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1. Introduction and summary

1.1. Some motivation

Peter Hall and ATAW considered the following statistical problem (viewed as a prototype for

a class of problems involving asymptotic expansions for probabilities in in®nite-dimensional

settings). Exact, but discontinuous, con®dence bands for a continuous distribution function

can be constructed using the (known) percentage points of the Kolmogorov±Smirnov statistic.

Suppose that one wishes to present smoothed con®dence bands (perhaps for aesthetic

reasons). The simplest way to do this is to obtain a smoothed estimate of the distribution

function, but still use a percentage point of the Kolmogorov±Smirnov statistic to construct

the bands. The resulting bands are smooth but the nominal coverage probability is no longer

exactly correct. The question considered by Peter Hall and ATAW was the following: what is

the size of the coverage error incurred by smoothing?

An important paper by GoÈtze (1985) suggests a way in which one might approach

problems of this type. His key development is to describe Edgeworth-type expansions in

abstract settings in terms of Taylor expansions of the relevant `probability functional'.

However, although very illuminating on a conceptual level, this approach is often rather

dif®cult to justify rigorously (and these dif®culties are certainly apparent in the con®dence-

bands problem described above). Nevertheless, consideration of GoÈtze's approach does lead

to some interesting questions concerning the existence and nature of Taylor expansions for

curve-crossing probabilities associated with Brownian motion. In the present paper, we

focus exclusively on this last-mentioned topic.
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1.2. General problems for Brownian motion

Let fW t: 0 < t ,1g be a Brownian motion with W0 � 0. Let a and c be continuous

functions on [0, 1) with a(0) . 0. Let

Ø(a) :� P[W hits a] :� P[W t � a(t) for some t]: (1:1)

Problem 1. When can we write, for jåj, å0 (å0 some positive constant),

P[W hits a� åc] � P[W hits a]
X1
n�0

å n

n!
ãn, (1:2)

the series being absolutely convergent? If åc(:) > 0, then, of course, the sum will be

P[W hits a� åc jW hits a].

Problem 2. What is the clearest intuitive probabilistic (that is, sample-path) meaning of ãn?

Think about the case when c(:) > 0 and when å is small and positive. Write

ô :� infft: W t � a(t)g, ~ô :� infft: W t � a(t)� åc(t)g,
with inf(Æ) :� 1 as usual. Intuitively, the ã1 term should focus on ®rst-order effects in the

situation where ô and ~ô are very close. The ã2 term should comprise two terms: one a

second-order effect for the situation just mentioned, the other the product of two ®rst-order

effects in the situation where W makes a `signi®cant' downward excursion from the curve a

between times ô and ~ô. The ãn terms will become rapidly more complicated as n increases,

and it is already dif®cult to obtain complete understanding of the ã3 term, even when we

know what it is.

In terms of analysis, we should of course be able to regard Ø(a)ãn as in some sense an

nth order FreÂchet derivative of Ø at a along c.

1.3 The harmonic-function method

Let m be a measure on (0, 1) with m(0, 1) , 1 and let b be the function on [0, 1) such

that �1
0

expfèb(t)ÿ 1
2
è2 tgm(dè) � 1: (1:3)

As Lerche (1986, p. 34) and Karatzas and Shreve (1988, Section 4.3C) remark, b is strictly

increasing and concave. Then,

~H(t, x) :�
�1

0

expfèxÿ 1
2
è2 tgm(dè)

is space-time harmonic on f(t, x): x < b(t)g in that
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@ ~H

@ t
� 1

2

@2 ~H

@x2
� 0

in this region. Moreover, for ®xed x, ~H(t, x) tends to zero as t tends to in®nity, and
~H(t, b(t)) � 1. If ó � infft: W t � b(t)g, then ~H(t ^ ó , W t^ó ) is a bounded martingale,

whence

P(W hits b) � ~H(0, 0) � m(0, 1):

(Note that if ó � 1, then, for any x, W t will equal x for a sequence of t values tending to

1, so that the limit of the martingale ~H(t ^ ó , W t^ó ) will be 0.)

