
Regression rank-scores tests against heavy-

tailed alternatives

JA NA J U R E CÏ KOVAÂ

Department of Probability and Statistics, Charles University, SokolovskaÂ 83, CZ-18675 Prague

8, Czech Republic. E-mail: jurecko@karlin.mff.cuni.cz

Statistical inference in the linear model based on the concept of regression rank scores is invariant to

the nuisance regression; hence regression rank-scores tests need no estimation of the nuisance

parameters. Such tests, already available in the literature, are manageable, asymptotically distribution-

free and have many convenient properties, but they are either censored or applicable only to light-

tailed distributions. To extend the universality of regression rank-scores tests, we propose modi®ed

tests applicable to heavy-tailed distributions including Cauchy. Depending on the alternative we want

to treat by the test, we censor the score generating function but the censoring is asymptotically

negligible. The proposed tests, being asymptotically distribution-free, are as ef®cient as the ordinary

rank tests without nuisance parameters, for a broad class of density shapes.
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1. Introduction

Consider the linear regression model

Yn � Xnâ� En, (1:1)

where Yn � Y � (Y1, . . . , Yn)9 is a vector of observations, Xn � X is an (n 3 p) known

design matrix, â 2 R p is an unknown parameter and En � (E1, . . . , En)9 is the vector of

i.i.d. errors with (generally unknown) distribution function F. We assume that â1 is an

intercept, that is, the ®rst column of Xn is 1n.

Regression rank (RR) scores, introduced by Gutenbrunner (1986) and studied by

Gutenbrunner and JurecÏkovaÂ (1992), are de®ned as the optimal solution ân(á) �
(ân1(á), . . . , ânn(á)) of the parametric linear program

Y9â(á) :� max

X9(â(á)ÿ (1ÿ á))1n � 0 (1:2)

â(á) 2 [0, 1]n, 0 ,á, 1:

They are dual to the regression quantiles of Koenker and Bassett (1978) in the sense of linear

programming: the regression á-quantile â̂n(á) (0 ,á, 1) for the model (1.1) is a solution of

the minimization
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Xn

i�1

rá(Yi ÿ x9it) :� min (1:3)

with respect to t 2 R p, where x9i is the ith row of Xn and

rá(z) � zØá(z), Øá(z) � áÿ I[z , 0], z 2 R1; (1:4)

the minimization (1.3) could be further written in the parametric linear programming form

á19nr� � (1ÿ á)19nrÿ :� min

Xâ� r� ÿ rÿ � Y (1:5)

(â, r�, rÿ) 2 R p 3 Rn
� 3 Rn

ÿ, 0 ,á, 1

and the regression quantile â̂(á) coincides with the component â of the optimal solution.

In the location submodel with X � 1n we have âni(á) � a�n (Ri, á), where Ri is the rank

of Yi among Y1, . . . , Yn and

a�ni(Ri, á) �
0 if Ri , ná
Ri ÿ ná if (Ri ÿ 1)=n < á < Ri=n

1 if á, (Ri ÿ 1)=n, i � 1, . . . , n:

8<: (1:6)

Rank scores a�n (Ri, á) were ®rst used by HaÂjek (1965) as a starting point for nonlinear rank

tests. Summarizing, we could say that the RR scores and regression quantiles are dual in the

linear programming sense, but this duality also extends the duality of ranks and of order

statistics from the location to the linear regression model.

Gutenbrunner and JurecÏkovaÂ (1992) proposed some tests based on RR scores generated

by truncated score functions. A general class of RR tests, parallel to such classical rank

tests as the Wilcoxon, normal scores and median, was constructed in Gutenbrunner et al.

(1993). The same paper also considers the computational aspects of regression quantiles and

RR scores, applies the proposed tests to the tobacco data of Steel and Torrie (1960) and

numerically compares the tests with the aligned rank tests of Adichie (1984), along with a

sensitivity study of the situation when the nuisance parameters in the aligned tests are

estimated by means of least squares. The detailed description of the computational

algorithms can be found in Koenker and d'Orey (1987; 1994) and in Osborne (1992).

Moreover, RR tests of the Kolmogorov±Smirnov type were proposed by JurecÏkovaÂ (1992)

and tests of homoscedasticity in the linear model based both on RR scores and regression

quantiles were proposed by Gutenbrunner (1994). Typically, the tests based on RR scores

apply to the model

Y � Xâ� Zä� E (1:7)

with X of order n 3 p and Z of order n 3 q, where one wants to test the hypothesis

H0: ä � 0, â unspecified: (1:8)

The test criteria depend on RR scores calculated under H0, that is, under the submodel (1.1).

