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For the stochastic differential equation

dX (t) � faX (t)� bX (t ÿ 1)g dt � dW (t), t > 0,

the local asymptotic properties of the likelihood function are studied. They depend strongly on the

true value of the parameter W � (a, b)�. Eleven different cases are possible if W runs through R2. Let

ŴT be the maximum likelihood estimator of W based on (X (t), t < T ). Applications to the asymptotic

behaviour of ŴT as T !1 are given.
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1. Introduction

Assume (W (t), t > 0) is a real-valued standard Wiener process, a and b are real numbers and

(X (t), t > ÿ1) is a solution of

dX (t) � aX (t) dt � bX (t ÿ 1) dt � dW (t), t > 0, (1:1)

with some ®xed initial condition X (t) � X 0(t), t 2 [ÿ1, 0], where X 0(�) is a continuous

stochastic process independent of W (�). The solution (X (t), t > ÿ1) of (1.1) exists, is

pathwise uniquely determined and can be represented as

X (t) � x0(t)X 0(0)� b

�0

ÿ1

x0(t ÿ sÿ 1)X0(s) ds�
� t

0

x0(t ÿ s) dW (s), t > 0: (1:2)

Obviously, it has continuous paths for t > 0 with probability one and, conditionally on X 0, X

is a Gaussian process. Here (x0(t), t > ÿ1) denotes the so-called fundamental solution of the

deterministic equation
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_x(t) � ax(t)� bx(t ÿ 1), t . 0,

x(t) � 1, t � 0,

x(t) � 0, t 2 [ÿ1, 0):

(1:3)

Equation (1.1) is a very special case of linear stochastic differential equations of the type

dX (t) �
�0

ÿ1

X (t � s)a(ds) dt � dM(t), t > 0, (1:4)

where a(�) is an arbitrary function of ®nite variation on [ÿ1, 0] and (M(t), t > 0) is, for

example, a semimartingale; see Mohammed and Scheutzow (1990).

Assume that the solution (X (t), t 2 [ÿ1, T ]) of (1.1), for some ®nite T . 0, has been

observed, and that the parameters (a, b) are unknown and have to be estimated. Then we

have a parametric problem, which generalizes the statistical problem of estimating the

parameter in Langevin's equation

dX (t) � aX (t) dt � dW (t), t > 0 (1:5)

(see, for example, Basawa and Prakasa Rao 1980). Estimation problems for stochastic

differential equations with time delay have been considered in few papers up to now; see

Dietz (1992), KuÈchler and Kutoyants (1996) and the references therein. The model we

consider seems to be of interest for the following reasons. First, it is a relatively simple

example exhibiting a variety of qualitatively different local asymptotic properties for different

values of the parameter. Second, the model already shows some typical effects appearing in

estimation problems for equations with time-delayed terms, for example of type (1.4): a wide

range of local asymptotic structures for the likelihood; a close connection between asymptotic

properties of the likelihoods and the set of solutions to the corresponding characteristic

equation (see (1.9) below); and periodic behaviour of the likelihoods and estimators for some

values of the parameter. Third, in contrast to more general delay models, we are able to

compute explicitly the rates of convergence and the limit distributions of estimators for every

value of the parameter.

The solutions of (1.1) form an exponential family of continuous stochastic processes in

the sense of KuÈchler and Sùrensen (1989). Thus the maximum likelihood estimator ŴT of

W � (a, b)� (where � denotes matrix or vector transposition) can be expressed explicitly by

ŴT � (I0
T )ÿ1V 0

T ,

where V 0
T denotes the vector

V 0
T �

�T

0

X (t) dX (t),

�T

0

X (t ÿ 1) dX (t)

 !�

and I0
T is the observed Fisher information matrix given by
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I0
T �

�T

0

X 2(t) dt

�T

0

X (t)X (t ÿ 1) dt�T

0

X (t)X (t ÿ 1) dt

�T

0

X 2(t ÿ 1) dt

0BBB@
1CCCA:

The estimator ŴT is calculated from the log-likelihood function

log
dPW

T

dP
(0,0)
T

(X ) � W�V 0
T ÿ

1

2
W� I0

TW, W 2 R2

(see, for example, Liptser and Shiryaev 1977). Here P
(a,b)
T is the measure on C([ÿ1, T ])

generated by the solution (X (t), t 2 [ÿ1, T ]) of (1.1).

The main purpose of this paper is to study local asymptotic properties of the family

(PW
T , W 2 R2) and then to draw conclusions for properties of the estimator ŴT when T !1.

Since the log-likelihoods are quadratic in W for each T . 0, it is not surprising that the

family (PW
T ), T . 0, is locally asymptotically quadratic (LAQ) at every W0 2 R2; see Section

2 (for the notion of local asymptotic quadraticity, see Le Cam and Yang 1990; or

Jeganathan 1995). Namely, choose W0 � (a, b)� 2 R2 arbitrary but ®xed and introduce

W � W0 � jT ì, where ì � (á, â)� 2 R2 and jT � jT (W0) is a normalizing regular 2 3 2

matrix with jT ! 0 as T !1. Then we obtain

log
dPW

T

dPW0

T

(X ) � ì�VT ÿ 1

2
ì� I T ì, (1:6)

where

V�T �
�T

0

X (t) dW (t),

�T

0

X (t ÿ 1) dW (t)

 !
jT (1:7)

and

IT � j�T I0
TjT : (1:8)

In view of (1.6), to prove local asymptotic quadraticity at W0 one has to choose the matrices

jT (W0) in such a way that (a) the vectors (VT , IT ) are bounded in probability as T !1; (b)

if (VTn
, I Tn

) converges in distribution to a limit (V1, I1) for a subsequence fTng ! 1, then

E exp(ì�V1 ÿ 1
2
ì� I1ì) � 1

for every ì 2 R2; (c) if I Tn
converges in distribution to a limit I1 for a subsequence

fTng ! 1, then I1 is almost surely positive de®nite. Recall also that the important special

cases of local asymptotic quadraticity are local asymptotic mixed normality and local

asymptotic normality. Local asymptotic mixed normality at W0 means that (VT , IT ) converges

in distribution to (I1=2
1 Z, I1) as T !1, where the matrix I1 is almost surely positive

de®nite and Z is a standard Gaussian vector independent of I1. If, moreover, I1 is non-

random, then we have local asymptotic normality at W0.

Note that condition (c) is important since otherwise we are not in a position even to
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establish asymptotic properties of ŴT (cf. Dietz 1992). Actually, this condition plays a

decisive role in determining jT . In general, (c) cannot be reached with matrices jT being

diagonal. We construct jT as the product of two quadratic matrices j(1)
T and j(2)

T ,

jT � j(1)
T j(2)

T , where j(1)
T converges to a non-singular limit as T !1 (the dependence on

T cannot be avoided in general) and j(2)
T is diagonal with elements tending to zero, in most

cases at different rates.

It is obvious from (1.7), (1.8) and (1.2) that the properties of the fundamental solution

x0(t) for t!1 very much in¯uence the limit properties of (VT , IT ). Recall that for

Langevin's equation (b � 0) we have x0(t) � eat, the solution (X (t), t > 0) is the Ornstein±

Uhlenbeck process and there are exactly three relevant cases in considering local asymptotic

properties (a , 0, a � 0, a . 0). In our case the picture turns out to be much richer. To

specify jT and to study the limit behaviour of (VT , IT ) we have to distinguish 11 different

cases for W0. These cases will be introduced as follows.

The behaviour of x0(�) is connected with the set Ë of (complex) solutions of the so-

called characteristic equation for (1.3),

ëÿ aÿ b eÿë � 0: (1:9)

Note that a complex number ë solves (1.9) if and only if (eë t, t > ÿ1) solves _x(t) �
ax(t)� bx(t ÿ 1), t > 0.

It is easy to see that the set Ë of solutions of (1.9) is countably in®nite (if b 6� 0) and

that for every c 2 R the set Ëc :� fë 2 ËjRe ë > cg is ®nite. In particular, v0 :�
maxfRe ëjë 2 Ëg,1. De®ne v1 :� maxfRe ëjë 2 Ë, Re ë, v0g (max Æ � ÿ1). One

veri®es easily that if ë 2 Ë then ë 2 Ë and no other ì 2 Ë with Re ì � Re ë exists.

The equation (1.9) has at most two real solutions. If there exists a real solution v then the

real part of every non-real solution is strictly less than v. Consequently, the only possible

real solutions are v0 (if there is exactly one) or v0 and v1 (if there are two).

We have v0 2 Ë if and only if

b > v(a) :� ÿeaÿ1, (1:10)

otherwise there exists a unique ë0 in Ë with Re ë0 � v0 and î0 :� Im ë0 . 0. Furthermore, in

this case we have î0 ,ð. Moreover, a second real solution exists, v1 2 Ë, if and only if

v(a) , b , 0.

For every ë in Ë, denote by m(ë) the multiplicity of ë as a solution of (1.9). We have

m(ë) � 1 for all ë 2 Ë with the only exception that if b � v(a), then ë � aÿ 1 is the

unique real solution of (1.9) and m(ë) � 2.

Additional information about the solutions of the equation (1.9) can be found in Hayes

(1950).

