:

The results in Lemma 2.1 and Theorem 2.2 are from Holley and Waymire (1992).

Lemma 2.1. Let

Ln(h) �
X
ãjn

ìh
n(Äãjn):

Then

lim
n!1

Ln(h)

(EW hb1ÿh)n

exists almost surely and de®nes a random variable, say Y (h), such that EY (h) � 1.

Demonstration of this lemma uses the fact that fLn(h)=(EW hb1ÿh)n, n � 1, 2, . . .g is an

L1-bounded martingale with respect to fF ng.

Theorem 2.2. Assume that h , hc and EW 2h=(EW h)2 , b. Then, with probability 1,

(a)

ô(h): � lim
n!1 ôn(h) � ÷b(h)

and

(b)

n log b fôn(h)ÿ ô(h)g ! log[Y (h)EZ h
1]:

The proof of Theorem 2.2 involves showing that, with probability one,

M n(h)ÿ Ln(h) EZ h
1

(EW hb1ÿh)n
! 0

and using Lemma 2.1. Theorem 2.2 (a) gives strong consistency of ôn(h) considered as an

estimator of ÷b(h) in (1), and Theorem 2.2 (b) gives the scaling that is required to obtain a

non-degenerate difference ôn(h)ÿ ô(h). It would, however, be dif®cult to use this result to

obtain a con®dence interval for ô(h) � ÷b(h) because the distribution of Y (h) and the value of

EZ h
1 are not in general known explicitly. This result also does not have desirable invariance

properties because the distributions of Y (h) and Z1 depend on the distribution of W.

In practice it is more common to use M n(h) for several values of n to estimate ô(h)

using least squares. In particular, we shall consider least-squares estimation of ô(h) using

k � 1 pairs (log bn�m, log M n�m(h)), m � 0, 1, . . . , k. De®ne the (k � 1) 3 1 vectors
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~M n(h) � (log M n�m(h))T,

u � (0, 1, . . . , k)T,

1 � (1, 1, . . . , 1)T,

and

C(V) � 1

log b

(1=1TVÿ11)uTVÿ1 ÿ f1TVÿ1u=(1TVÿ11)2g1TVÿ1

uTVÿ1u=1TVÿ11ÿ (1TVÿ1u=1TVÿ11)2
,

where V is a non-singular (k � 1) 3 (k � 1) matrix to be speci®ed below. Then the least-

squares estimator of ô(h) is de®ned by

ô̂n(h; V) � C(V)T ~M n(h):

Our intention in this paper is to obtain a result on asymptotic normality for such an estimator.

The estimate of the asymptotic variance of this distribution will be shown to depend only on

observed masses ì1(Äãj j), n < j < n� k, and not on the distribution of W. The result may

therefore be readily used for interval estimation of ô(h). We shall present in Corollary 3.5 the

asymptotic distribution of both the ordinary least-squares estimator, for which V is the

identity matrix, and the generalized least-squares estimator, for which V is an estimator of the

covariance matrix of ~M n(h). The generalized least-squares estimator will have minimum

variance among linear unbiased estimators of ô(h).

3. Convergence of ReÂnyi exponent least-squares estimators

The basic idea behind the results that follow can be seen by expressing M n(h) in the form

(Holley and Waymire 1992, Proposition 2.3)

M n(h) �
X
ãjn

ìh
n(Äãjn)Z h

1(ãjn), (2)

where the bn random variables Z1(ãjn) are mutually independent, are independent of the

ìn(Äãjn) and are identically distributed as the limiting mass Z1. This representation of

M n(h) may be exploited to obtain results on the asymptotic distribution of functions of these

moments. In the treatment that follows, we shall consider a somewhat more general problem

by looking at a multivariate version of moments such as those in (2). Let Qãjn �
(Q

(0)

ãjn, . . . , Q
(k)

ãjn)T, 1 < n ,1 be independent and identically distributed (k � 1) 3 1, k > 0,

random vectors with ®nite second moments. De®ne

p � ( p(m))T � EQãjn,

A � var(Qãjn),

Xãjn(h) � (X
(m)

ãjn(h))T � ìh
n(Äãjn)Qãjn,
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Sn(h) � (S(m)
n (h))T �

X
ãjn

Xãjn(h):

In all that follows, in addition to assuming that the Qãjn are independent and identically

distributed with ®nite variance, we shall assume that the Qãjn are G n measurable, where

G n � ófW (ãj j): (ãj j) 2 T ( j), n , j ,1g:
The result in Proposition 3.1 gives a law of large numbers for randomly weighted sums

of the Qãjn. It is proved using a method similar to that used in proving Theorem 2.7 in

Holley and Waymire (1992).