By (1.2), ân(á) is invariant to the regression with the matrix X in the following sense:

ân(á, Y� Xb) � ân(á, Y) 8b 2 R p; (1:9)

660 J. JurecÏkovaÂ



this property is parallel to the invariance of the ordinary ranks to the shift in location. Hence,

the tests based on ân(á) are equally invariant and as such they do not require an estimation of

the nuisance â. The parallel with the rank tests goes even further; choosing a non-decreasing,

square-integrable score generating function j: (0, 1) 7! R1 as the Wilcoxon, median or

inverse normal, we compute the scores b̂n1 . . . , b̂nn generated by j in the following way

b̂ni � ÿ
�1

0

j(u) dâni(u), i � 1, . . . , n: (1:10)

The tests are then based on the linear regression rank-scores statistics Sn � nÿ1=2
Pn

i�1dni b̂ni

with appropriate coef®cients dni. We are able to prove that, under some regularity conditions,

the asymptotic behaviour of Sn is analogous to that of the simple linear rank statistics, a basis

of rank tests; in fact both statistics admit the same asymptotic representations. This in turn

implies that the Pitman ef®ciencies of the tests based on RR scores coincide with those of the

corresponding rank tests being used under â � 0 (or under known â). We believe that the

regularity conditions leading to our results could still be weakened; simulation studies (see

Hallin et al. 1997) show that the tests work well even under densities not covered by our

conditions.

While the tests proposed by Gutenbrunner and JurecÏkovaÂ (1992), Gutenbrunner et al.

(1993) and JurecÏkovaÂ (1992) are constructed under a deterministic regression matrix, the

situation that either of the matrices X, Z in (1.7) is random is treated by Picek (1997). Koul

and Saleh (1995) extended the RR scores and regression quantiles to the autoregressive time

series model, introducing the autoregression rank scores. Hallin and JurecÏkovaÂ (1996)

considered the tests of the linear hypotheses in the autoregressive models, based on

autoregression rank scores, and derived their asymptotic properties under the innovation

densities with exponentially decreasing tails. The good performance of the tests is illustrated

in Hallin et al. (1997) on the simulated AR series with the normal, Laplace and Cauchy

innovation densities; the tests are then applied to the dataset of daily maximum

temperatures, measured in three stations in South Moravia in the period 1961±90. The

tests of independence of two time series based on autoregression rank scores, extensions of

the Spearman rank correlation and other tests, are constructed in Hallin et al. (1999).

The tests described in Gutenbrunner and JurecÏkovaÂ (1992) and Gutenbrunner (1994) are

generated by censored score functions and thus cannot compete with the usual rank tests.

On the other hand, the regularity conditions of Gutenbrunner et al. (1993) and of JurecÏkovaÂ

(1992) exclude distribution shapes with the tails of the t distribution with 4 degrees of

freedom and heavier and Hallin and JurecÏkovaÂ (1996) cover only the distributions with

exponentially decreasing tails. Noting this situation, we take as a primary goal of the

present paper the extension of the universality of the RR tests as close as possible to that of

the rank tests. A modi®ed de®nition of RR criteria, along with re®ned asymptotics, makes

the tests applicable to heavy-tailed distributions including Cauchy. In this respect, the RR

tests could compete well with the aligned rank tests studied by Adichie (1984) and by Puri

and Sen (1985) or with the tests based on R-estimates studied by Hettmansperger (1984);

and this not only theoretically, but also in applications.

We restrict our considerations to the heavy-tailed alternatives with tails heavier than the t
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distribution with 5 degrees of freedom. The score function of the test is censored according

to the tails which we want to cover by the test. The censoring is asymptotically negligible

as n!1, and due to this fact the tests are as asymptotically ef®cient (and distribution-

free) as the ordinary rank tests without nuisance parameters. Notice that, in the case of

heavy-tailed alternatives, the eventual estimator of the nuisance parameter cannot be the

least-squares estimator but a highly robust estimator. If it is suf®cient to test (1.8) against

the alternatives with lighter tails, we use the uncensored tests described in Gutenbrunner et

al. (1993).

The asymptotic properties of ân(á) and of linear RR statistics are derived in Section 3.

The proofs of two technical lemmas are postponed to the Appendix. The main tool is the

chaining argument combined with probability inequalities for bounded random variables

speci®ed to heavy-tailed densities. The tests of H0 and their asymptotic behaviour are

described in Section 4.

2. Asymptotic behaviour of regression rank scores

Consider the linear model (1.1) with i.i.d. errors E1, . . . , En with a common distribution

function F, on which we impose the following regularity conditions:

(F.1) F is absolutely continuous with absolutely continuous, positive and bounded density

f (x) and the derivatives f 9, f 0 of f are bounded almost everywhere in x 2 R1.

(F.2) f is monotonically decreasing to 0 as x! ÿ1 and x!1,

lim
x!ÿ1

ÿa log F(x)

logjxj � 1, lim
x!1

ÿa log(1ÿ F(x))

log x
� 1, (2:1)

for some a (the same in each tail), 0 , a ,1.

Fix b satisfying 0 , ä < bÿ a < a� ä, and denote

á�n � nÿ1=(1�2b) (2:2)

and

óá � (á(1ÿ á))1=2

f (Fÿ1(á))
, 0 ,á, 1: (2:3)

The following regularity conditions will be imposed on the design matrix X:

(X.1) xi1 � 1, i � 1, . . . , n.

(X.2) limn!1Dn � D, where Dn � nÿ1X9nXn and D is a positive de®nite ( p 3 p) matrix.

(X.3) nÿ1
Pn

i�1 ixni i4 � O(1) as n!1.