The harmonic-function method, also called the weighted-likelihood-function method, was

used by Robbins and Siegmund (1970; 1973) to calculate crossing probabilities of certain

classes of curved boundaries for Brownian motion. The harmonic-function method is related

by time inversion to the method of images which has been used effectively in similar

contexts by Daniels (1982; 1996). These methods can be extended to deduce the law of the

®rst-passage time, and this has applications to the construction of sequential tests of unit

power (Robbins and Siegmund 1973; Daniels 1982) and to the pricing of barrier options

(Roberts and Shortland 1997). A third approach, suggested by Durbin (1985; 1988; 1992),

yields a series expansion for the ®rst-passage density to a general boundary. Unfortunately,

none of these methods seem well suited to our consideration of perturbing a to a� åc,

though we shall use them as a cross-check on some of our `non-perturbative' results.

1.4. The Cameron±Martin±Girsanov (CMG) method

This method is in one sense a probabilistic counterpart to the harmonic-function method just

described, but it has greater ¯exibility. A full account of this method may be found in Rogers

and Williams (1987).

As previously, let a be a continuous function on [0, 1), with a(0) . 0. Let c now be an

absolutely continuous function on [0, 1) such that

c(0) � 0 and

� t

0

c9(s)2ds ,1 for every t in [0, 1): (1:4)

Let W be our Brownian motion started at 0. The CMG formula shows that with

ô :� infft: W t � a(t)g as before,

P[W hits a� åc] � P[W ÿ åc hits a]

� E exp ÿå
�ô

0

c9(t) dW t ÿ 1
2
å2

�ô
0

c9(t)2 dt

� �
; ô,1

� �

� E exp ÿå
�ô

0

c9(t) dW t ÿ 1
2
å2

�ô
0

c9(t)2 dt

� � ���� ô,1
 !

P[W hits a], (1:5)

since P[W hits a] � P(ô,1). That this is rigorously true given only (1.4) will be con®rmed

later. Thus, at least formally,
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ãn � E ~hn

�ô
0

c9(t)2dt, ÿ
�ô

0

c9(t)dW t

� � ���� ô,1
( )

, (1:6)

where we de®ne the Hermite polynomial ~hn on [0, 1) 3 R (note the (t, x) order) viaX1
n�0

èn

n!
~hn(t, x) � eèxÿ1

2
è2 t:

1.5. The linearity assumption on a

To make progress, we shall henceforth in this paper restrict attention to the `linear boundary'

case:

a(t) � á� ât, á. 0, â. 0: (1:7)

It is well known that

P[W hits a] � eÿ2áâ: (1:8)

In our study of the `linear boundary' case, we unashamedly use shift-invariance properties

and the like, which will not hold in general. Our de®nitions of Ä and @Ä are not the `proper'

ones: they are those which allow the special case to be treated most simply.

The process fW t: t , ôg conditioned by the event fô,1g has the same law as

fBt � 2ât: t , Tg, where T :� Tá,â :� infft: Bt � áÿ âtg, (1:9)

in which B is a Brownian motion started at 0. This corresponds to the analytic fact that if, for

x ,á� ât, we let p(t, x) be the probability that for some s . 0, x� W t�s ÿ W t equals

á� â(t � s), so that

p(t, x) � expfÿ2(á� ât ÿ x)âg,
then we have the operator identity

pÿ1 @

@ t
� 1

2

@2

@x2

� �
p � @

@ t
� 1

2

@2

@x2
� 2â

@

@x
:

It follows from (1.5) and (1.9) that if we de®ne the martingale N via

Nt :�
� t

s�0

c9(s) dBs, (1:10)

then

P[W hits a� åc] � P[W hits a]E G
(åc)
T eÿ2âåc(T )

� �
, (1:11)

where G(åc) is the martingale with

G
(åc)
t :� expfÿåN t ÿ 1

2
å2hNi tg: (1:12)

Here, hNi is the quadratic-variation process of N , so that

782 D.G. Hobson, D. Williams and A.T.A. Wood



hNi t �
� t

0

c9(s)2 ds:

1.6. The operator A

De®ne the sets Ä and @Ä and the projection ð: @Ä! [0, 1) as follows:

Ä :� f(t, x) 2 [0, 1) 3 R: x ,áÿ âtg,
@Ä :� f(t, x) 2 [0, 1) 3 R: x � áÿ âtg,

ð(t, áÿ ât) :� t:

Note that T is the exit time of B from Ä. It is well known that T has probability density

function

f (t) :� fá,â(t) � á����������
2ðt3
p exp ÿá2

2t

� �
exp âáÿ 1

2
â2 t

� �
t . 0, (1:13)

and that, for ë > ÿ1
2
â2,

EeÿëT � eÿè(ë)á, where è(ë) :�
����������������
â2 � 2ë

p
ÿ â:

Let h be a nice function on [0, 1), and de®ne the function ~h on Ä via

~h(t, x) :� Eh(t � Táÿâ tÿx,â), (t, x) 2 Ä: (1:14)

Then with F t � ófBs: s < tg as usual,

H t :� E(h(T ) jF t) � ~h(t ^ T , Bt^T ),

and since H is a martingale, ItoÃ's formula shows that

H t � ì�
� t^T

0

@~h

@x
(s, Bs) dBs (1:15)

(where ì :� Eh(T )) and that ~h is space-time-harmonic on Ä. Thus ~h is the space-time-

harmonic extension of h � ð from @Ä to Ä. We note that

h(T ) � HT � ì�
�T

0

@~h

@x
(s, Bs) dBs: (1:16)

For k � 0, 1, 2, . . ., we de®ne for x � áÿ ât, so that (t, x) 2 @Ä,

(A k h)(t) :� lim
Ä3(u, y)!( t,x)

@ k ~h

@ y k
(u, y): (1:17)

Lemma 1.1. We have:

(a) A0 � id, A k �Ak , where A :�A1:
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Consideration of the space-time-harmonic function ~h(t, x) � exp(èxÿ 1
2
è2 t) shows that, for

è > ÿâ (but not for è,ÿâ),

(b) Ah � èh when h(t) � expfè(áÿ ât)ÿ 1
2
è2 tg,

whence, if hn(t) denotes the Hermite function ~hn(t, áÿ ât) (in agreement with the tilde

convention), then

(c) Ahn � nhnÿ1:

If eë(t) :� eÿë t, then, for ë > ÿ1
2
â2,

(d) Aeë � è(ë)eë, where è(ë) :�
����������������
â2 � 2ë

p
ÿ â:

As is explained later, the operator A is the LeÂvy±Khinchine operator associated with the

hitting-time process for drifting Brownian motion with drift â:

(e) (Ah)(t) �
�1

u�0

fh(t)ÿ h(t � u)g eÿ
1
2
â2 u�����������

2ðu3
p du:

The space-time-harmonic property of ~h is re¯ected in the fact that

(f ) A2 � ÿ2Dÿ 2âA, where D � d=dt;

and this agrees with the `symbol' formula (d).

1.7. Main result

Our main result, is the following.

Theorem 1.1. We continue to work with an arbitrary perturbation a� åc (c satisfying (1.4))

of the linear boundary a(t) � á� ât, where á, â. 0. Recall that W and B are Brownian

motions started at 0, and that we de®ne

Nt :�
� t

0

c9(s) dBs, hNi t :�
� t

0

c9(s)2 ds, G
(åc)
t :� expfÿåNt ÿ 1

2
å2hNi tg,

and

T :� infft: Bt � ât � ág:
Recall that

(a) P[W hits a� åc] � P[W hits a]E G
(åc)
T eÿ2âåc(T)

� �
:

Suppose that there exists j. 0 such that

(b) E exp(1
2
j2hNiT ) ,1:

Then, for jåj,(
�����
10
p ÿ 3)j, we have the absolutely convergent Taylor expansion
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(c) E G
(åc)
T eÿ2âåc(T )

� �
�
X1
n�0

å n

n!
ãn,

where

(d) ãn � eÿ2âáE~hn(hNiT , ÿ2âc(T )ÿ NT ):

For nice c (say, smooth and with nth-order derivative c(n) bounded on [0, 1) for each

n > 1, so that in particular (b) holds for some j), we have

(e) ãn � Eg n(T ),

the functions g n being obtained recursively via the fact that g0 � 1 and, for n > 1,

(f )
Xn

k�0

n

k

� �
ckA k g nÿk � (ÿ2âc)n:

Thus, for example, g1(t) � ÿ2âc(t), g2(t) � 4â(cAc)(t)� 4â2c(t)2 and

g3 � ÿ8â3c3 ÿ 12âcA(cAc)ÿ 12â2cA(c2)� 6âc2A2c:

The above results may be derived formally as the special case when h �På n g n=n! of the

following formula for a nice function h on [0, 1):

(g) EG
(åc)
T

X1
k�0

å k c(T )k

k!
(Ak h)(T ) � Eh(T ):

We can reformulate (f) as the formal-power-series result:

(h) eåc( t)A
X1
n�0

å n

n!
g n(:)

( )
(t) � eÿ2âåc( t):

1.8. Boundaries below a

De®ne

S
â
t :� inffu: Bu � âu . tg, t > 0,

so that fSâ
t g is the hitting-time process (in its right-continuous version) for Brownian motion

with drift â. The process fSâ
t g is a subordinator (increasing process with independent in-

crements) with

EeÿëS
â
t � expfÿè(ë)tg, for ë.ÿ1

2
â2: (1:18)

The operator (ÿA) is the in®nitesimal generator of the transition semigroup fP
â
t g of fSâ

t g,
so that, for a nice function h on [0, 1) and for u 2 [0, 1), we haveX (ÿuA)k h

k!