The following lemma is crucial for this paper. It is based on the inverse Laplace

transform and Cauchy's residue theorem and it can be found in a slightly different form in

Myschkis (1972); see also Hale and Verduyn Lunel (1993). The proof will be sketched in

Section 5.

Lemma 1.1. For all c , v0 the fundamental solution x0(�) of (1.3) can be represented in the

form
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x0(t) � ø0(t)ev0 t �
X
ë k2Ëc

Re ë k ,v0

ck eë k t � o(eã t), for t!1, (1:11)

where ã, c and ck are some constants. Here ø0(t) equals

ø0(t) �

1

v0 ÿ a� 1
if v0 2 Ë, m(v0) � 1,

2t � 2

3
if v0 2 Ë, m(v0) � 2,

A0 cos(î0 t)� B0 sin(î0 t) if v0 =2 Ë,

8>>>>><>>>>>:
with

A0 � 2(v0 ÿ a� 1)

(v0 ÿ a� 1)2 � î2
0

, B0 � 2î0

(v0 ÿ a� 1)2 � î2
0

:

Remarks.

(1) Note that the three cases for ø0 correspond to b . v(a), b � v(a) and b , v(a),

respectively.

(2) Recall that for Langevin's equation (b � 0) we have b . v(a) for every a 2 R: In this

case Ë � fag and therefore v0 � a and x0(t) � eat.

(3) If v0 2 Ë, m(v0) � 1 (and b 6� 0 to avoid the case from the previous remark), then

for our purposes it is necessary to separate a further term from the sum in (1.11). We

obtain

x0(t) � 1

v0 ÿ a� 1
ev0 t � ø1(t)ev1 t � o(eã t), for t!1, (1:12)

where ã, v1,

ø1(t) �
1

v1 ÿ a� 1
if v1 2 Ë,

A1 cos(î1 t)� B1 sin(î1 t) if v1 =2 Ë,

8<:
and

A1 � 2(v1 ÿ a� 1)

(v1 ÿ a� 1)2 � î2
1

, B1 � 2î1

(v1 ÿ a� 1)2 � î2
1

:

Here î1 denotes the uniquely determined positive number such that ë1 �
v1 � iî1 2 Ë. (We note that î1 2 (ð, 2ð) in this case.)

The proof follows the line of the proof of Lemma 1.1 (see Section 5) in an obvious way.

As was mentioned above, 11 cases can be distinguished for the limit properties of

(VT , IT ); Table 1 represents these cases. The ®rst column describes these cases in terms of

v0 and v1, and the relations (1.11) and (1.12) make clear a connection between our

classi®cation and asymptotic properties of x0(�). The second column characterizes the cases
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in terms of a and b. The last column gives a designation for each case which will be used

in the rest of this paper. The functions u(a), a , 1, and w(a), a 2 R, are de®ned as follows:

introduce a parametric curve (a(î), b(î)), î. 0, î 6� ð, 2ð, . . . , in R2 by

a(î) � î cot î, b(î) � ÿî=sin î;

then b � u(a) and b � w(a) are the branches of this curve corresponding to î 2 (0, ð) and

î 2 (ð, 2ð) respectively; see also Figure 1.

In the following we wish to give a ®rst impression of what happens in the 11 cases. The

®rst subdivision on the left-hand side of Table 1 follows the Ornstein±Uhlenbeck case

(where v0 � a): v0 , 0, v0 � 0 and v0 . 0.

The ®rst case, v0 , 0 holds if and only if there exists a stationary solution of (1.1). This

solution is Gaussian and uniquely determined (see KuÈchler and Mensch 1992). In this case

the statistical properties of our model are classical: the local asymptotic normality property

holds. The form of ø0(�) does not in¯uence the asymptotic properties of VT and IT if

v0 , 0. But it does if v0 � 0 or v0 . 0.

If v0 � 0, the underlying experiment is only LAQ (as if a � 0 in the Ornstein±

Uhlenbeck case) in all three cases Q1±Q3. But the normalizing matrix jT and the

corresponding limit experiment now principally depend on the form of ø0(�), represented by

three different expressions in Lemma 1.1.

Now let us consider the case v0 . 0. The form of ø0(�) is essential again for our

purposes. If v0 =2 Ë, then we obtain a periodic behaviour of (VT , IT ) in a certain sense. We

call this the periodically locally asymptotically mixed normal (PLAMN) property, to

emphasize the fact that the cluster points of (VT , IT ) have the same structure as in the

locally asymptotically mixed normal (LAMN) case but (VT , IT ) converges in distribution

only if T runs to in®nity through a sequence in such a way that, for a certain Ä. 0, the

fractional part of T=Ä tends to a limit. If v0 2 Ë and m(v0) � 2, then the model is LAMN.

This is the only case where the matrix j(1)
T has to be chosen dependent on T.

If v0 2 Ë and m(v0) � 1, we also have to take into consideration the second term on the

Table 1. The 11 cases in terms of (v0, v1) and (a, b)

v0 , 0 a , 1, u(a) , b ,ÿa N

v0 � 0
v0 2 Ë

m(v0) � 1

m(v0) � 2

a , 1, b � ÿa

a � 1, b � ÿa

Q1

Q2

v0 =2 Ë a , 1, b � u(a) Q3

v1 , 0 ÿa , b , w(a) M1

m(v0) � 1
v1 � 0

v1 2 Ë

v1 =2 Ë

a . 1, b � ÿa

b � w(a)

Q4

Q5
v0 2 Ë

v0 . 0
v1 . 0

v1 2 Ë

v1 =2 Ë

a . 1, v(a) , b ,ÿa

b . w(a)

M2

P1

m(v0) � 2 a . 1, b � v(a) M3

v0 =2 Ë a , 1, b , u(a) or a > 1, b , v(a) P2
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right-hand side of (1.12) and obtain ®ve difference cases. Indeed, the limit behaviour

depends on the sign of v1 and, if v1 > 0, on whether v1 2 Ë or not.

If v1 , 0, or v1 . 0 and v1 2 Ë, the underlying experiment is LAMN. But if v1 . 0 and

v1 =2 Ë, a periodic behaviour of (VT , IT ) occurs again and the experiment is PLAMN.

If v1 � 0, the model is LAQ, whether v1 2 Ë or not. Both cases have similar limit

experiments.

Finally, we note that the LAMN (or PLAMN) property fails only if W0 belongs to the

lines b � ÿa, b � u(a) or b � w(a).

2. Local asymptotic properties

In the preceding section we have introduced a series of cases for which the fundamental

4

2

21

22

b

b 5 w(a)

P1

Q5

M1

Q1

b 5 2a

21.5 21 20.5 0.5 1 1.5 2
a

N
2π/2

Q3

b 5 u(a) b 5 v(a)

(1, 21)

Q2

Q4

M2

M3P2

Figure 1. The different cases for W0 � (a, b)�
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solution x0(�) and (VT , IT ) have different asymptotic properties. Here we shall study the

asymptotic properties of (VT , IT ) as T !1 in more detail. The proofs are given in

Section 4.

The symbols !P and !d henceforth denote convergence in probability and in distribution,

respectively. We shall use the symbol !L to denote the convergence in distribution in the

space Cd([0, 1]) of continuous functions on [0, 1] with values in Rd . Sometimes we shall

use the abbreviated notation
� 1

0
~W1 d ~W1 instead of

� 1

0
~W1(t) d ~W1(t) or

� 1

0
XY dt instead of� 1

0
X (t)Y (t) dt etc. The concrete meaning will be clear from the context.

Some details are presented in Table 2. In the ®rst column all 11 cases are listed in the

order in which they will be considered. The next three columns describe the choice of øT .

Recall that

Table 2. The choice of jT and a description of convergence to I1

Case j(1)
T j11(T) j22(T ) I1 Prop.

N I2 T ÿ1=2 Tÿ1=2 c c

c c

� �
2.1

M1 J 2 eÿv0 T Tÿ1=2 p 0

0 c

� �
2.2

M2 J 2 eÿv0 T eÿv1 T p p

p p

� �
2.3

M3
1 1

0 ÿ(1� Tÿ1)ev0

� �
T ÿ1 eÿv0 T T eÿ0 T p p

p p

� �
2.4

P1 J 2 eÿv0 T eÿv1 T p p�
p� p�

� �
2.5

P2 I2 eÿv0 T eÿv0 T p� p�
p� p�

� �
2.6

Q1 J 2 T ÿ1 Tÿ1=2 d 0

0 c

� �
2.7

Q2 J 2 T ÿ2 Tÿ1 d d

d d

� �
2.8

Q3 I2 T ÿ1 Tÿ1 d d

d d

� �
2.9

Q4 J 2 eÿv0 T Tÿ1 p 0

0 d

� �
2.10

Q5 J 2 eÿv0 T Tÿ1 p 0

0 d

� �
2.11
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jT � j(1)
T j(2)

T and j(2)
T �

j11(T ) 0

0 j22(T )

� �
: (2:1)

It turns out that we can choose j(1)
T so that it does not depend on T in every case except M3;

moreover, j(1)
T equals

I 2 :� 1 0

0 1

� �
or J 2 :�

1 1

0 ÿev0

 !
(of course, the value of v0 depends on W0).