(X.4) max1<i<n ixnii � O(nÄ) as n!1, where

Ä � bÿ aÿ ä

1� 2b
: (2:4)

Notice that Ä, 1
4
; actually,
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bÿ aÿ ä

1� 2b
ÿ 1

4
< ÿ 1� 2ä

1� 2b
, 0:

While a could be characterized as the tail-exponent of the distribution (for example, a � 1

for the Cauchy distribution and a � 1=m for the t distribution with m degrees of freedom),

censoring at the point (2.2) with b . a allows us to be less restrictive to ixni is (cf. (X.4)),

which is convenient in some situations and models.

The following lemma describes some properties of densities satisfying (F.1) and (F.2),

which we shall use below.

Lemma 2.1. Let the density f satisfy (F.1) and (F.2). Then

(i) lim
u!0

f (Fÿ1(u)

ua�1
� 1

a
, lim

u!1

f (Fÿ1(u)

(1ÿ u)a�1
� 1

a
; (2:5)

(ii) lim
x!ÿ1(ÿx)1=a F(x) � 1, lim

x!1x1=a(1ÿ F(x)) � 1; (2:6)

(iii) lim
u!0

u
f 9(Fÿ1(u))

f 2(Fÿ1(u))
� a� 1, lim

u!1
(1ÿ u)

ÿ f 9(Fÿ1(u))

f 2(Fÿ1(u))
� a� 1: (2:7)

Proof. (i) We obtain, from (F.2),

lim
u!0

ÿa log u

log(ÿFÿ1(u))
� 1, (2:8)

hence using l'HoÃpital's rule leads to the ®rst part of (i); the second part is analogous.

(ii) By (2.5) and (2.8),

lim
x!ÿ1

f (x)

(F(x))a�1
� 1

a
, lim

x!ÿ1 ÿax
f (x)

F(x)

� �
� 1,

hence

1

a
� lim

x!ÿ1
f (x)

(F(x))a�1
� lim

x!ÿ1
1

ÿax(F(x))a
,

and this gives the ®rst part of (2.6); the second part is analogous.

(iii) By (2.5) and by l'HoÃpital's rule,

lim
u!0

u
f 9(Fÿ1(u))

f 2(Fÿ1(u))
� a� 1

a
lim
u!0

ua�1

f (Fÿ1(u))
� a� 1,

and this gives the ®rst part of (2.7). The second part is analogous. h

Let â̂n(á) be the á-regression quantile in the model Y � Xâ� E. The ®rst theorem gives

an asymptotic representation of â̂n(á), uniform over á�n < á < 1ÿ á�n , and the rate of

consistency of â̂n(á). It extends Theorem 3.1 of Gutenbrunner et al. (1993) to a broad class

of distributions covered by conditions (F.1)±(F.2). Generally, the heavier the tails of the

distribution we admit, the more restricted is the interval [á�n , 1ÿ á�n ].
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Theorem 2.1. Under (F.1)±(F.2) and (X.1)±(X.4),

sup
á�n<á<1ÿá�n

ióÿ1
á (â̂n(á)ÿ â(á)i � Op(nÿ1=2Cn) (2:9)

and

n1=2óÿ1
á (â̂n(á)ÿ â(á)) � nÿ1=2(á(1ÿ á))ÿ1=2Dÿ1

n

Xn

i�1

xniøá(Eiá)� op(1) (2:10)

uniformly in á�n < á < 1ÿ á�n , where â(á) � (â1 � Fÿ1(á), â2, . . . , â p)9, Eiá �
Ei ÿ Fÿ1(á) and Cn � C(log log n)1=2, 0 , C ,1.

The second theorem gives an approximation of the RR scores process by an empirical

process, uniform on [á�n , 1ÿ á�n ]. Let dn � (d n1, . . . , dnn)9 be a sequence of vectors

satisfying

(D.1) Ã2
n � nÿ1 idn ÿ d̂n i2 ! Ã2 as n!1, 0 ,Ã,1 where d̂n � Xn(X9nXn)ÿ1X9ndn.

(D.2) nÿ1
Pn

i�1jdni ÿ d̂ nij4 � O(1) as n!1.

(D.3) max1<i<njdni ÿ d̂ nij � O(nÄ) with Ä(, 1=4) of (X.4).

Theorem 2.2. Under (F.1)±(F.2), (X.1)±(X.4) and (D.1)±(D.3),

sup
á�n<á<1ÿá�n

nÿ1=2

����Xn

i�1

[dni(âni(á)ÿ (1ÿ á))ÿ (dni ÿ d̂ ni)~ai(á)]

����
( )

� op(Cn(log n)1=4 nÿ
1
8
�Ä

4 )

as n!1, (2:11)

where

~ai(á) � I[Ei . Fÿ1(á)], 0 ,á, 1, i � 1, . . . , n: (2:12)

The third theorem extends the uniform approximation of the RR process to the whole

segment [0, 1]; the price paid for this extension is a more restrictive condition on the

distribution tails ± but still weaker than in Gutenbrunner et al. (1993). Fortunately, the tests

constructed in Section 4 do not need this stronger result and thus their asymptotics hold

under the conditions of Theorem 2.2 (and under a Chernoff±Savage type condition on the

score generating function).