Proposition 3.1. Assume that EW 2h=(EW h)2 , b and var(Q
(m)

ãjn) ,1, m � 0, 1, . . . , k. Then

Sn(h)

Ln(h)
! p almost surely.

The idea in obtaining weak convergence of ReÂnyi exponent estimators is to ®nd the

scaling that yields a non-degenerate limit of Lÿ1
n (h)Sn(h)ÿ p. Because the least-squares

estimator of ô(h) can be expressed in terms of log S(m)
n (h) for a particular choice of

variables Qãjn, we introduce a logarithmic transform as well. Let

~p � ( ~p(m))T � (log p(m))T,

~Sn � (~S(m)
n (h))T � (log S(m)

n (h))T,

D � diag
1

p(m)

� �
and

~A � DADT:

Proposition 3.2. Assume that EW 2h=(EW h)2 , b, and that there exists ä. 1 such that

EW 2hä=(EW 2h)ä , bäÿ1 and EjQ(m)

ãjn ÿ p(m)j2ä ,1, m � 0, 1, . . . , k. Then

Ln(h)

L1=2
n (2h)

(~Sn(h)ÿ log Ln(h) 1ÿ ~p)!d Nk�1(0, ~A),

where Nk�1(0, ~A) is a (k � 1) normal variate with mean 0 and variance ~A.

Proof. We ®rst note that Ln(h), Ln(2h), and the ìh
n(Äãjn) are measurable F n. Thus,

var
Ln(h)

L1=2
n (2h)

fLÿ1
n (h)Sn(h)ÿ pgjF n

 !
� 1

Ln(2h)

X
ãjn

varfìh
n(Äãjn)(Qãjn ÿ p)jF ng � A

and
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1

Lä
n(2h)

X
ãjn

ì2äh
n (Äãjn) EiQãjn ÿ pi2ä

� Ln(2äh)

Lä
n(2h)

EiQãjn ÿ pi2ä

� Ln(2äh)

(b1ÿ2äh EW 2äh)n

Ln(2h)

(b1ÿ2h EW 2h)n

� �ÿä
b1ÿä EW 2äh

(EW 2h)ä

 !n

EiQãjn ÿ pi2ä ! 0,

almost surely, using Lemma 2.1. We therefore apply a multivariate version of the Lindeberg±

Feller central limit theorem (see, for example, Ser¯ing (1980, Theorem 1.9.2B)) to establish

that, for every x 2 Rk�1,

lim
n!1 P

Ln(h)

L1=2
n (2h)

fLÿ1
n (h)Sn(h)ÿ pg < xjF n

 !
� Ö(x; 0, A)

almost surely, where the limit is a (k � 1)-variate normal cumulative distribution function

with mean 0 and variance A. The result in the proposition then follows using the dominated

convergence theorem after a logarithmic transformation (Ser¯ing 1980, Theorem 3.3A). u

In order to make this result useful for obtaining interval estimators of the ReÂnyi

exponent, we would like to express the estimated asymptotic variance in terms of Xãjn(h),

which will be assumed to be observable. De®ne the (k � 1) 3 1 vector

Kãjn(h) � (K
(m)

ãjn(h))T �
X

(m)

ãjn(h)

S(m)
n (h)

 !T

and let

Vn(h) �
X
ãjn

Kãjn(h)KT
ãjn(h):

Proposition 3.3. Assume that EW 4h=(EW 2h)2 , b and that EjQ(m)

ãjn ÿ p(m)j4 ,1, m �
0, 1, . . . , k. Then

L2
n(h)

Ln(2h)
Vn(h)ÿ 11T ! ~A

almost surely.

Proof. This follows directly from the result in Proposition 3.1. Note that EW 4h=(EW 2h)2 , b

implies that EW 2h=(EW h)2 , b. u

We now return to estimation of ô(h). The following theorem follows directly from

Propositions 3.2 and 3.3.

Theorem 3.4. Assume that EW 4h=(EW 2h)2 , b and that EjQ(m)

ãjn ÿ p(m)j4 ,1, m �
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0, 1, . . . , k. Let, cn be a random (k � 1) 3 1 vector such that cT
n ~p converges almost surely to

a ®nite limit, say è(h), and cT
n1! 0 almost surely. Then cT

n
~Sn(h) obeys

cT
n

~Sn(h)ÿ è(h)

(cT
nVn(h)cn)1=2

!d N (0, 1), (3)

where N (0, 1) is a standard normal variate.