It will be proved in Propositions 2.1, 2.2±2.4, 2.7±2.11 that in cases N, M1±M3 and

Q1±Q5, under this choice of jT , we have (VT , IT ) !d (V1, I1). It is implicitly assumed

that

E exp(ì�V1 ÿ 1
2
ì� I1ì) � 1

for every ì 2 R2 and I1 is a non-singular matrix; the proof of this is either trivial or routine.

In the ®fth column of Table 2 we describe the matrix I1 and the type of convergence of IT

to I1 in a symbolic manner. The elements of the matrix in this column have the following

meaning. The symbol `0' means that the corresponding element of I1 is 0. The symbol `c'

means that the corresponding element of I1 is a (non-zero) constant. In both cases, the

corresponding element of IT converges to this constant in probability. The symbol ` p' means

that the corresponding element of I1 is random but there is still the convergence in

probability of the corresponding element of IT to that of I1. Finally, the symbol `d' means

that we have only the convergence in distribution of the corresponding element of IT to that

of I1 but not the convergence in probability. In cases P1 and P2 studied in Propositions 2.5

and 2.6, we have a periodic behaviour of (VT , IT ) in a certain sense. There we use the

symbol ` p�' to indicate that we have the convergence in probability of the corresponding

elements of IT to a random limit but only when T runs to in®nity through certain grids.

The last column of the table indicates the number of the proposition in which the

corresponding case is considered.

In the following we shall treat every case mentioned above in a separate proposition.

Recall that VT and IT are given by (1.7) and (1.8). The process X (�) is de®ned by (1.2) for

some ®xed a and b and the matrices jT are constructed in (2.1). For every proposition

below, the parameter W0 � (a, b)� is assumed to belong to the set described by Table 1 in

accordance with the case under consideration. The de®nitions of j(1)
T , j11(T ) and j22(T )

are taken from Table 2. Unless otherwise speci®ed, all limits are taken as T !1.

Let us start with the simplest case, v0 , 0. This is the only case where
�1

0
x2

0(t) dt ,1
and a stationary solution of (1.1) exists.

Proposition 2.1. In case N the family (PW, W 2 R2) is locally asymptotically normal at every

W0:

(VT , IT ) !d (V1, I1),

where
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I1 �

�1
0

x2
0(t) dt

�1
0

x0(t)x0(t � 1) dt�1
0

x0(t)x0(t � 1) dt

�1
0

x2
0(t) dt

0BBB@
1CCCA

and V1 � N (0, I1).

Now let us treat cases M1±M3.

Proposition 2.2. In case M1 the family (PW, W 2 R2) is LAMN at every W0:

(VT , IT ) !d (V1, I1),

where (V1, I1) �d (I1=2
1 Z, I1) and the vector Z is independent of I1 and distributed as

N (0, I2). The matrix I1 is given by

I1 �
U2

0

2v0(v0 ÿ a� 1)2
0

0

�1
0

(x0(t)ÿ ev0 x0(t ÿ 1))2 dt

0BBB@
1CCCA,

where

U0 � X0(0)� b

�0

ÿ1

eÿv0(s�1) X0(s) ds�
�1

0

eÿv0 s dW (s):

Proposition 2.3. In case M2 the family (PW, W 2 R2) is LAMN at every W0:

(VT , IT ) !d (V1, I1),

where (V1, I1) �d (I1=2
1 Z, I1) and the vector Z is independent of I1 and distributed as

N (0, I2). The matrix I1 is given by

I1 �

U 2
0

2v0(v0 ÿ a� 1)2

U0U1(ev0ÿv1 ÿ 1)

(v0 � v1)(v0 ÿ a� 1)(aÿ v1 ÿ 1)

U0U1(ev0ÿv1 ÿ 1)

(v0 � v1)(v0 ÿ a� 1)(aÿ v1 ÿ 1)

U2
1(ev0ÿv1 ÿ 1)2

2v1(aÿ v1 ÿ 1)2

0BBB@
1CCCA,

where U0 is de®ned in Proposition 2.2 and

U1 � X 0(0)� b

�0

ÿ1

eÿv1(s�1) X0(s) ds�
�1

0

eÿv1 s dW (s):

Proposition 2.4. In case M3 the family (PW, W 2 R2) is LAMN at W0:

(VT , IT ) !d (V1, I1),
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where (V1, I1) �d (I1=2
1 Z, I1) and the vector Z is independent of I1 and distributed as

N (0, I2). The matrix I1 is given by

I1 �

2U 2
0

v0

U0(4
3
U0 � 2U2)

v0

� U2
0

v2
0

U0(4
3
U0 � 2U2)

v0

� U 2
0

v2
0

(4
3
U0 � 2U2)2

2v0

� U0(4
3
U0 � 2U2)

v2
0

� U2
0

v3
0

0BBBB@
1CCCCA,

where U0 is de®ned in Proposition 2.2 and

U2 � b

�0

ÿ1

(s� 1)eÿv0(s�1) X 0(s) ds�
�1

0

s eÿv0 s dW (s):

The next two propositions treat cases P1 and P2. Recall that if vi =2 Ë, then îi denotes

the positive imaginary part of ë 2 Ë with Re ë � vi, i � 0, 1.

Proposition 2.5. In case P1 the family (PW, W 2 R2) is `PLAMN' at every W0 in the following

sense: for Tn � u� nÄ, where u 2 [0, Ä) is ®xed, Ä � 2ð=î1, n > 0,

(VTn
, I Tn

) !d (V1(u), I1(u)), n!1,

where (V1(u), I1(u)) �d (I1=2
1 (u)Z, I1(u)) and the random vector Z is independent of I1(u)

and distributed as N (0, I 2). The matrix I1(u) is given by

I1(u) �
U2

0

2v0(v0 ÿ a� 1)2

U0

v0 ÿ a� 1

�1
0

eÿ(v0�v1) tU (uÿ t) dt

U0

v0 ÿ a� 1

�1
0

eÿ(v0�v1) tU (uÿ t) dt

�1
0

eÿ2v1 tU 2(uÿ t) dt

0BBB@
1CCCA:

Here U0 is de®ned as in Proposition 2.2,

U (t) � X 0(0)ö(t)� b

�0

ÿ1

ö(t ÿ sÿ 1)eÿv1(s�1) X 0(s) ds�
�1

0

ö(t ÿ s)eÿv1 s dW (s),

ö(t) � A cos(î1 t)� B sin(î1 t)

and

A

B

� �
� A1

B1

� �
ÿ ev0ÿv1

cos î1 ÿsin î1

sin î1 cos î1

� �
A1

B1

� �
,

where

A1 � 2(v1 ÿ a� 1)

(v1 ÿ a� 1)2 � î2
1

, B1 � 2î1

(v1 ÿ a� 1)2 � î2
1

:

Proposition 2.6. In case P2 the family (PW, W 2 R2) is `PLAMN' at every W0 in the following

sense: for Tn � u� nÄ, where u 2 [0, Ä) is ®xed, Ä � ð=î0, n > 0,
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(VTn
, I Tn

) !d (V1(u), I1(u)), n!1,

where (V1(u), I1(u)) �d (I1=2
1 (u)Z, I1(u)) and the random vector Z is independent of I1(u)

and distributed as N (0, I 2). The matrix I1(u) is given by

I1(u) �

�1
0

eÿ2v0 tU 2
0(uÿ t) dt

�1
0

eÿ2v0 tU0(uÿ t)U2(uÿ t) dt�1
0

eÿ2v0 tU0(uÿ t)U2(uÿ t) dt

�1
0

eÿ2v0 tU2
2(uÿ t) dt

0BBB@
1CCCA,

where

Ui(t) � X 0(0)öi(t)� b

�0

ÿ1

öi(t ÿ sÿ 1)eÿv0(s�1) X 0(s) ds�
�1

0

öi(t ÿ s)eÿv0 s dW (s),

öi(t) � Ai cos(î0 t)� Bi sin(î0 t), i � 0, 2,

A0 � 2(v0 ÿ a� 1)

(v0 ÿ a� 1)2 � î2
0

, B0 � 2î0

(v0 ÿ a� 1)2 � î2
0

,

A2

B2

� �
� eÿv0

cos î0 ÿsin î0

sin î0 cos î0

� �
A0

B0

� �
:

So far we have treated all the cases for which local asymptotic normality, local

asymptotic mixed normality or periodic local asymptotic mixed normality holds. There

remain ®ve cases, where local asymptotic quadraticity is valid.

Proposition 2.7. In case Q1 the family (PW, W 2 R2) is LAQ at every W0:

(VT , IT ) !d (V1, I1),

where (V1, I1) is given by

V1 � 1

1ÿ a

�1

0

~W (t) d ~W (t), Z

 !�

and

I1 �
1

(1ÿ a)2

�1

0

~W 2(t) dt 0

0 ó 2

0B@
1CA:

Here ó 2 � �1
0

(x0(t)ÿ x0(t ÿ 1))2 dt, ( ~W (t), t 2 [0, 1]) denotes a standard Wiener process

and the random variable Z is independent of ~W (�) and distributed as N (0, ó 2).
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Proposition 2.8. In case Q2 the family (PW, W 2 R2) is LAQ at W0 � (1, ÿ1)�:

(VT , IT ) !d (V1, I1),

where (V1, I1) is given by

V1 � 2

�1

0

~X (t) d ~W (t),

�1

0

~W (t) d ~W (t)

 !�
,

I1 � 4

�1

0

~X 2(t) dt

�1

0

~X (t) ~W (t) dt�1

0

~X (t) ~W (t) dt

�1

0

~W 2(t) dt

0BBB@
1CCCA:

Here ( ~W (t), t 2 [0, 1]) is a standard Wiener process and ~X (t) � � t

0
~W (s) ds.