Theorem 2.3. Assume conditions (F.1)±(F.2), (X.1)±(X.4) and (D.1)±(D.3) with constants a,

b, ä satisfying additional restrictions

0 , a , b , 1
2

0 , bÿ aÿ ä, 1
2
ÿ b: (2:13)

Then, as n!1,

sup
0<á<1

nÿ1=2

����Xn

i�1

[dni(âni(á)ÿ (1ÿ á))ÿ (dni ÿ d̂ ni)~ai(á)]

����
( )

!p 0: (2:14)
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Moreover, the process

Ãÿ1 nÿ1=2
Xn

i�1

dni(âni(á)ÿ (1ÿ á)): 0 < á < 1

( )
(2:15)

converges to the Brownian bridge in the Prokhorov topology on C[0, 1].

Before proving Theorems 2.1±2.3, we shall ®rst state a crucial approximation of the

criterion in (1.3) by a quadratic function of t, uniform in an appropriate neighbourhood of â
and for á 2 [á�n , 1ÿ á�n ].

Lemma 2.2. For t 2 R p and á 2 (0, 1), denote

rn(t, á) � óÿ1
á

Xn

i�1

[rá(Eiá ÿ nÿ1=2óáx9it)ÿ rá(Eiá)]

� nÿ1=2t9
Xn

i�1

xiøá(Eiá)ÿ 1

2
(á(1ÿ á))1=2t9Dnt, (2:16)

with

øá(z) � áÿ I[z , 0], z 2 R1 (2:17)

and

Eiá � Ei ÿ Fÿ1(á), i � 1, . . . , n, 0 ,á, 1: (2:18)

Then, as n!1,

supfjrn(t, á)j: á�n < á < 1ÿ á�n , iti < Cng � Op(C3=2
n (log n)1=2 nÿ

1
4
�Ä

2 ): (2:19)

As a consequence, we obtain the following approximation:

Lemma 2.3. Let fdng1n�1 be a sequence of vectors satisfying (D.1)±(D.3). Then, under the

(F.1)±(F.2) and (X.1)±(X.4),

sup
iti<C n,á�n<á<1ÿá�n

nÿ1=2

����Xn

i�1

(dni ÿ d̂ ni)[øá(Eiáÿnÿ1=2óáx9it)ÿ øá(Eiá)]

����
� op(Cn(log n)1=4 nÿ

1
8
�Ä

4 ) as n!1: (2:20)

Lemmas 2.2 and 2.3 are proved in the Appendix.

Proof of Theorem 2.1. The theorem follows from Lemma 2.2 by convexity arguments due to

Pollard (1991) similarly as in the proof of Theorem 3.1 in Gutenbrunner et al. (1993). Hence,

we omit the details. h
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Proof of Theorem 2.2. First, note that
Pn

i�1 d̂ ni � 0 by (D.1) and that (1.2) implies thatPn
i�1 d̂ ni(âni(á)ÿ (1ÿ á)) � 0. Then we obtain (2.11) if we insert n1=2óá(â̂(á)ÿ â(á))

[� Op((log log n)1=2)] in (2.20) and note that

sup

����nÿ1=2
Xn

i�1

dniI[Yi � x9iâ̂]

����: á�n < á < 1ÿ á�n
( )

� op(nÿ
1
2
�Ä): (2:21)

h

Proof of Theorem 2.3. By Theorem 2.2, it is suf®cient to consider the behaviour of the

process in (2.14) on the intervals [0, á�n ] and [1ÿ á�n , 1], where we have (with

d�ni � dni ÿ d̂ni)

sup
0<á<á�n

����nÿ1=2
Xn

i�1

d�ni âni(á)

���� � sup
0<á<á�n

����nÿ1=2
Xn

i�1

d�ni(1ÿ âni(á))

����
� O(n

1
2
�Äá�n ) � o(1) (2:22)

and

sup
0<á<á�n

����nÿ1=2
Xn

i�1

d�ni~ai(á)

���� � sup
0<á<á�n

����nÿ1=2
Xn

i�1

d�ni(1ÿ ~ai(á)� á)

����
< max

1<i<n
jd�nijOp([á�n (1ÿ á�n )]1=2) � op(1); (2:23)

we obtain analogous bounds for 1ÿ á�n < á < 1. h

3. Linear regression rank statistics and regression rank tests

The close correspondence of RR scores to HaÂjek scores (de®ned in (1.6)), calculated for the

(unobservable) errors Ei, explains why tests based on RR scores are as Pitman ef®cient as the

corresponding ordinary rank tests. This relation is characterized in the following crucial

theorem.

Theorem 3.1. Let Rn, . . . , Rn denote the ranks of errors E1, . . . , En and let a�n (Ri, á),

i � 1, . . . , n, 0 < á < 1, denote the HaÂjek scores de®ned in (1.6). Then:

(i) Under the conditions of Theorem 2.2,

sup
á�n<á<1ÿá�n

����nÿ1=2
Xn

i�1

[dni âni(á)ÿ (dni ÿ d̂ ni)a
�
n (Ri, á)]

����!p 0, as n!1: (3:1)

(ii) Under the conditions of Theorem 2.3,

sup
0<á<1

����nÿ1=2
Xn

i�1

[dni âni(á)ÿ (dni ÿ d̂ ni)a
�
n (Ri, á)]

����!p 0, as n!1: (3:2)
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Proof. The propositions follow from Theorems 2.2 and 2.3 and from approximations in