Application to the least-squares estimator is given in the following corollary.

Corollary 3.5. Assume that 4h , hc and that EW 4h=(EW 2h)2 , b. De®ne

K�ãjn(h) �
M

(m)

ãjn(h)

M n�m(h)

 !T

and

V�n (h) �
X
ãjn

K�ãjn(h)K�ãjnT(h),

where M
(0)

ãjn(h) � ìh
1(Äãjn) and

M
(m)

ãjn(h) �
X

ãn�1:::ãn�m

ìh
1(Äãj(n�m)), m � 1, . . . , k:

Then the ordinary least-squares estimator of ô(h) obeys

ô̂n(h; I)ÿ ô(h)

fC(I)TV�n (h)C(I)g1=2
!d N (0, 1)

and the generalized least-squares estimator of ô(h) obeys

ô̂n(h; V�n (h))ÿ ô(h)

fC(V�n (h))TV�n (h)C(V�n (h))g1=2
!d N (0, 1):

Proof. This follows directly from Theorem 3.4 if we note that M n�m(h) may be written as

M n�m(h) �
X
ãjn

M
(m)

ãjn(h) �
X
ãjn

ìh
n(Äãjn)Q

�(m)

ãjn ,

where

Q
�(0)

ãjn � bÿkh
X

ãn�1:::ãn� k

Yn�k

j�n�1

W (ãj j)Z1(ãj(n� k))

0@ 1Ah

,

Q
�(k)

ãjn � bÿkh
X

ãn�1:::ãn� k

Yn�k

j�n�1

W h(ãj j)Z h
1(ãj(n� k))

and, for m � 1, . . . , k ÿ 1,
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Q
�(m)

ãjn � bÿkh
X

ãn�1:::ãn�m

Yn�m

j�n�1

W h(ãj j)
X

ãn�m�1:::ãn� k

Yn�k

j�n�m�1

W (ãj j)Z1(ãj(n� k))

0@ 1Ah

:

It is seen that Q
�(m)

ãjn de®ned this way are G n measurable and have ®nite fourth moments

because 4h , hc. The conditions C(I)T1 � 0, C(V�n (h))T1 � 0, C(I)T~p� � ô(h), and

C(V�n (h))T~p� � ô(h), where

~p�(m) � log EQ
�(m)

ãjn � m(log b)ô(h)� log EZ h
1

are easily veri®ed. h

4. Application to simulated cascades

The ®nite-sample properties of the least-squares estimators given by Corollary 3.5 are explored

in this section using simulated data from three cascade models (Table 1). The ®rst model, for

which the distribution of W is concentrated on 0 and 3
2
, is often referred to as a beta cascade. It has

been used to model energy dissipation in ¯uid turbulence (Novikov and Stewart 1964) and in the

modelling of spatial rainfall rates (Over and Gupta 1994), among other applications. For the

second model, W is gamma distributed and, for the third model, W is uniformly distributed on

[0, 2]. Values of hc and h4 for these models are given in Table 1, where h4 is de®ned by

h4 � sup h > 1:
EW 4h

(EW 2h)2
, b

( )
:

In order to give spatial structure to the data, all simulations are based on a two-dimensional

cascade with b � 4. The results of Section 3 remain valid for two-dimensional cascades on

the unit square by letting each cell of the two-dimensional model at level n be the Cartesian

product of two one-dimensional partitions of the unit interval.

For the models in Table 1, cascade realizations were generated down to level n � 6. The

high-frequency component Z1 cannot be exactly duplicated in practice. However, an

adequate approximation was obtained by generating independent `̀ mini-cascades'' for each

cell at level 6, down an additional seven levels, and computing the total mass of the

resulting mini-cascade. This algorithm was used by Over and Gupta (1994) to generate

cascade realizations.

Table 1. Cascade generators used for simulated data sets (b � 4 in all three cases)

Identi®er

Probability distribution function

of W ((f (w)) ÷(h) hc h4

Beta 1
3
I(w � 0) � 2

3
I(w � 3

2
) (h ÿ 1)(log4 3 ÿ 3

2
) �1 �1

Gamma (w=4) exp(ÿ2w) 1ÿ 3
2
h � log4 Ã(2 � h) 13.73 1.10

Uniform 1
2
I(0 , w , 2) 1 ÿ h/2 ÿ log4(h � 1) �1 3.23
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Examples of individual realizations are given in Figure 1 for the beta cascade and in

Figure 2 for the gamma cascade. These ®gures give the densities (mass per unit area)

b6ì1(Äãj6) at level n � 6. Several interesting properties of random cascades are illustrated

in Figures 1 and 2. For example, the support of the measure is almost surely given by a set

of Hausdorff dimension ÿ2÷9b(1), which is less than 2 except in the degenerate case when

Figure 1. Example realization from the beta cascade with n � 6.
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W � 1 with probability one (Kahane and Peyriere 1976). Therefore, the cascade measure is

singular with respect to Lebesgue measure. Mandelbrot (1974) shows that, as the scale

becomes ®ner and ®ner, the measure is dominated by a small proportion of cells in which

the masses are shrinking at a rate proportional to (bÿn)ÿ÷9b(1):
Non-ergodicity makes statistical inference for random cascade models problematic.