Proposition 2.9. In case Q3 the family (PW, W 2 R2) is LAQ at every W0:

(VT , IT ) !d (V1, I1),

where

V1 � 1

2

A0

�1

0

~W1 d ~W1 � A0

�1

0

~W2 d ~W2 � B0

�1

0

~W1 d ~W2 ÿ B0

�1

0

~W2 d ~W1

A2

�1

0

~W1 d ~W1 � A2

�1

0

~W2 d ~W2 � B2

�1

0

~W1 d ~W2 ÿ B2

�1

0

~W2 d ~W1:

0BBB@
1CCCA

and

I1 � A2
0 � B2

0

4

1 cos î0

cos î0 1

� ��1

0

( ~W 2
1 � ~W 2

2) dt:

Here ( ~Wi(t), t 2 [0, 1]), i � 1, 2, are two independent standard Wiener processes and

A0 � 2(1ÿ a)

(1ÿ a)2 � î2
0

, B0 � 2î0

(1ÿ a)2 � î2
0

,

A2

B2

� �
� cos î0 ÿsin î0

sin î0 cos î0

� �
A0

B0

� �
:

Proposition 2.10. In case Q4 the family (PW, W 2 R2) is LAQ at every W0:

(VT , IT ) !d (V1, I1),

where (V1, I1) is given by
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V1 � U0 Z�������
2v0

p
(v0 ÿ a� 1)

,
ev0 ÿ 1

aÿ 1

�1

0

~W (t) d ~W (t)

 !�
and

I1 �

U 2
0

2v0(v0 ÿ a� 1)2
0

0
(ev0 ÿ 1)2

(aÿ 1)2

�1

0

~W 2(t) dt

0BBB@
1CCCA:

Here U0 is the same as in Proposition 2.2, Z and ( ~W (t), t 2 [0, 1]) are a standard normal

distributed random variable and a standard Wiener process respectively, and U0, Z and ~W (�)
are independent.

Proposition 2.11. In case Q5 the family (PW, W 2 R2) is LAQ at W0:

(VT , IT ) !d (V1, I1),

where (V1, I1) is given by

V1 �

U0 Z�������
2v0

p
(v0 ÿ a� 1)

1

2
A

�1

0

~W1 d ~W1 � A

�1

0

~W2 d ~W2 � B

�1

0

~W1 d ~W2 ÿ B

�1

0

~W2 d ~W1

 !
0BBBB@

1CCCCA
and

I1 �

U2
0

2v0(v0 ÿ a� 1)2
0

0
1

4
(A2 � B2)

�1

0

( ~W 2
1 � ~W 2

2) dt

0BBB@
1CCCA:

Here U0 is the same as in Proposition 2.2, Z and ( ~Wi(t), t 2 [0, 1]), i � 1, 2, are a standard

normal distributed random variable and standard Wiener processes respectively, U0, Z,
~W1(�), ~W2(�) are independent, and

A

B

� �
� A1

B1

� �
ÿ ev0

cos î1 ÿsin î1

sin î1 cos î1

� �
A1

B1

� �
,

where

A1 � 2(1ÿ a)

(1ÿ a)2 � î2
1

, B1 � 2î1

(1ÿ a)2 � î2
1

:
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3. Asymptotic properties of the maximum likelihood estimator

Assume that we observe (X (t), t < T ) continuously, where X (t) is a solution of (1.1) and the

parameters a and b are unknown. The maximum likelihood estimator ŴT of the true

parameter W0 � (a0, b0)� is given by

ŴT � arg max
W2R2

l 0
T (W) � (I0

T )ÿ1V 0
T ,

where

l 0
T (W) � W�V 0

T ÿ 1
2
W� I0

TW, W 2 R2,

V 0
T �

�T

0

X (t) dX (t),

�T

0

X (t ÿ 1) dX (T )

 !�
and

I0
T �

�T

0

X 2(t) dt

�T

0

X (t)X (t ÿ 1) dt�T

0

X (t)X (t ÿ 1) dt

�T

0

X 2(t ÿ 1) dt

0BBB@
1CCCA:

Choose an arbitrary non-singular 2 3 2-matrix jT and introduce a new parameter

ì � (á, â)� 2 R2 given by

W � W0 � jT ì:

Then

ŴT � W0 � jT ì̂T ,

where ì̂T is de®ned by

ì̂T � arg max
ì2R2

l T (ì) � Iÿ1
T VT

with

l T (ì) � ì�VT ÿ 1

2
ì� IT ì,

VT � j�T
�T

0

X (t) dW (t),

�T

0

X (t ÿ 1) dW (t)

 !�
and

IT � j�T I0
TjT :

From Section 2 we know that under appropriate choice of jT we have (in the notation of

Section 2)
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(VT , IT ) !d (V1, I1) (3:1)

or

(Vu�nÄ, I u�nÄ) !d (V1(u), I1(u)) (3:2)

with det I1 6� 0 and det I1(u) 6� 0 for every u 2 [0, Ä), respectively. Consequently we obtain

jÿ1
T (ŴT ÿ W0) � ì̂T!d Iÿ1

1 V1

or

jÿ1
u�nÄ(Ŵu�nÄ ÿ W0) � ì̂u�nÄ!d Iÿ1

1 (u)V1(u)

for every u 2 [0, Ä), respectively.

Thus we can draw conclusions concerning the asymptotic behaviour of ŴT for T !1.

But some more properties follow from (3.1) and (3.2) by standard arguments. Indeed, if the

LAMN property holds (for example, in cases N, M1±M3) then we have the local

asymptotic minimax bound for an arbitrary estimator ~WT ,

lim
r!1 lim inf

T!1
sup

kjÿ1
T

(WÿW0)k<r

EWwfjÿ1
T (~WT ÿ W)g > Ewf(I1)ÿ1V1g

� Ewf(I1)ÿ1=2 Zg, (3:3)

where Z is an N (0, I 2)-vector independent of I1 and w : R2 ! [0, 1) is a bowl-shaped

loss function. The maximum likelihood estimator ŴT attains this bound, at least for bounded

w. Moreover, the estimator ŴT is asymptotically ef®cient in the convolution theorem sense

(for example, see, Le Cam and Yang 1990; Jeganathan 1995).

In other cases, for example, if only the LAQ property holds, it follows that there exists a

lower asymptotic minimax bound but possibly of different form (see Shiryaev and Spokoiny

1999; Greenwood and Wefelmeyer 1993). This bound need not be attainable. It is known

that the maximum likelihood estimator is asymptotically generalized Bayesian with respect

to the uniform distribution on R2 (Shiryaev and Spokoiny 1999).

For some class of estimators ~WT satisfying certain conditions of regularity, for example

that the limit distribution of the randomly normed deviation

ITjÿ1
T (~WT ÿ W0)

exists and is unbiased, the covariance matrix of this limit distribution is bounded from below

by the corresponding covariance matrix for the maximum likelihood estimator ŴT which is

equal to EI1; see Gushchin (1995).

We have seen that the maximum likelihood estimator, after a certain matrix

normalization, converges in distribution to some limit. In cases N, P2 and Q3 we have

that jT is equal to j22(T )I 2, and thus the normalization by the number jÿ1
22 (T ) yields the

same limit distribution.

In all other cases j(1)
T is an upper triangular matrix and j11(T ) � o(j22(T )). This re¯ects
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some singularities in the local structure of our model, which have not been mentioned so

far. Before studying these singularities, we introduce the following notation. Let

È :� f(a, b) 2 R2 : a < 1, b > ÿa or a > 1, b > v(a)g

� f(a, b) 2 R2 : v0 � v0(a, b) > 0 and v0 2 Ëg:

For any ã > 0 put Èã :� f(a, b) 2 È : v0(a, b) � ãg. It is easy to see that Èã is a straight

half-line: Èã � f(a, b) 2 R2 : b � eã(ãÿ a), a < 1� ãg. The sets Èã, ã > 0, form a family

of disjoint rays covering È and having the curve b � v(a), a > 1, as envelope. Note also that
~Èã :� f(a, b) 2 R2 : a� b eÿã � ãg � È is the tangent line to v(�) at the point (1� ã, eÿã),

that the points in ~ÈãnÈã correspond to case Q4 if ã � 0 and to case M2 if ã. 0, and that

v1 � v1(a, b) � ã if (a, b) 2 ~ÈãnÈã.

In the rest of this section we shall assume that the true value W0 � (a, b)� of the

parameter corresponds to one of cases M1±M3, P1, Q1, Q2, Q4, or Q5, that is, W0 2 È.

Real solutions of the characteristic equation (1.9) exist and, as before, v0 denotes the

maximal one. By construction, W0 2 Èv0
.