� �
(t) � f(eÿuA)hg(t) � (Pâ

u h)(t) � Eh(t � Sâ
u): (1:19)
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On comparing this with parts (a) and (g) of Theorem 1.1 with å � ÿ1, we would guess the

`equality' case of the following theorem ± at least when c satis®es (1.4).

Theorem 1.2. Again take a(t) � á� ât where á, â. 0. Assume that c is a right-continuous

non-negative function on [0, 1), with c(0) , a(0). Suppose that we can ®nd a function h on

[0, 1) such that

(a) for t > 0, e2âc( t) ÿ Eh(t � S
â
c( t)) � (>, <)0:

Then

(b) P[W hits aÿ c]ÿ P[W hits a]Eh(T ) � (>, <)0:

Because the boundary aÿ c lies below the boundary a, this theorem might seem rather

weird at ®rst. The result was ®rst discovered as indicated above. Once found, it looked as if

it should have a direct proof; and indeed it does.

Example 1.1. Suppose that c(t) � çt, where 0 < ç < 1
2
â. If we put h � eë in Theorem 1.2(a),

then we see from (1.18) that we must have ÿëÿ è(ë)ç � 2âç, whence ë �
ÿ2âç � 2ç2 2 [ÿ1

2
â2, 0], and

Eh(T ) � eÿè(ë)á � e2áç,

in agreement with (1.8).

The restriction ç < 1
2
â is necessary for the square root involved in è(ë), namely

(â2 ÿ 4âç� 4ç2)1=2, to equal �(âÿ 2ç). From some points of view, it is a strange

restriction. We note that, since j � â=ç, in order to apply Theorem 1.1 we need

ç,(
�����
10
p ÿ 3)â.

We can `proceed in the time-honoured way' by choosing a suitable answer h and then

®nding the c to which it corresponds under Theorem 1.2(a). Indeed, choosing h to be a

positive mixture of exponentials (in other words, a Laplace transform) amounts to using the

harmonic-function method. The simplest new example is given by h(t) � 1� t. This leads

to the following result.

Lemma 1.2. As usual, a(t) � á� ât where á, â. 0. If 2â2 . 1, then

(a) P[W hits aÿ c] � 1� á

â

� �
eÿ2áâ

in the case when c(t) is the unique solution in [0, 1) of

(b) 1� t � âÿ1c(t) � e2âc( t):

The condition that 2â2 . 1 is needed to guarantee that (b) has a unique solution c(t) in

[0, 1). It also forces the right-hand side of (a) to be less than 1 for all á(!) Note that c(t)

is roughly (log t)=(2â) for large t.
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1.9. Discussion of Theorem 1.2 and Theorem 1.1

We note that Theorem 1.2 gives a partial sample-path explanation of Theorem 1.1 for the

case when c(:) > 0 and å, 0 (and jåj,(
�����
10
p ÿ 3)j); for then Theorem 1.1(h) and equation

(1.19) show that if (ÿåc) becomes the `c' in Theorem 1.2, then the `h' in the equality case of

Theorem 1.2(a) may be taken to be
P

(ÿå)n g n=n!. However, this explanation does not

provide sample-path identi®cation of the individual g n functions.

1.10. Boundaries above a

We now concentrate on the case when å � 1 and c(:) > 0.

Example 1.2. First take å � 1 and c(t) � çt, where ç. 0. Comparing parts (a) and (g) of

Theorem 1.1 suggests that we try to arrange thatX1
k�0

c(t)k

k!
(Ak h)(t) � eÿ2âc( t) t > 0; (1:20)

and we see that we can do this if we take h � eë, so that Ak h � è(ë)k h, and then pick ë so

that çè(ë)ÿ ë � ÿ2âç. Thus, we choose ë � 2âç� 2ç2, and ®nd that è(ë) � 2ç, so that we

have Eh(T ) � eÿ2áç. It all tallies with (1.18): we have arrived at the correct answer.