HaÂjek (1965). h

We are now in a position to de®ne the modi®ed tests based on linear RR statistics and

show that they are asymptotically distribution-free for the class of distributions covered by

(F.1)±(F.2). Choose a score generating function j(t), non-decreasing and square-integrable

on (0, 1); let jn be j censored at á�n , 1ÿ á�n , that is,

jn(t) �
j(á�n ), if 0 < t ,á�n ,

j(t), if á�n < t < 1ÿ á�n ,

j(1ÿ á�n ), if 1ÿ á�n , t < 1:

8<: (3:3)

Let ân(á) � (ân1(á), . . . , ânn(á))9 be the RR corresponding to the model Y � Xâ� E and

let b̂ni � (b̂n1, . . . , b̂nn)9 be the scores generated by jn in the following way:

b̂ni � ÿ
�1

0

jn(t) dâni(t), i � 1, . . . , n: (3:4)

Let fdng1n�1 be a sequence of n-dimensional vectors dn orthogonal to Xn, n � 1, 2, . . . .

Consider the linear RR statistics

Snn � nÿ1=2
Xn

i�1

dni b̂ni, n � 1, 2, . . . : (3:5)

The results of Section 2 enable us to derive an asymptotic representation of Snn by a sum of

independent summands, parallel to that derived by HaÂjek (1961). This, in combination with

Theorem 3.1, enables us to incorporate HaÂjek's results into the asymptotic theory of tests

based on regression rank scores.

The asymptotic representation of linear RR statistics will be derived for score generating

functions satisfying a condition of Chernoff±Savage type, including the inverse normal

distribution function.

Theorem 3.2. Let j(t), 0 , t , 1, be a non-decreasing square-integrable function such that

j9(t) exists for 0 , t ,á0 and 1ÿ á0 , t , 1, 0 ,á0 , 1
2
; in this domain j9(t) satis®es

jj9(t)j < c(t(1ÿ t))ÿ1ÿä� , (3:6)

where c . 0 and 0 , ä�, (1� 2a)=8. Then, under (F.1)±(F.2), (X.1)±(X.4) and (D.1)±(D.3),

Snn � Tn � op(1) as n!1, (3:7)

where

Tn � nÿ1=2
Xn

i�1

dnij(F(Ei)): (3:8)

Proof. Notice that âni(t)ÿ ~ai(t) � 0 at t � 0, 1. Integrating by parts, we obtain
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ÿ
�1

0

jn(t) d(âni(t)ÿ ~ai(t)) �
�1

0

(âni(t)ÿ ~ai(t)) djn(t)

�
�1ÿá�n

á�n
(âni(t)ÿ ~a(t)) dj(t): (3:9)

By Theorem 2.2 and by the dominated convergence theorem,

nÿ1=2
Xn

i�1

dni

�1ÿá0

á0

(âni(t)ÿ ~ai(t)) djn(t) � op(1): (3:10)

Moreover,����nÿ1=2
Xn

i�1

dni

�á0

á�n
(âni(t)ÿ ~ai(t)) djn(t)

���� <

�����á0

á�n
(t(1ÿ t))ÿ1ÿä� nÿ1=2

Xn

i�1

dni[âni(t)ÿ ~a(t)] dt

����
< K

���[tÿä
�
]á0

á�n

���op(C2
n(log n)1=2 nÿ

1
8
�Ä

4 ) � op(1), (3:11)

and we obtain an analogous conclusion for the integral over (1ÿ á0, 1ÿ á�n ). Thus,

combining (3.9)±(3.11), we obtain

Snn � Tnn � op(1) (3:12)

as !1, where

Tnn � nÿ1=2
Xn

i�1

dni

�1

0

~ai(t) djn(t) � nÿ1=2
Xn

i�1

dnijn(F(Ei)): (3:13)

Furthermore,

var(Tnn ÿ Tn)2 < nÿ1
Xn

i�1

d2
ni

�á�n
0

[j(t)ÿ j(á�n )]2dt �
�1

1ÿá�n
[j(t)ÿ j(1ÿ á�n )]2dt

( )

� Ã2o(1) as n!1: (3:14)

(3.12) and (3.14) then imply (3.7). h

Let us now consider the extended model (1.7) and the problem of testing the hypothesis

H0: ä � 0, â unspeci®ed. Let ân(á) denote the regression rank scores corresponding to the

model (1.1) under the hypothesis. Choose a score generating function j satisfying the

conditions imposed in Theorem 3.1; let jn be the function de®ned in (3.3) and let b̂ni be

the scores de®ned in (3.4). Consider the vector of linear regression rank-scores statistics

Snn � nÿ1=2(Zn ÿ Ẑn)9b̂n, (3:15)

where Ẑn � Xn(X9nXn)ÿ1X9nZn. Furthermore, denote

Qn � nÿ1(Zn ÿ Ẑn)9(Zn ÿ Ẑn): (3:16)
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We propose the statistic

Vn � S9nnQÿ1
n Snn=A2(j), (3:17)

with A2(j) � � 1

0
(j(u)ÿ j)2 du, j � � 1

0
j(u) du, as the test criterion for H0. The following

theorem shows that the test of H0 based on Vn, which rejects H0 provided Vn exceeds the

critical value of the ÷2
q distribution, is asymptotically distribution-free for the class of

distributions satisfying (F.1)±(F.2) and its Pitman ef®ciency coincides with that of the

ordinary rank test with the same score function.