First, we note that the normalization of ŴT ÿ W0 by the scalar jÿ1
22 (T ) leads to a non-

trivial limit distribution which is concentrated on the straight line passing through the origin

and parallel to ~Èv0
. (This and subsequent remarks are modi®ed in an obvious way in the

periodic case P1.) Indeed, we obtain

jÿ1
22 (T )(ŴT ÿ W0) � jÿ1

22 (T )jT ì̂T � jÿ1
22 (T )j(1)

T j(2)
T ì̂T

� j(1)
T

jÿ1
22 (T )j11(T ) 0

0 1

 !
ì̂T

!d
1 1

0 ÿev0

 !
0 0

0 1

 !
Iÿ1
1 V1

�
0 1

0 ÿev0

 !
Iÿ1
1 V1: (3:4)

In particular, the rate of convergence of ŴT to W0 is jÿ1
22 (T ) and ŴT lies near the straight line

~Èv0
in the sense that the distance between ŴT and ~Èv0

is of smaller order than j22(T ).

In this connection it is of some interest to see what happens if one of the parameters or a

linear combination of them is known. Here we shall concentrate on the maximum likelihood

estimators. The corresponding arguments concerning local asymptotic properties are similar

and omitted.

Assume that the parameter W belongs to a straight line È9 which meets W0. The limit

behaviour of the maximum likelihood estimator

Ŵ9T � arg max
W2È9

l 0
T (W)
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is essentially different in the following two cases: (1) È9 6� ~Èv0
; (2) È9 � ~Èv0

. Denote by

MT the image of È9 by the map

W! jÿ1
T (Wÿ W0)

and by ì̂9T the maximum likelihood estimator

ì̂9T � arg max
ì2MT

l T (ì):

Then

Ŵ9T � W0 � jT ì̂9T ,

Case (1). It is easy to see that MT is a straight line passing through (0, 0) with slope tending

to zero if T !1. So we obtain, with the notation ì � (á, â)�,

ì̂9T!d arg max
â�0,á2R

ì�V1 ÿ 1

2
ì� I1ì

� �
: (3:5)

This means that the limit distribution of ì̂9T is the distribution of the vector Ö(1, 0)�, where

Ö � V1,1=I1,11 (V1,i are the elements of V1 and I1,ii are the diagonal elements of I1,

i � 1, 2). Since jÿ1
11 (T )(1, eÿv0 )jT ! (1, 0), we obtain

jÿ1
11 (T )(1, eÿv0 )(Ŵ9T ÿ W0) !d Ö,

hence

jÿ1
11 (T )(Ŵ9T ÿ W0) !d Ö(1� c, ÿev0 c)�,

for some real c. The rate of convergence of Ŵ9T to W0 equals jÿ1
11 (T ).

Case (2). Let us assume additionally that we are not in case M3. Then

MT � f(á, â) : á � 0g and we obtain

ì̂9T!d arg max
á�0,â2R

ì�V1 ÿ 1

2
ì� I1ì

� �
:

Thus the limit distribution of ì̂9T is the distribution of the vector Ø(0, 1)�, where

Ø � V1,2=I1,22. Now it is easy to see that

jÿ1
22 (T )(Ŵ9T ÿ W0) !d Ø(1, ÿev0 )�: (3:6)

Therefore, the rate of convergence of Ŵ9T to W0 is jÿ1
22 (T ). Moreover, if I1 is diagonal (this

happens in cases M1, Q1, Q4, and Q5) then

jÿ1
22 (T )(ŴT ÿ Ŵ9T ) !P 0 (3:7)

(compare (3.4) and (3.6)). Furthermore, I1,22 is non-random in cases M1 and Q1. Hence the
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submodel (PW, W 2 ~Èv0
) is locally asymptotically normal in these two cases. Applying the

asymptotic minimax theorem to this submodel, we obtain the following local asymptotic

minimax bound for an arbitrary estimator ~WT in the global model:

lim
r!1 lim inf

T!1
sup

T 1=2kWÿW0k<r

EWwfT 1=2k~WT ÿ Wkg > Ewfjó jÿ1(1� e2v0 )1=2 Zg,

where Z is a standard normal variable, ó 2 � �1
0

(x0(t)ÿ ev0 x0(t ÿ 1))2 dt and w : R!
[0, 1) is a bowl-shaped loss function; here W0 satis®es a , 1, ÿa < b , w(a) or a > 1,

ÿa , b , w(a) (corresponding to cases M1 and Q1, respectively). Note that a similar

estimate can be obtained from (3.3) also in case N. Due to (3.7), the maximum likelihood

estimator ŴT attains this bound, at least for bounded w.

Finally, let us consider case M3. Here we have j11(T ) � Tÿ1 eÿv0 T and

j22(T ) � T eÿv0 T . Thus MT is the straight line passing through (0, 0) with slope 1=T .

The estimator ì̂9T has the limit distribution as in (3.5) above. This implies

ev0 T (Ŵ9T ÿ W0) !d Ö(1, ÿev0 )�:

So here the rate of convergence of Ŵ9T to W0 is intermediate between jÿ1
11 (T ) and jÿ1

22 (T ).

4. Proofs

The main goal of this section is to prove Propositions 2.1±2.11, that is, to prove the weak

convergence of (VT , IT ) to the corresponding limit. Unless otherwise speci®ed, all limits are

taken as T !1.

Let us start with some general remarks. With the exception of case M3, we have

VT � j11(T )

�T

0

X (t) dW (t), j22(T )

�T

0

Y (t) dW (t)

 !�
(4:1)

and

IT �
j2

11(T )

�T

0

X 2(t) dt j11(T )j22(T )

�T

0

X (t)Y (t) dt

j11(T )j22(T )

�T

0

X (t)Y (t) dt j2
22(T )

�T

0

Y 2(t) dt

0BBB@
1CCCA, (4:2)

where

Y (t) � X (t ÿ 1) in cases N, P2, Q3,

X (t)ÿ ev0 X (t ÿ 1) otherwise:

�
(4:3)

Note that the process Y (t) de®ned in this way has a representation similar to (1.2), where the

function x0(t) is replaced by the linear combination of x0(t) and x0(t ÿ 1) corresponding to

(4.3); this representation holds for t > 1.
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More generally, we will consider the following representation of a continuous process

(Y (t), t > 0) based on a function y(�):

Y (t) � y(t)X 0(0)� b

�0

ÿ1

y(t ÿ sÿ 1)X0(s) ds�
� t

0

y(t ÿ s) dW (s), t > t0, (4:4)

where t0 > 1 and y � (y(t), t > 0) is a deterministic continuous function. Before proving

Propositions 2.1±2.11, we shall study some properties of processes with representation (4.4).

Our ®rst lemma summarizes in an appropriate form some simple facts used over and over

throughout this section. The proof is trivial and therefore omitted.

Lemma 4.1. Assume Y1(t), Y2(t) and Z(t), t > 0, are adapted continuous processes,

Y (t) � Y1(t)� Y2(t), t > 0, and (W (t), t > 0) is a standard Wiener process. Moreover, let

ä(T ) and å(T ) be normalizing functions such that

ä2(T )

�T

0

Y 2
1(t) dt, T > 0, and å2(T )

�T

0

Z2(t) dt, T > 0,

are bounded in probability and

ä2(T )

�T

0

Y 2
2(t) dt!P 0:

Then

ä(T )

�T

0

Y (t) dW (t)ÿ
�T

0

Y1(t) dW (t)

( )
!P 0,

ä2(T )

�T

0

Y 2(t) dt ÿ
�T

0

Y 2
1(t) dt

( )
!P 0:

ä(T )å(T )

�T

0

Y (t)Z(t) dt ÿ
�T

0

Y1(t)Z(t) dt

( )
!P 0:

Let (Y (t), t > 0) be a process with representation (4.4). Sometimes the ®rst term on the

right-hand side of (4.4) is small in the sense of Lemma 4.1, that is, it can be chosen as

Y2(t). The next lemma shows that then the second term on the right-hand side of (4.4) is

also small in the same sense.

Lemma 4.2. Put

z(t) �
�0

ÿ1

y(t ÿ sÿ 1)X0(s) ds, t > t0:

Then
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�T

t0

z2(t) dt <

�0

ÿ1

X 2
0(s) ds

�T

0

y2(t) dt:

To prove this, use Fubini's theorem and the Cauchy±Schwarz inequality.

In Lemmas 4.3, 4.5, 4.7, 4.8 and Corollary 4.4 we assume that Y (�), Y1(�), Y2(�) are

continuous processes having representation (4.4) with functions y(�), y1(�), y2(�),
respectively.

Lemma 4.3. Assume that y � (y(t), t > 0) is a square-integrable function. Then

Tÿ1

�T

0

Y (t) dt!P 0,

Tÿ1

�T

0

Y 2(t) dt!P ó 2 :�
�1

0

y2(t) dt:

Proof. According to Lemmas 4.1 and 4.2, it is suf®cient to prove the assertion for X 0(s) � 0.

We introduce the stationary process Z(t) � � t

ÿ1 y(t ÿ s) dW (s), t > 0, where W (�) is

extended to (ÿ1, 0) as a Wiener process independently of (W (s), s > 0).