Once more it is the case that choosing h to be a mixture of exponentials amounts to

using the harmonic-function method.

Example 1.3. Let us try once more to cheat in the time-honoured way. We take å � �1 and

h(t) � 1� t, whence Ah � ÿâÿ1 and A2 h � 0. We assume that 2â2 , 1, and de®ne c(t) to

be the unique root in [0, 1) of

1� t ÿ âÿ1c(t) � eÿ2âc( t):

Thus, (1.20) holds with our new notation, and, on comparing parts (a) and (g) of Theorem

1.1, it looks as though we should have

P[W hits a� c] � P[W hits a]Eh(T ) � P[W hits a](1� á=â):

But this is clearly nonsensical since P[W hits a� c] is certainly less than P[W hits a].

Why have things gone wrong in Example 1.3? We note that c(t) is close to ât for large

t. In the case when c(t) is exactly ât and å � 1, we have Nt � âBt, hNi t � â2 t and

GT :� G
(åc)
T � expfÿâBT ÿ 1

2
â2Tg � expfÿâá� 1

2
â2Tg,

since BT � áÿ âT . We note from (1.13) that E(GT T ) � 1 in this case. It is therefore to be

expected that the terms in Theorem 1.1(g) will explode for Example 1.3. It is perhaps a little

strange in regard to (1.20) that h � 1� t corresponds to a c with c(t) � ât, whereas, as we

saw in Example 1.2, h � exp(ÿ4â2 t) corresponds to c(t) � ât.
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If we try to use Theorem 1.1 on Example 1.3, we ®nd that, since c(t) � ât, the

supremum value for j is 1, so that the theorem applies if jåj, �����
10
p ÿ 3; hence, the value

å � 1 is not allowed in the theorem.

1.11. What is the signi®cance of the functions gn?

We give one explanation ± not the excursion one on this occasion(!) ± at the end of this

paper.

2. Proofs of Lemma 1.1 and Theorem 1.1

Formal veri®cation of Lemma 1.1. `Formal veri®cation' here signi®es that we check the

`algebra' rather than concerning ourselves with, for example, the precise degree of regularity

required of the h functions.

The fact that A2 �A2 follows because @~h=@x is space-time-harmonic on Ä with

boundary function (Ah) � ð. Proving (b), (c) and (d) in the statement of Lemma 1.1 is

straightforward. The agreement of (d) and (e) is a well-known Laplace-transform result. We

have

è(ë)2 � 2âè(ë)ÿ 2ë � 0,

whence, from (d),

(A2 � 2âA � 2D)eë � 0,

and (f) clearly holds on suitably nice functions. A better way of seeing (f) is to observe that,

for a nice function h on [0, 1),

(Dh)(t) � d

dt
~h(t, áÿ ât) � @~h

@ t
ÿ â

@~h

@x

� �
(t, áÿ ât)

� ÿ 1

2

@2~h

@x2
ÿ â

@~h

@x

� �
(t, áÿ ât) � (ÿ1

2
A2 hÿ âAh)(t):

The reader might be amused to derive (f) directly from (e). h

Proof of the ®rst parts of Theorem 1.1. We begin by checking equation (1.5). For any ®nite

t, the law ~P (say) of W ÿ åc has likelihood ratio relative to the Wiener law of W given by

d~P

dP
� Rt :� exp ÿå

� t

0

c9(s) dWs ÿ 1
2
å2

� t

0

c9(s)2 ds

� �
on W t,

where W t is the augmented natural ®ltration of W . Recall that ô :� infft: W (t) � a(t)g.
Since the martingale Rs: 0 < s < tg is uniformly integrable, we have
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d~P

dP
� Rt^ô on W t^ô:

Now the event fô, tg is an element of W t^ô, so that

~P(ô, t) � E(R t^ô; ô, t) � E(Rô Ifô,1g; ô, t): (2:1)

However, by Fatou's lemma, Rô Ifô,1g is in L1 (with expectation at most 1). Hence, on

letting t"1 in (2.1), we obtain

~P(ô,1) � R(Rô; ô,1),

which is equation (1.5).