Theorem 3.3. Consider the model Yn � Xnâ� Znä� En, where Xn is of order (n 3 p), Zn

is of order (n 3 q), Xn satis®es (X.1)±(X.4), and Xn and Zn satisfy

max
1<i<n

izni i � O(nÄ), (3:18)

with Ä from (X.4), z9ni being the ith row of Zn, and

Qn ! Q as n!1, (3:19)

where Q is a positive de®nite (q 3 q) matrix. Assume that the distribution function F of the

errors satis®es (F.1)±(F.2). Then:

(i) under H0, the statistic Vn de®ned in (3.17) has asymptotically ÷2 distribution with q

d.f.;

(ii) if, moreover, F has positive and ®nite Fisher information,

0 , I(F) �
�

f 9(x)

f (x)

� �2

dF(x) ,1,

then, under Hn: ä � nÿ1=2ä0, ä0 2 Rq ®xed, â 2 R p unspeci®ed, Vn has an asymptotic

non-central ÷2 distribution with q d.f. and non-centrality parameter

ç2 � ä90Qä0[ã2(j, F)=A2(j)], (3:20)

with

ã(j, F) � ÿ
�1

0

j(t) d f (Fÿ1(t)): (3:21)

Proof. Part (i) follows from Theorem 3.2. Part (ii) follows from Theorem 3.1 with an

application of the contiguity and the asymptotic theory of rank tests under contiguous

alternatives (HaÂjek 1962). h

As an illustration, apply the above results to the k-sample model

Yij � â0 � âi � Eij, j � 1, . . . , ni, i � 1, . . . , k, (3:22)

with â1 � 0. We want to test the hypothesis H : âk � 0, and admit that the distribution of the

errors may be as heavy as Cauchy. The regression rank scores under the submodel of (3.22)
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with â1 � âk � 0 are such that (âi1(á), . . . , âini
) generate the same ranks of the ith sample

Yi1, . . . , Yini
, i � 2, . . . , k ÿ 1, as the HaÂjek scores, while

(â11(á), . . . , â1n1
(á), âk1(á), . . . , âkn k

(á))

analogously generate the ranks in the combined ®rst and kth samples. On the other hand,

a � 1 in (F.2) for the Cauchy tails and hence á�n � nÿ1=(3�2ä), ä. 0. If we take the Wilcoxon

score function j(á) � áÿ 1
2
, 0 < á < 1, we ®nally obtain the two-sample Wilcoxon test of

the shift between the ®rst and the kth samples, censored for the observations with the ranks

below [ná�n ]� 1 or above nÿ [ná�n ].

Appendix: Proofs of Lemmas 2.2 and 2.3

Proof of Lemma 2.2. For a ®xed t 2 R p, denote

åni � åi � nÿ1=2óáx9it, i � 1, . . . , n: (A:1)

Notice that max1<i<njåióÿ1
á j � O(nÿ

1
2
�Ä) by (2.4). Moreover, we obtain from Lemma 2.1 that

óá(á(1ÿ á))
1
2
�a ! a, as á! 0, 1, (A:2)

and hence, noting (X.3) and (X.4),

max
1<i<n

jåij � O(Cnnÿ
1
2
�Ä(á(1ÿ á))ÿ

1
2
ÿa) as á! 0, 1: (A:3)

Denote, for i � 1, . . . , n,

Qi(t, á) � Qi � óÿ1
á [rá(Eiá ÿ åi)ÿ rá(Eiá)� åiøá(Eiá)]: (A:4)

Then we obtain by simple arithmetic that

Qi � óÿ1
á f(Eiá ÿ åi)I[åi , Eiá , 0]� (åi ÿ Eiá)I[0 , Eiá , åi]g: (A:5)

Hence, by (A.1)±(A.5), for åi . 0,

óáEQi �
� F ÿ1(á)�åi

F ÿ1(á)

(åi ÿ x� Fÿ1(á)) dF(x)

�
� F ÿ1(á)�åi

F ÿ1(á)

�x

F ÿ1(á)

f (y) dy dx

� f (Fÿ1(á))

�F ÿ1(á)�åi

F ÿ1(á)

(xÿ Fÿ1(á)) dx�
�F ÿ1(á)�åi

F ÿ1(á)

�x

F ÿ1(á)

� y

F ÿ1(á)

f 9(z) dz dy dx (A:6)

� f (Fÿ1(á))
å2

i

2
�
�F ÿ1(á)�åi

F ÿ1(á)

�x

F ÿ1(á)

� y

F ÿ1(á)

f 9(z) dz dy dx:

Thus, by Lemma 2.1(iii), given ç. 0, there exists á0 such that, for 0 ,á,á0,
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����óáEQi ÿ f (Fÿ1(á))
å2

i

2

���� < (1� ç)(1� a)

�F ÿ1(á)�åi

F ÿ1(á)

�x

F ÿ1(á)

�F( y)

á

f (Fÿ1(u)

u
du dy dx; (A:7)

and further by Lemma 2.1(i), for 0 ,á,á0,����óáEQi ÿ f (Fÿ1(á))
å2

i

2

���� < K1(1� ç)2

�F ÿ1(á)�åi

F ÿ1(á)

�x

F ÿ1(á)

�F( y)

á
ua du dy dx

< K2[F(Fÿ1(á)� åi)]
1�2aå3

i (A:8)

< K3á
(1�a)å3

i ,

where K1, K2, K3 are positive constants. We obtain analogous inequalities for åi , 0,

i � 1, . . . , n.