Obviously, we have

Tÿ1E

�T

t0

(Z(t)ÿ Y (t))2 dt � Tÿ1

�T

t0

�1
t

y2(s) ds dt! 0: (4:5)

Applying the law of large numbers to the Gaussian stationary process Z(�), which is ergodic,

we obtain

Tÿ1

�T

0

Z(t) dt!P EZ(0) � 0, Tÿ1

�T

0

Z2(t) dt!P EZ2(0) � ó 2:

Now the claim follows from (4.5). h

Corollary 4.4. If
�1

0
y2

i (t) dt ,1, i � 1, 2, then

Tÿ1

�T

0

Y1(t)Y2(t) dt!P
�1

0

y1(t)y2(t) dt:

Lemma 4.5. Suppose that y(t) � táewt for some á � 0, 1, 2, . . . and w . 0. Then with

probability one

lim
t!1 tÿá eÿwtY (t) � U ,

where

U � X0(0)� b

�0

ÿ1

eÿw(s�1) X0(s) ds�
�1

0

eÿws dW (s):
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Proof. Using the representation (4.4) of Y (�), the appearance of the ®rst two terms of U is

quite obvious. Furthermore,

tÿá eÿwt

� t

0

y(t ÿ s) dW (s) �
� t

0

1ÿ s

t

� �á

eÿws dW (s)

�
� t

0

eÿws dW (s)�
Xá
k�1

(ÿ1)k
á

k

 !
tÿk

� t

0

sk eÿws dW (s):

It remains to note that, with probability one,

lim
t!1

� t

0

eÿws dW (s) �
�1

0

eÿws dW (s)

by LeÂvy's theorem and

lim
t!1 tÿk

� t

0

sk eÿws dW (s) � 0

by the strong law of large numbers for martingales; see, for example, Liptser and Shiryaev

(1989, Chapter 2, }6, Theorem 10). h

Lemma 4.6. Let Z1(�) and Z2(�) be two continuous processes such that with probability one

lim
t!1 tÿái eÿwi t Zi(t) � Ui,

for some ái 2 R, wi . 0, and some random variables Ui almost surely ®nite, i � 1, 2. Then

Tÿá1ÿá2 eÿ(w1�w2)T

�T

0

Z1(t)Z2(t) dt!P U1U2

w1 � w2

and

Tÿá1ÿ1=2 eÿw1 T

�T

0

jZ1(t)j dt!P 0:

Remark. In fact, we have the almost sure convergence in the assertions of Lemma 4.6. For

the proof, apply L'HoÃpital's rule.

Lemma 4.7. Suppose that a continuous process Y (�) has representation (4.4) with a bounded

y(�). If Z(�) is a continuous process such that with probability one

lim
t!1 eÿwt Z(t) � U

for some w . 0 and some random variable U almost surely ®nite, then

Tÿ1 eÿwT

�T

0

Y (t)Z(t) dt!P 0:
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If, moreover, y(�) is square-integrable on [0, 1), then this convergence holds for Tÿ1=2

instead of Tÿ1.

Proof. We can use Lemmas 4.2 and 4.6 to apply Lemma 4.1 and therefore we can assume

that X 0(0) � 0. Applying these lemmas again, we can substitute Z(t) by ewtU. Thus it

remains to prove that

Tÿ1 eÿwT

�T

0

ewtY (t) dt!P 0

(or Tÿ1=2 instead of Tÿ1 if
�1

0
y2(t) dt ,1). Now observe that

E

�����T

0

ewtY (t) dt

���� <

�T

0

ewtEjY (t)jdt

<

�T

0

ewt(EjY (t)j2)1=2 dt

and that

EjY (t)j2 �
� t

0

y2(s) ds, t > t0,

which implies the assertion. h

Lemma 4.8. Assume that y(t) � ö(t)ewt, where ö(t) � cos(ît) or ö(t) � sin(ît) and w . 0.

Then with probability one

lim
t!1fe

ÿwtY (t)ÿ U (t)g � 0,

where

U (t) � X 0(0)ö(t)� b

�0

ÿ1

ö(t ÿ sÿ 1)eÿw(s�1) X 0(s) ds�
�1

0

ö(t ÿ s)eÿws dW (s)

is a continuous periodic process.

Proof. Note that

eÿwtY (t)ÿ U (t) � ÿ
�1

t

ö(t ÿ s)eÿws dW (s), t > t0:

If ö(t) � cos(ît) then�1
t

ö(t ÿ s)eÿws dW (s) � cos(ît)

�1
t

cos(îs)eÿws dW (s)� sin(ît)

�1
t

sin(îs)eÿws dW (s),

which obviously tends almost surely to zero. The case ö(t) � sin(ît) can be treated

similarly. h
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Lemma 4.9. Let Z(. . . , ) be a continuous process such that with probability one

lim
t!1fe

ÿwt Z(t)ÿ U (t)g � 0,

where U(�) is a continuous periodic process on R and w . 0. Then

eÿ2wT

�T

0

Z2(t) dt ÿ
�1

0

eÿ2wtU 2(T ÿ t) dt!P 0:

Proof. Applying Lemma 4.1, we can replace Z(t) by ewtU (t) and observe that

eÿ2wT

�T

0

e2wtU 2(t) dt �
�T

0

eÿ2wtU 2(T ÿ t) dt

and �1
T

eÿ2wtU 2(T ÿ t) dt!P 0: h

Lemma 4.10. Let Z1(�) and Z2(�) be two continuous processes such that with probability one

lim
t!1 eÿw1 t Z1(t) � U1

and

lim
t!1fe

ÿw2 t Z2(t)ÿ U2(t)g � 0,

where w1, w2 . 0, U1 is a ®nite random variable and U2(�) is a continuous periodic process

on R. Then

eÿ(w1�w2)T

�T

0

Z1(t)Z2(t) dt ÿ U1

�1
0

eÿ(w1�w2) tU2(T ÿ t) dt!P 0:

Proof. The proof is analogous to that of Lemma 4.9. h

Now we are in a position to prove Proposition 2.1±2.8.

Proof of Proposition 2.1. According to (4.1)±(4.3),

VT � Tÿ1=2

�T

0

X (t) dW (t), Tÿ1=2

�T

0

X (t ÿ 1) dW (t)

 !�
and

IT �
Tÿ1

�T

0

X 2(t) dt Tÿ1

�T

0

X (t)X (t ÿ 1) dt

Tÿ1

�T

0

X (t)X (t ÿ 1) dt Tÿ1

�T

0

X 2(t ÿ 1) dt

0BBB@
1CCCA:
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The process (X (t), t > 0) has representation (4.4) with y(t) � x0(t), t > 0, and

(X (t ÿ 1), t > 0) has this representation with y(t) � x0(t ÿ 1), t > 0.

By assumption, v0 , 0, that is,
�1

0
x2

0(t) dt ,1 holds. Thus we can apply Lemma 4.3 and

Corollary 4.4 to obtain IT!P I1. Now the claim follows from the central limit theorem;

see, for example, Basawa and Prakasa Rao (1980, Theorem 2.1, Appendix 2, p. 405). h

Proof of Proposition 2.2. According to (4.1)±(4.3),

VT � eÿv0 T

�T

0

X (t) dW (t), Tÿ1=2

�T

0

Y (t) dW (t)

 !�
and

IT �
eÿ2v0 T

�T

0

X 2(t) dt Tÿ1=2 eÿv0 T

�T

0

X (t)Y (t) dt

Tÿ1=2 eÿv0 T

�T

0

X (t)Y (t) dt Tÿ1

�T

0

Y 2(t) dt

0BBB@
1CCCA,

where

Y (t) � X (t)ÿ ev0 X (t ÿ 1), t > 0: (4:6)

Note that Y (�) has representation (4.4) with y(t) � x0(t)ÿ ev0 x0(t ÿ 1). In the case considered

v0 . 0 and v1 , 0. It follows from Lemma 1.1 that

x0(t) � 1

v0 ÿ a� 1
ev0 t � o(eã t) (4:7)

for some ã, 0, and this implies y(t) � o(eã t) and therefore
�1

0
y2(t) dt ,1. Now Lemmas

4.5, 4.6 and 4.1 imply that

eÿ2v0 T

�T

0

X 2(t) dt!P U2
0

2v0(v0 ÿ a� 1)2
,

it follows from Lemmas 4.5, 4.7 and 4.1 that

Tÿ1=2 eÿv0 T

�T

0

X (t)Y (t) dt!P 0,

and Lemma 4.3 implies that

Tÿ1

�T

0

Y 2(t) dt!P
�1

0

y2(t) dt:

Summarizing these results, we obtain the convergence in probability of IT to I1. The joint

convergence of (VT , IT ) to (V1, I1) follows from the stable limit theorem for martingales;

see Jacod and Shiryaev (1987, Theorem VIII.5.42 and Example VIII.5.38) or Touati (1991,

Theorem 1). h
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Proof of Proposition 2.3. According to (4.1)±(4.3),

VT � eÿv0 T

�T

0

X (t) dW (t), eÿv1 T

�T

0

Y (t) dW (t)

 !�
and

IT �
eÿ2v0 T

�T

0

X 2(t) dt eÿ(v0�v1)T

�T

0

X (t)Y (t) dt

eÿ(v0�v1)T

�T

0

X (t)Y (t) dt eÿ2v1 T

�T

0

Y 2(t) dt

0BBB@
1CCCA,

where Y (t) is de®ned as in (4.6) above and has representation (4.4) with

y(t) � x0(t)ÿ ev0 x0(t ÿ 1). As in the previous proposition, it is suf®cient to check that

IT!P I1.