We now make the linearity assumption: a(t) � á� ât, where á, â. 0. The equivalence

of law stated around (1.9) is standard. There is therefore no problem in obtaining part (a) of

Theorem 1.1, so we have

P[W hits a� åc] � P[W hits a]E expfÿåNT ÿ 1
2
å2hNiT ÿ 2âåc(T )g:

Recall that we next assume that there exists a j. 0 such that

E exp(1
2
j2hNiT ) ,1: (2:2)

Lemma 2.1. For 0 < jåj,(
�����
10
p ÿ 3)j,

E expfjåj jNT j � 1
2
jåj2hNiT � 2âjåj jc(T )jg,1:

We assume this lemma for the time being. Then, for 0 < jåj,(
�����
10
p ÿ 3)j, the terms in the

expansion as a power series in å of

expfÿåNT ÿ 1
2
å2hNiT ÿ 2âåc(T )g

are dominated by the (non-negative) terms in the expansion as a power series in jåj of

expfjåj jNT j � 1
2
jåj2hNiT � 2âjåj jc(T )jg:

Lemma 2.1 therefore guarantees that, for 0 < jåj,(
�����
10
p ÿ 3)j, we do have the absolutely

convergent Taylor series expansion at (c) with the ãn as at (d) in Theorem 1.1. h

Having settled that main analytic point, we now assume that c is smooth with derivatives

(of all orders at least 1) bounded, and use formal power series to prove (e) in Theorem

where the gn are related via the recurrence relation (f). It is enough to prove the formal

formula at (g),

EG
(åc)
T

X1
k�0

å k c(T )k

k!
(A k h)(T ) � Eh(T ), (2:3)

and to substitute the formal expression h �På n gn=n!. Formal power series make things

neat, but the reader who is unhappy with their use can (as we did at ®rst) derive the

recurrence relation directly by an analogue of the method we now give.
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Formal veri®cation of (2.3). We use the ~h notation around (1.15). We apply the `differential'

version of the stochastic calculus as described in Revuz and Yor (1991) or Rogers and

Williams (1987). By the usual `exponential martingale' formula,

dG
(åc)
t � ÿåc9(t)G

(åc)
t dBt:

Since @ k ~h=@x k is space-time-harmonic on Ä,

d
@ k ~h

@x k
(t, Bt)

� �
� @ k�1~h

@x k�1
(t, Bt) dBt, t , T :

The `t , T ' here and elsewhere is made rigorous by replacing t by t ^ T on the left-hand side

and multiplying the right-hand side by If t , Tg.
With `�d ' denoting `equality modulo the differential of a local martingale', we have, for

two local martingales M (1) and M (2), and a smooth deterministic function f on [0, 1),

df f (t)M
(1)
t M

(2)
t g�d f 9(t)M

(1)
t M

(2)
t dt � f (t) dM

(1)
t dM

(2)
t :

As always, dBt dBt � dt.

Hence, for t , T,

d
å k c(t)k

k!
G

(åc)
t

@ k ~h

@x k
(t, Bt)

� �

�d G
(åc)
t c9(t)

å k c(t)kÿ1

(k ÿ 1)!

@ k ~h

@x k
(t, Bt)ÿ å k�1c(t)k

k!

@ k�1~h

@x k�1
(t, Bt)

( )
dt,

the ®rst term of the right-hand side being 0 if k � 0. Formal summation over k from 0 to 1
now yields that X1

k�0

å k c(t)k

k!
G

(åc)
t

@ k ~h

@x k
(t, Bt),

when stopped at T, de®nes a local martingale. The (formal) value of this local martingale

when t � T is

G
(åc)
T

X1
k�0

å k c(T )k

k!
(Ak h)(T ),

and the value when t � 0 is ~h(0, 0) � Eh(T ). Hence, if we ignore the difference between

local martingale and martingale, and assume that the relevant optional-stopping theorem is

valid at time T , the result (2.3) follows. h

Proof of Lemma 2.1. For å. 0, de®ne

A(å) :� E expfåjNT j � 1
2
å2hNiT � 2âåjc(T )jg:

By HoÈlder's inequality, we have for any p, q, r . 0 with pÿ1 � qÿ1 � rÿ1 � 1,
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A(å) < fE exp(å pjNT j)g1= pfE exp(1
2
å2qhNiT )g1=qfE exp(2âårjc(T )j)g1=r: (2:4)

We shall make good choices of p, q and r later.