Hence, combining (A.1), (A.2), (A.6)±(A.8), we arrive at����Xn

i�1

EQi ÿ å2
i

2
óÿ1
á f (Fÿ1(á))

� ����� � O(C3
n nÿ1=2(á(1ÿ á))ÿa) (A:9)

uniformly for á�n < á < 1ÿ á�n , as n!1. We shall ®rst prove that

P

����Xn

i�1

(Qi ÿ EQi)

���� > çBn

( )
< 2nÿç

2=3, (A:10)

for any ç. 0 and n > n0, where

Bn � nÿ1=4�Ä=2C3=2
n (log n)1=2: (A:11)

Actually, by the Bernstein±Bennett inequality (see (2.13) in Hoeffding 1963),

P
Xn

i�1

(Qi ÿ EQi) . nt

( )
< expfÿôh(ë)g, (A:12)

for t , b, provided Qi ÿ EQi < b, i � 1, . . . , n, where

ô � nt

b
, ë � bt

ó 2
, ó 2 � 1

n

Xn

i�1

var Qi, h(ë) � ë

2(1� 1
3
ë)
: (A:13)

By (A.5) and (A.8), as n!1,

Qi < nÿ1=2�ÄCn, EQi < nÿ1�2ÄC2
n(1� o(1)) (A:14)

uniformly in á�n < á < 1ÿ á�n , hence

b � bn � K1 nÿ1=2�ÄCn for n > n0: (A:15)

Moreover, (A.5) and (A.8) imply

var Qi < EQ2
i < óÿ1

á jåijEQi, i � 1, . . . , n,

hence
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ó 2 < K2 nÿ3=2C3
n for n > n0: (A:16)

Put ntn � çBn, that is, t � tn � çnÿ5=4�Ä=2C3=2
n (log n)1=2. Then tn , bn, ë � bn tn=ó 2 and

(4.12) gives

P
Xn

i�1

(Qi ÿ EQi)) > çBn)

( )
< exp ÿ nt2

n

2
.

1

ó 2 � bt

3

8<:
9=;

< exp ÿ 2

3

ç2

2
. log n

� �
< nÿç

2=3 (A:17)

for n > n0. Because Qi are non-negative random variables, we obtain an analogous inequality

for P(
Pn

i�1(Qi ÿ EQi) < ÿçBn) < nÿç
2=3 and thus we arrive at (A.10). Hence, ®nally,

regarding (2.16), (A.1), (A.9), (A.11) and (A.10), we get

Pfjrn(t, á)j > (ç� 1)Bng < 2nÿç
2=3 (A:18)

for n > n0, any ç. 0 and Bn of (A.11).

Let us now choose intervals [áí, áí�1] of length nÿ5 covering [á�n , 1ÿ á�n ] and balls of

radius nÿ5 covering ft: iti < Cng. Let (á1, á2) 2 (áí, áí�1) and let t1, t2 lie in the same

ball. Then, by (A.2),

j(óá1
=óá2

)ÿ 1j � O(nÿ4ÿ(10b=(1�2b))): (A:19)

For ®xed i, 1 < i < n, write

jQi(t2, á2)ÿ Qi(t1, á1)j < jQi(t2, á2)ÿ Qi(t1, á2)j � jQi(t1, á2)ÿ Qi(t1, á2)j (A:20)

and consider the terms on the right-hand side separately. By (A.20), (A.1) and (2.4),

jQi(t2, á2)ÿ Qi(t1, á2)j < óÿ1
á jåiá2 t2

ÿ åiá2 t1
j < nÿ1=2jx9i(t2 ÿ t1)j � O(nÿ5:25): (A:21)

For the corresponding centring term we obtain the bound���� 12 (å2
iá2 t2
ÿ å2

iá2 t1
) f (Fÿ1(á2))óÿ1

á2

���� � O(Cnnÿ5:5�Ä) � O(nÿ5:25): (A:22)

Consider the second term on the right-hand side of (A.20), which we denote Q� for the sake

of brevity. We should distinguish two cases:

(i) If åiá2 t1
, Eiá2

, 0 and åiá1 t1
, Eiá1

, 0 (or 0 , Eiá2
, åiá2 t1

and 0 , Eiá1
, åiá1 t1

),

then

jQ�j < jóÿ1
á2
ÿ óÿ1

á1
iåiá2 t1

j � óÿ1
á1

(jFÿ1(á2)ÿ Fÿ1(á1)j � jåiá2 t1
ÿ åiá1 t1

j)

< 2nÿ1=2j1ÿ (óá2
=óá1

)ix9it1j � óÿ1
á1

(já2 ÿ á1j= f (Fÿ1(á1))� o(nÿ5) (A:23)

� O(Cnnÿ4:5�Ä) � O(nÿ4:2):

(ii) If åiá2 t1
, Eiá2

, 0 and Eiá1
, åiá1 t1

, 0 (or åiá1 t1
, Eiá1

, 0 and Eiá2
, åiá2 t1

, 0),

then
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jQ�j � óÿ1
á2
jEiá2

ÿ åiá2 t1
j � óÿ1

á2
jEiá1

� Fÿ1(á1)ÿ Fÿ1(á2)ÿ åiá2 t1
j (A:24)

< óÿ1
á2

(jåiá1 t1
ÿ åiá2 t2

j � jFÿ1(á2)ÿ Fÿ1(á1)j) � O(nÿ4:2)

by analogous considerations as in (i).