Since v0 . v1 . 0, v0 2 Ë and v1 2 Ë in the case considered, it follows from Lemma 1.1

and (1.12) that (4.7) holds for some ã, v0 and

y(t) � ev0ÿv1 ÿ 1

aÿ v1 ÿ 1
ev1 t � o(eã1 t)

for some ã1 , v1.

Using Lemmas 4.5, 4.6 and 4.1, we obtain

eÿ2v0 T

�T

0

X 2(t) dt!P U 2
0

2v0(v0 ÿ a� 1)2
,

eÿ(v0�v1)T

�T

0

X (t)Y (t) dt!P U0U1(ev0ÿv1 ÿ 1)

(v0 � v1)(v0 ÿ a� 1)(aÿ v1 ÿ 1)

and

eÿ2v1 T

�T

0

Y 2(t) dt!P U2
1(ev0ÿv1 ÿ 1)2

2v1(aÿ v1 ÿ 1)2
,

which yields the desired convergence. h

Proof of Proposition 2.4. By the choice of jT , we have

VT � Tÿ1 eÿv0 T

�T

0

X (t) dW (t), T eÿv0 T

�T

0

(Y (t)ÿ Tÿ1 Z(t)) dW (t)

 !�
and

IT �
Tÿ2 eÿ2v0 T

�T

0

X 2(t) dt eÿ2v0 T

�T

0

X (t)(Y (t)ÿ Tÿ1 Z(t)) dt

eÿ2v0 T

�T

0

X (t)(Y (t)ÿ Tÿ1 Z(t)) dt T 2 eÿ2v0 T

�T

0

(Y (t)ÿ Tÿ1 Z(t))2 dt

0BBB@
1CCCA,
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where Z(t) � ev0 X (t ÿ 1) and Y (t) is de®ned as in (4.6). Obviously Z(�) has representation

(4.4) with z(t) � ev0 x(t ÿ 1). It follows from (1.11) that

x0(t) � (2t � 2
3
)ev0 t � o(eã t),

y(t) � 2 ev0 t � o(eã t),

z(t) � (2t ÿ 4
3
)ev0 t � o(eã t)

for some 0 , ã, v0.

Put

ŷ(t) � 2 ev0 t, ẑ(t) � (2t ÿ 4
3
)ev0 t,

and let Ŷ (t) and Ẑ(t) be continuous processes having representation (4.4) with the functions

ŷ(t) and ẑ(t) respectively, X̂ (t) � Ŷ (t)� Ẑ(t). It can be easily checked that

eÿ2ãT

�T

0

(X (t)ÿ X̂ (t))2 dt!P 0 (4:8)

eÿ2ãT

�T

0

(Y (t)ÿ Ŷ (t))2 dt!P 0 (4:9)

and

eÿ2ãT

�T

1

tÿ2(Z(t)ÿ Ẑ(t))2 dt!P 0: (4:10)

Lemma 4.5 implies that with probability one

lim
t!1 tÿ1 eÿv0 t X̂ (t) � 2U0 (4:11)

and

lim
t!1 tÿ1 eÿv0 tẐ(t) � 2U0; (4:12)

the same proof as in Lemma 4.5 shows that

lim
t!1 t eÿv0 t(Ŷ (t)ÿ tÿ1Ẑ(t)) � 4

3
U0 � 2U2: (4:13)

By Lemma 4.6 we obtain

Tÿ2 eÿ2v0 T

�T

0

X̂ 2(t) dt!P 2U2
0

v0

, (4:14)

eÿ2v0 T

�T

1

X̂ (t)(Ŷ (t)ÿ tÿ1Ẑ(t)) dt!P U0(4
3
U0 � 2U2)

v0

, (4:15)

and

T 2 eÿ2v0 T

�T

1

(Ŷ (t)ÿ tÿ1Ẑ(t))2 dt!P (4
3
U0 � 2U2)2

2v0

: (4:16)
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It follows from (4.11)±(4.13) by L'HoÃpital's rule that

eÿ2v0 T

�T

1

X̂ (t)Ẑ(t)(tÿ1 ÿ Tÿ1) dt!P U2
0

v2
0

, (4:17)

T 2 eÿ2v0 T

�T

1

Ẑ2(t)(tÿ1 ÿ Tÿ1)2 dt!P U2
0

v3
0

, (4:18)

T 2 eÿ2v0 T

�T

1

(Ŷ (t)ÿ tÿ1Ẑ(t))Ẑ(t)(tÿ1 ÿ Tÿ1) dt!P U0(4
3
U0 � 2U2)

2v2
0

: (4:19)

It follows from (4.8)±(4.10) that we can replace X̂ (t), Ŷ (t) and Ẑ(t) by X (t), Y (t) and Z(t)

respectively in relations (4.14)±(4.19). This implies the convergence IT!P I1. Now the claim

follows from the stable limit theorem for martingales as in Propositions 2.2 and 2.3. h

Proof of Proposition 2.5. According to (4.1)±(4.3),

VT � eÿv0 T

�T

0

X (t) dW (t), eÿv1 T

�T

0

Y (t) dW (t)

 !�
and

IT �
eÿ2v0 T

�T

0

X 2(t) dt eÿ(v0�v1)T

�T

0

X (t)Y (t) dt

eÿ(v0�v1)T

�T

0

X (t)Y (t) dt eÿ2v1 T

�T

0

Y 2(t) dt

0BBB@
1CCCA,

where

Y (t) � X (t)ÿ ev0 X (t ÿ 1), t > 0:

Note that Y (�) has representation (4.4) with y(t) � x0(t)ÿ ev0 x0(t ÿ 1). It follows from (1.12)

that

x0(t) � 1

v0 � 1ÿ a
ev0 t � fA1 cos(î1 t)� B1 sin(î1 t)gev1 t � o(eã t)

for some ã, v1 and, hence,

y(t) � ö(t)ev1 t � o(eã t):

Applying Lemmas 4.5, 4.6, 4.8, 4.9, 4.10 and 4.1, we obtain

IT ÿ I1(T ) !P 0:

Now we complete the proof similarly to the previous case. The matrix-valued process I1(T )

is periodic with period Ä � 2ð=î1, and the claim follows from the stable limit theorem for

martingales as in previous propositions. h
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Proof of Proposition 2.6. According to (4.1)±(4.3),

VT � eÿv0 T

�T

0

X (t) dW (t), eÿv0 T

�T

0

X (t ÿ 1) dW (t)

 !�
and

IT �
eÿ2v0 T

�T

0

X 2(t) dt eÿ2v0 T

�T

0

X (t)X (t ÿ 1) dt

eÿ2v0 T

�T

0

X (t)X (t ÿ 1) dt eÿ2v0 T

�T

0

X 2(t ÿ 1) dt

0BBB@
1CCCA:

The process (X (t), t > 0) has representation (4.4) with y(t) � x0(t), t > 0, and

(X (t ÿ 1), t > 0) has this representation with y(t) � x0(t ÿ 1), t > 0. It follows from

(1.11) that

x0(t) � ö0(t)ev0 t � o(eã t)

for some ã, v0 because of ö0 � ø0 by de®nition. Hence,

x0(t ÿ 1) � ö2(t)ev0 t � o(eã t):

From Lemmas 4.8, 4.9 and 4.1 we now have

IT ÿ I1(T ) !P 0:

Obviously, the matrix-valued process I1(T ) is periodic with period Ä � ð=î0, and we

complete the proof similarly to the previous proposition. h

Proof of Proposition 2.7. According to (4.1)±(4.3),

VT � Tÿ1

�T

0

X (t) dW (t), Tÿ1=2

�T

0

Y (t) dW (t)

 !�
and

IT �
Tÿ2

�T

0

X 2(t) dt Tÿ3=2

�T

0

X (t)Y (t) dt

Tÿ3=2

�T

0

X (t)Y (t) dt Tÿ1

�T

0

Y 2(t) dt

0BBB@
1CCCA,

where

Y (t) � X (t)ÿ X (t ÿ 1), t > 0:

Note that here we have

x0(t) � 1

1ÿ a
� o(eã t)
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for some ã, 0, and X (�) and Y (�) have representation (4.4) with the functions x0(t) and

y(t) � x0(t)ÿ x0(t ÿ 1), respectively. Obviously y(t) � o(eã t).