For any ø. 0,

E exp(øjNT j) < E exp(øNT � � E exp(ÿøNT ): (2:5)

But

E exp (�øNT ) � Efexp(ø2hNiT ) exp(�øNT ÿ ø2hNiT )g

< fE exp(2ø2hNiT )g1=2fE exp(�2øNT ÿ 2ø2hNiT )g1=2

< fE exp(2ø2hNiT )g1=2 (2:6)

using the Cauchy±Schwarz inequality and the fact that exp(�2øNt ÿ 2ø2hNi t) is a non-

negative supermartingale. So, by (2.5) and (2.6) with ø � å p, we have

E exp(å pjNT j) < 2fE exp(2å2 p2hNiT )g1=2: (2:7)

To establish a bound on E exp(2âårjc(T )j), we argue as follows. First,

jc(t)j �
����� t

0

c9(s) ds

���� <

�
jc9(s)j ds

< t1=2hNi1=2
t < maxft=ã, ãhNi tg, for any ã. 0:

De®ne z(ç) :� E exp(çT ). The largest ç for which z(ç) is ®nite is 1
2
â2. So choose ç � 1

2
â2 and

ã � 2âår=ç to obtain

E exp(2âårjc(T )j) < E exp(çT )� E exp(2âårãhNiT )

< z(1
2
â2)� E exp(8å2 r2hNiT ): (2:8)

From (2.4), (2.7) and (2.8), the sensible choice of ( p, q, r), giving rise to the largest value

å0(j) of å, is such that

2å0(j)2 p2 � 1
2
å0(j)2q � 8å0(j)2 r2 � 1

2
j2, pÿ1 � qÿ1 � rÿ1 � 1:

The solution is given by

p � 2r, q � 16r2, r � (
�����
10
p

� 3)=4, å0(j) � (
�����
10
p

ÿ 3)j:

Lemma 2.1 is proved. h

3. Theorem 1.2 and the gn functions

Throughout the remainder of the paper, let B and W denote independent Brownian motions

starting at 0.

Suppose that a(t) � á� ât. Suppose that c(:) > 0. De®ne
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ô :� inffu: Wu � a(u)g (as before),

ó :� inffu: Wu � a(u)ÿ c(u):g
For t > 0, de®ne

S
â
t :� inffu: Bu � âu . tg, (so that S

â
t ,1 a:s:),

S
ÿâ
t :� inffu: Bu ÿ âu . tg <1,

T :� Sâ
á (as usual):

We use the following standard facts:

(a) conditional on fSÿât ,1g, S
ÿâ
t has the law of S

â
t ;

(b) ô�D ó � S
ÿâ
c(ó ) (�D signifying equality of law), by the strong Markov property of W at

stopping time ó ;

(c) ô�D S
ÿâ
t .

We shall use �(a)
to signify `is equal to because of (a)'.

Proof of Theorem 1.2. Rewrite the assumption that

e2âc( t) ÿ Eh(t � S
â
c( t)) > 0 (t > 0)

as

1 > eÿ2âc( t)Eh(t � S
â
c( t))

� P(S
ÿâ
c( t) ,1)Eh(t � S

â
c( t))

�(a)
E[h(t � S

ÿâ
c( t)); S

ÿâ
c( t) ,1]:

Since ó is independent of B (and hence of the S-process),

1 > E[h(ó � S
ÿâ
c(ó )); S

ÿâ
c(ó ) ,1jó ] on fó ,1g,

whence

P(ó ,1)

> E[h(ó � S
ÿâ
c(ó )); S

ÿâ
c(ó ) ,1; ó ,1]

� E[h(ó � S
ÿâ
c(ó )); ó � S

ÿâ
c(ó ) ,1]

�(b)
E[h(ô); ô,1]�(c)

E[h(Sÿâá ); Sÿâá ,1]

�(a)
P(Sÿâá ,1)Eh(Sâ

á) � P(ô,1)Eh(T ):
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Thus,

P[W hits aÿ c] > P[W hits a]Eh(T ),

as required. The `<' and `�' cases are done similarly. h

3.1. Another formulation of the Taylor expansion

Our Taylor expansion is now perhaps best formulated as

P[W hits a� åc] �
X1
n�0

å n

n!
E[gn(ô); ô,1],

where g0 � 1 and, for n > 1, Xn

k�0

n

k

� �
(ÿc)kG k gnÿk � 0:

Here, G :� ÿA ÿ 2â denotes the generator of the killed subordinator fSÿât : t > 0g.
The gn functions just mentioned are identical to those used previously, and one can

derive this reformulation by simple algebra.