Moreover, we obtain for the centring terms in both cases

1
2
jóÿ1

á2
åiá2 t1

f (Fÿ1(á2))ÿ óÿ1
á1
åiá1 t1

f (Fÿ1(á1))j � O(nÿ3): (A:25)

Let us ®x one set Sí in the decomposition of the set [á�n , 1ÿ á�n ] 3 ft: iti < Cng; the

number of such sets is at most (2Cn) p n5( p�1). It follows from (A.19)±(A.25) that

sup
Sí

jrn(t2, á2)ÿ rn(t1, á1)j < K1 nÿ3, (A:26)

where 0 , K1 ,1. By (A.18),

Pfsup
Sí

jrn(t, á)j > (ç� 1)Bng < 2nÿç
2=3, (A:27)

and ®nally

P sup
iti<Cn,á�n <á<1ÿá�n

jrn(t, á)j > 2(ç� 1)Bn

� �
<
X
í

P sup
Sí

jrn(t, á)j > 2(ç� 1)Bn

� �
< 4C p

n n5( p�1) nÿç
2=3 � op(1) (A:28)

for ç2 . 15( p� 1); and this entails

supfjrn(t, á)j: iti < Cn, á�n < á < 1ÿ á�ng � Op(Bn)

� Op(C3=2
n (log n)1=2 nÿ1=4�Ä=2) (A:29)

as n!1. h

Proof of Lemma 2.3. Consider the model Y � X�â� � E with X� � (X (dn ÿ d̂n)) and

â� � (â1, . . . , â p, â p�1)9. Then

X� � X9X 0

0 (dn ÿ d̂n)9(dn ÿ d̂n)

� �
and the conditions of Lemma 2.2 are also satis®ed when replacing X by X� and t by

t� 2 R p�1. Now, denoting

An � C1=2
n Bn � C(log n)1=2(log log n)nÿ1=4�Ä=2 (A:30)

we obtain from Lemma 2.2 (see (A.29)) that
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sup

����óÿ1
á

Xn

i�1

[rá(Eiá ÿ nÿ1=2óá(x�i )9t�)ÿ rá(Eiá)]� nÿ1=2(t�)9
Xn

i�1

x�i øá(Eiá)

(

ÿ1
2
nÿ1(á(1ÿ á))1=2(t�)9(X�)9X�t�

����: it� i < Cn, á�n < á < 1ÿ á�n
�
� op(An) (A:31)

as n!1. Hence, also (denoting d�i � di ÿ d̂ i, i � 1, . . . , n, for the sake of brevity),����óÿ1
á

Xn

i�1

[rá(Eiá ÿ nÿ1=2óá(x9it� d�i t p�1))ÿ rá(Eiá ÿ nÿ1=2óáx9it)]

� nÿ1=2 t p�1

Xn

i�1

d�i ø(Eiá)ÿ 1

2
nÿ1(á(1ÿ á))1=2 t2

p�1(d�)9d�
���� � op(An) (A:32)

uniformly in iti < Cn, á�n < á < 1ÿ á�n . Expression (A.32) further implies that, for any

0 , ä, Cn,

sup
iti<Cn,á�n<á<1ÿá�n

�����ä
0

ÿnÿ1=2
Xn

i�1

d�i [øá(Eiá ÿ nÿ1=2óá(x9it� d�i u))ÿ øá(Eiá)]

( )
du

ÿ (á(1ÿ á))1=2Ãn

�ä
0

u du

���� < Anå (A:33)

with probability at least 1ÿ ç for n > n0, where å, ç. 0 are arbitrary numbers; we could

give similar statement for the integration over (ÿä, 0). Notice that both integrands in (A.33)

are non-decreasing in u. Then (A.33) implies

ÿ nÿ1=2
Xn

i�1

d�i [já(Eiá ÿ nÿ1=2óáx9it)ÿ øá(Eiá)] (A:34)

< äÿ1

�ä
0

ÿnÿ1=2
Xn

i�1

d�i [øá(Eiá ÿ nÿ1=2óá(x9it� d�i u))ÿ øá(Eiá)]

( )
du

< (á(1ÿ á))1=2Ãn

ä

2
� Anå

ä
< Kä� Anå

ä
,

and analogously we obtain

ÿnÿ1=2
Xn

i�1

d�i [øá(Eiá ÿ nÿ1=2óáx9it)ÿ øá(Eiá)] > ÿKäÿ Anå

ä
: (A:35)

Hence, if we put ä � (Anå)1=2 we obtain that, for n . n0,

P

����nÿ1=2
Xn

i�1

d�i [øá(Eiáÿ nÿ1=2óáx9it)ÿ øá(Eiá)]

����.(K � 1)(Anå)1=2

( )
, ç:

h
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