Figure 2. Example realization from the gamma cascade with n � 6.
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However, the results of Section 3 provide a methodology for placing con®dence intervals on

the ReÂnyi exponents for various values of h, which in turn can be used to make inferences

about the distribution of W based on a single-cascade realization. To investigate the

practical usefulness of the least-squares estimators de®ned in Corollary 3.5, 100

independent cascade realizations were generated from each of the models in Table 1. To

simplify the presentation, all the simulation results are with k � 1. Therefore, only two

values (log M n(h) and log M n�1(h)) are used to estimate ô(h) for any given h and n, in

which case the ordinary and generalized least-squares estimators are both given by

ô̂n(h) � ÿflog M n�1(h)ÿ log M n(h)g
log b

:

For these models, it was found that using only the two smallest scales (n� 1 and n) to

estimate ô(h) gives similar results to using three or more scales, and that the ordinary least-

squares and generalized least-squares estimators are similar. However, using other cascade

generators and considering scales ®ner than n � 6 may result in signi®cant differences

between the estimators with k � 1 and k . 1, and between the ordinary and generalized least-

squares estimators. Results are presented for n � 4 and n � 5. The results for n � 1, 2 and 3

are not given because the asymptotic theory was a poor approximation for n this small. In

practice, a reasonable approach would be to increase n until the estimator remained

approximately constant from one n to the next. To illustrate the effect of moment order,

results are given for h � 0:5, 2, 3 and 4, which bracket the values that are usually of most

interest in practice (the ReÂnyi exponent for h � 1 is identically zero; so h � 1 is not of

interest). In addition, results for h � 0 are presented for the beta model; in that case 2÷b(0)

can be interpreted as the fractal dimension of the support of ì1.

Table 2 gives summary statistics for the beta model computed from 100 realizations.

Included are the tenth, ®ftieth and ninetieth percentiles of the estimated ReÂnyi exponents, as

well as the tenth, ®ftieth and ninetieth percentiles of the normalized values

Table 2. Simulation results for the beta model

ô̂(h) ô̂(h) ô̂(h) z(h) z(h) z(h)

n h ô(h) (10%) (50%) (90%) (10%) (50%) (90%)

4 0 0.707 0.669 0.706 0.749 ÿ0.901 ÿ0.023 1.454

4 0.5 0.354 0.336 0.354 0.374 ÿ1.085 0.034 1.480

4 2 ÿ0.707 ÿ0.746 ÿ0.706 ÿ0.659 ÿ1.429 0.023 1.444

4 3 ÿ1.415 ÿ1.488 ÿ1.414 ÿ1.295 ÿ1.403 ÿ0.014 1.730

4 4 ÿ2.123 ÿ2.227 ÿ2.123 ÿ1.926 ÿ1.303 ÿ0.010 1.745

5 0 0.707 0.680 0.705 0.732 ÿ1.072 ÿ0.130 1.179

5 0.5 0.354 0.340 0.354 0.367 ÿ1.338 ÿ0.014 1.309

5 2 ÿ0.707 ÿ0.734 ÿ0.705 ÿ0.676 ÿ1.497 0.070 1.462

5 3 ÿ1.415 ÿ1.468 ÿ1.415 ÿ1.353 ÿ1.298 0.003 1.426

5 4 ÿ2.123 ÿ2.200 ÿ2.125 ÿ2.022 ÿ1.197 ÿ0.025 1.378
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zn(h) � ô̂n(h)ÿ ô(h)

fC(I)TV�n (h)C(I)g1=2

(see Corollary 3.5). Figure 3 gives normal probability plots of the z values for the case n � 5.

Because hc and h4 are both in®nite (Table 1), there are no restrictions on the h values for

which Corollary 3.5 holds. As seen in Table 2 and Figure 3, the asymptotic normal

approximation is accurate for all h values and can be used to obtain good con®dence

intervals on ô(h) for all moment orders.