3.2. Discussion of the functions gn

Suppose now that c is strictly increasing and that å. 0. De®ne

ôå0 :� ô :� infft: W t � á� âtg <1 (ô is as before),

ôån :� infft: W t � á� ât � åc(ôånÿ1)g <1 (n > 1):

Then

ôån"ôå1 � infft: W t � á� ât � åc(t)g <1:
Of course, it does not necessarily follow that P(ôån ,1)#P(ôå1,1).

Conditionally on ôå0, ôå1, . . ., ôånÿ1, we have (with ôÿ1 :� 0)

ôån�D ôånÿ1 � S
ÿâ
å[c(ôå

nÿ1
)ÿc(ôå

nÿ2
)] on fôånÿ1 ,1g,

and, because of the relation between the fSÿâg process and the fSâg process, the transition

semigroup fP
â
t g of which has generator (ÿA), we can hope to prove that on fô,1g,

P(ôån ,1jô) �
Xn

k�0

å k

k!
gk(ô)� O(å n�1), (3:1)

a result which would give some insight into the gn functions.

Now, on fô,1g,
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P(ôå1 ,1jô) � eÿ2âåc(ô) � 1ÿ å2âc(ô)� O(å2),

� (g0 � åg1)(ô)� O(å2),

so that (3.1) holds when n � 1.

Now consider (3.1) when n � 2. On fô,1g, we have

P(ôå2 ,1jô) � Efexp[ÿ2âåfc(ôå1)ÿ c(ôå0)g]; ôå1 ,1jôg

� Efexp[ÿ2âåfc(S
ÿâ
åc(ô) � ô)ÿ c(ô)g]; S

ÿâ
åc(ô) ,1jôg

� PfSÿâåc(ô) ,1gEfexp[ÿ2âåfc(S
â
åc(ô) � ô)ÿ c(ô)g]jôg

� eÿ2âåc(ô)e2âåc(ô)Efexp[ÿ2âåc(S
â
åc(ô) � ô)]jôg

Hence, we have the exact formula on fô,1g:
P(ôå2 ,1jô) � (P

â
åc(ô)e

ÿ2âåc(:))(ô):

Formal expansion in terms of the in®nitesimal generator (ÿA) of fP
â
t g yields (using the fact

that A1 � 0) on fô,1g:
P(ôå2 ,1jô) � (1ÿ åcA � 1

2
å2c2A2)(1ÿ 2âåc� 2â2å2c2)(ô)� O(å3)

� 1� å(ÿ2âc)� å2(2âcAc� 2â2c2)(ô)� O(å3),

which is result (3.1) for n � 2.

Things become more complicated for n > 3; and we have to be careful and systematic in

doing the calculations. One ®nds that on fôå1 ,1g,
P(ôå3 ,1jôå0, ôå1) � e2âåc0 (P

â
å(c1ÿc0)e

ÿ2âåc(:))(ôå1):

Here, c1 stands for c(ôå0) and c0 for c(ôå0 � c(ô). Since we shall always work conditionally on

ô, we regard c0 as a constant. Now, on fô,1g,
ôå1 � Sÿâåc0

� ô:

After the usual Sÿâ to Sâ interchange, we ®nd that on fô,1g,
P(ôå3 ,1jô) � (Pâ

åc0
P
â
å[c(:)ÿc0]e

ÿ2âåc(:))(ô):

We write this as the value at ô of

f(1ÿ åc0A � 1
2
å2c2

0A2)(1ÿ å(cÿ c0)A � 1
2
å2(cÿ c0)2A2)geÿ2âåc � O(å4):

Here, c0 is initially regarded as a constant unaffected by A; however, having worked things

out in this way, we then put c0 � c. If we employ this italicized strategy on the operator

within the large fg braces, we ®nd that it becomes

794 D.G. Hobson, D. Williams and A.T.A. Wood



1ÿ åcA � å2(1
2
c2A2 � cAcA ÿ c2A2) � � � �

� 1ÿ åcA � å2(ÿ1
2
c2A2 � cAcA) � � � � :

If we apply this operator to

eÿ2âåc � 1ÿ 2âåc� 2â2å2c2 ÿ 4
3
â3å3c3 � � � �,

and remember that A1 � 0, we obtain (3.1) for n � 3.

We emphasize that in Theorem 1.1, c can have ¯uctuating sign. Martingales do have

their uses! However, the sample-path method just indicated applies in cases where (1.4)

fails.
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