The gamma model is fundamentally different from the beta model in that W is not

bounded above by b, in which case hc is ®nite. Mandelbrot (1974) refers to such cases as

irregular cascades. Realizations from the gamma model tend to be much more sparse and
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Figure 3. Normal probability plots of z values based on 100 simulations from the beta cascade.
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variable than realizations from the beta model, and the high-intensity cells tend to be more

isolated. For this model, hc=4 � 3:31 and h4 � 1:10; so Corollary 3.5 holds only for

h , 1:10. The estimation results in Table 3 and Figure 4 show good agreement with the

asymptotic normality when h � 0:5. However, higher values of h indicate asymmetric

heavy-tailed limit distributions.

Finally, for the uniform model we shall not show the probability plots but point out that

agreement with normality is generally good for h , h4 � 3:23, although there were two

outliers for h � 3, indicating that larger values of n may be necessary when h is close to

h4. Results for h � 4 revealed a pronounced deviation from normality, indicating that the

restriction h , h4 may be a necessary as well as suf®cient condition for the asymptotic

results in Corollary 3.5 to hold.
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Figure 4. Normal probability plots of z values based on 100 simulations from the gamma cascade.
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5. Conclusions

Accurate estimation of ReÂnyi exponents is of primary concern in determining the scaling

properties of random ®elds for resolutions that are smaller than the ®nest scale of

measurement. For example, in hydrologic modelling of rainfall-runoff processes, measure-

ment of average rainfall rates over large areas (say, 100 km2) are routinely available using

remote sensing or output from regional-scale climate models. However, the resolution of the

rainfall-runoff model may need to be much ®ner, of the order of 4 km2, to obtain accurate

representation of runoff events in small basins. Small differences in the ReÂnyi exponent can

have a large effect on the spatial distribution of rain rates over small areas. Therefore, it is

important to include uncertainty in estimated ReÂnyi exponents when exploring the spatial

variability of rainfall and runoff volumes at ®ne scales. For example, the uniform and gamma

models discussed in Section 4 have similar ReÂnyi exponents for small h but produce radically

different realizations. Using the gamma cascade as a model for spatial rainfall over a river

basin would produce much more variability in rainfall and ¯ood peaks in small subbasins

than would the uniform cascade model.

Estimation of ReÂnyi exponents in previous studies has been primarily using ordinary

least-squares regression of the logarithm of transformed moments versus the logarithm of

scale, without any objective measures for assessing goodness of ®t or estimation errors.

Efforts to assess estimation error have focused on Monte Carlo simulation studies which are

model speci®c (i.e. driven by a particular distribution of the cascade generator) and are

therefore not readily generalizable. In this paper, we have given a general methodology for

obtaining con®dence intervals or testing hypotheses regarding the ReÂnyi exponents of

random cascades. The technique can be used in conjunction with the ordinary least-squares

estimator as well as a generalized least-squares estimator that takes into account the

correlation between moments at different scales. The main result (Corollary 3.5) depends on

the distribution of the cascade generator W only through a restriction that h does not exceed

an upper bound that depends on W. Therefore, to apply the result in practice requires some

Table 3. Simulation results for the gamma model

ô̂(h) ô̂(h) ô̂(h) z(h) z(h) z(h)

n h ô(h) (10%) (50%) (90%) (10%) (50%) (90%)

4 0.5 0.455 0.452 0.455 0.459 ÿ1.160 0.097 1.493

4 2 ÿ0.708 ÿ0.771 ÿ0.713 ÿ0.632 ÿ2.556 ÿ0.155 2.040

4 3 ÿ1.207 ÿ1.484 ÿ1.258 ÿ0.970 ÿ4.850 ÿ0.571 2.693

4 4 ÿ1.546 ÿ2.222 ÿ1.778 ÿ1.223 ÿ9.703 ÿ1.378 2.486

5 0.5 0.455 0.453 0.455 0.457 ÿ1.273 0.034 1.554

5 2 ÿ0.708 ÿ0.764 ÿ0.716 ÿ0.642 ÿ2.507 ÿ0.288 1.483

5 3 ÿ1.207 ÿ1.461 ÿ1.262 ÿ1.047 ÿ3.247 ÿ0.668 1.594

5 4 ÿ1.546 ÿ2.138 ÿ1.730 ÿ1.322 ÿ6.124 ÿ1.355 1.670
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assurance that h does not exceed the critical upper limit. Although we are working on ways

to generalize the asymptotic results to include non-normal limit distributions for large h,

there are signi®cant dif®culties to overcome before a reasonable approach can be

formulated.
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