Consider the processes

W T (s) � Tÿ1=2W (Ts),

X T (s) � (1ÿ a)ÿ1Tÿ1

�Ts

0

W (t) dW (t) � (1ÿ a)ÿ1

� s

0

W T (t) dW T (t),

Y T (s) � Tÿ1=2

�Ts

0

Y (t) dW (t) �
� s

0

Y (Tt) dW T (t), s 2 [0, 1]:

These processes are continuous local martingales. Since� s

0

Y 2(Tt) dt � Tÿ1

�Ts

0

Y 2(t) dt!P ó 2s,� s

0

Y (Tt) dt � Tÿ1

�Ts

0

Y (t) dt!P 0

by Lemma 4.3, the functional central limit theorem for martingales (Jacod and Shiryaev

1987, Theorem VIII.3.11) implies that

(W T , Y T ) !L ( ~W , ó ~W1),

where ( ~W1(t), t 2 [0, 1]) is a standard Wiener process independent of ~W (�). Since

X T (s) � ((W T (s))2 ÿ s)=2(1ÿ a) by ItoÃ's formula, we also have

(X T , Y T ) !L ( ~X , ó ~W1), (4:20)

where

~X (s) � (1ÿ a)ÿ1

� s

0

~W (t) d ~W (t):

Moreover, the convergence (4.20) implies the joint functional convergence of (X T , Y T )

together with their quadratic (co)variations; see Jacod and Shiryaev (1987, Theorem VI.6.1).

In particular, (V̂T , Î T ) !d (V1, I1), where

~VT � (X T (1), Y T (1))� � (1ÿ a)ÿ1Tÿ1

�T

0

W (t) dW (t), Tÿ1=2

�T

0

Y (t) dW (t)

 !�
and

Î T �
(1ÿ a)ÿ2Tÿ2

�T

0

W 2(t) dt (1ÿ a)ÿ2Tÿ3=2

�T

0

W (t)Y (t) dt

(1ÿ a)ÿ2Tÿ3=2

�T

0

W (t)Y (t) dt Tÿ1

�T

0

Y 2(t) dt

0BBB@
1CCCA:
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But, evidently, VT ÿ V̂T!P 0 and IT ÿ Î T!P 0 by Lemmas 4.1 and 4.2. h

Proof of Proposition 2.8. According to (4.1)±(4.3),

V�T � Tÿ2

�T

0

X (t) dW (t), Tÿ1

�T

0

Y (t) dW (t)

 !
(4:21)

and

IT �
Tÿ4

�T

0

X 2(t) dt Tÿ3

�T

0

X (t)Y (t) dt

Tÿ3

�T

0

X (t)Y (t) dt Tÿ2

�T

0

Y 2(t) dt

0BBB@
1CCCA, (4:22)

where

Y (t) � X (t)ÿ X (t ÿ 1), t > 0:

Here we have

x0(t) � (2t � 2
3
)� o(eã t)

for some ã, 0 and X (�) and Y (�) have representation (4.4) with the functions x0(t) and

y(t) � x0(t)ÿ x0(t ÿ 1). Obviously y(t) � 2� o(eã t).

Let V̂T and Î T be de®ned by (4.21) and (4.22) respectively after replacing X (t) by

X̂ (t) � 2
� t

0
(t ÿ s) dW (s) and Y (t) by 2W (t). We have VT ÿ V̂T!P 0 and IT ÿ Î T!P 0 by

Lemmas 4.1 and 4.2. Now it remains to note that X̂ (t) � 2
� t

0
W (s) ds by ItoÃ's formula and

(V̂T , Î T ) �d (V1, I1), for all T . 0,

in view of the self-similarity of the Wiener process. h

To prove the remaining propositions we need an additional result. In the next lemma and

corollary, for each integer n we consider a d-dimensional process Mn � (M n
t ) t2[0,1] on a

stochastic basis (Ù, F , (F n
t ) t2[0,1], P), whose components M n,i are continuous local

martingales; M n
0 � 0. We also consider a d-dimensional process M � (Mt) t2[0,1] with the

same properties, on a stochastic basis (Ù, F , (F t) t2[0,1], P). We denote by Nn the Rd 
 Rd-

valued process whose components N n,ij are de®ned as stochastic integrals

N
n,ij
t �

� t

0
M n,i

s dM n, j
s , t 2 [0, 1], and we associate the process N with M similarly. For

the notion of stable convergence, we refer to Jacod and Shiryaev (1987, Chapter VIII, }5c).

Lemma 4.11. Assume that:

(i) Mn!L M ;

(ii) for every ®nite subdivision ô � f0 � t0 , t1 , � � � , tm � 1g of [0, 1], the vectors

(î n, M n
t1

, . . . , M n
t m

) converge G -stably to the vector (î, M t1
, . . . , M t m

), where G is a sub-
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ó-algebra of F, and î n and î are random variables.

Then, for every ®nite subdivision ô of [0, 1], the vectors (î n, M n
t1

, . . . , M n
t m

, N n
t1

, . . . , N n
t m

)

converge G -stably to the vector (î, M t1
, . . . , M t m

, N t1
, . . . , N t m

).

Proof. The proof is an easy consequence of the following fact. Let í � f0 � u0 , u1 ,
� � � , uk � 1g be a subdivision of [0, 1]. Put

S
n,ij
t (í) �

Xkÿ1

p�0

M n,i
up

(M
n, j
t^u p�1

ÿ M
n, j
t^up

):

Then, for any å. 0, there exists a ä. 0 such that for all divisions í of [0, 1] satisfying

jíj � sup1< p<k(up ÿ u pÿ1) < ä, we have

sup
n

P sup
t2[0,1]

jS n
t (í)ÿ N n

t j > å
� �

< å:

This can be shown from (i) following the lines of the proof of Lemma VI.6.13 in Jacod and

Shiryaev (1987); moreover, the proof is much simpler in our case since M n, j are assumed to

be continuous local martingales. h

Corollary 4.12. Let the assumptions of Lemma 4.11 hold. Denote by [N n, Nn] the

(Rd 
 Rd)
 (Rd 
 Rd)-valued process whose components are the quadratic covariations

[N n,ij, N n,kl]; [N , N ] is de®ned similarly. Then the vectors (î n, N n
1 , [Nn, N n]1) converge G -

stably to the vector (î, N1, [N , N ]1).

Proof. Note that [N n,ij, N n,kl] t � N
n,ij
t N n,kl

t ÿ � t

0
N n,ij

s dN n,kl
s ÿ � t

0
N n,kl

s dN n,ij
s by ItoÃ's

formula, so the claim follows from Lemma 4.11 applied to the processes Nn. h

Remark. If î n � î and G � fÆ, Ùg, the assertions of Lemma 4.11 and Corollary 4.12 are

very special cases of theorems on convergence of stochastic integrals; see Jakubowski et al.

(1989) and Kurtz and Protter (1991), cf. also Jacod and Shiryaev (1987, Theorem VI.6.1).

Proof of Proposition 2.9. According to (4.1)±(4.3),

VT � Tÿ1

�T

0

X (t) dW (t), Tÿ1

�T

0

X (t ÿ 1) dW (t)

 !�
and

IT �
Tÿ2

�T

0

X 2(t) dt Tÿ2

�T

0

X (t)X (t ÿ 1) dt

Tÿ2

�T

0

X (t)X (t ÿ 1) dt Tÿ2

�T

0

X 2(t ÿ 1) dt

0BBB@
1CCCA:

Because of (1.2) the process (X (t), t > 0) has representation (4.4) with the function x0(t),

t > 0, and (X (t ÿ 1), t > 0) has this representation with the function y(t) � x0(t ÿ 1), t > 0.
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By Lemma 1.1 we have

x0(t) � A0 cos(î0 t)� B0 sin(î0 t)� o(eã t) (4:23)

and

x0(t ÿ 1) � A2 cos(î0 t)� B2 sin(î0 t)� o(eã t)

for some ã, 0. We introduce (X1(t), t > 0) and (X 2(t), t > 0) by

X1(t) �
� t

0

cos(î0s) dW (s) and X 2(t) �
� t

0

sin(î0s) dW (s):

The solution (X (t), t > 0) has representation

X (t) �
� t

0

x0(t ÿ s) dW (s)� x0(t)X0(0)� b

�0

ÿ1

x0(t ÿ sÿ 1)X 0(s) ds, t > 0: (4:24)

Inserting (4.23) into the ®rst term, we obtain

X (t) � A0 cos(è0 t)X 1(t)� A0 sin(î0 t)X2(t)� B0 sin(î0 t)X 1(t)ÿ B0 cos(î0 t)X2(t)� X (t),

where X (t) is the sum of the last two terms in (4.24) and the contribution arising from the

remainder term in (4.23); Tÿ2
� T

0
X 2(t) dt!P 0 by Lemmas 4.2 and 4.3.

Similarly, we obtain

X (t ÿ 1) � A2 cos(î0 t)X 1(t)� A2 sin(î0 t)X2(t)� B2 sin(î0 t)X1(t)ÿ B2 cos(î0 t)X 2(t)� Y (t),

where Tÿ2
� T

0
Y 2(t) dt!P 0.

Consider the following processes on the interval [0, 1]:

W T (s) � Tÿ1=2W (Ts),

X T
1 (s) � Tÿ1=2 X1(Ts) �

� s

0

cos(î0Tt) dW T (t),

X T
2 (s) � Tÿ1=2 X 2(Ts) �

� s

0

sin(î0Tt) dW T (t),

X T (s) � A0 cos(î0Ts)X T
1 (s)� A0 sin(î0Ts)X T

2 (s)� B0 sin(î0Ts)X T
1 (s)ÿ B0 cos(î0Ts)X T

2 (s),

Y T (s) � A2 cos(î0Ts)X T
1 (s)� A2 sin(î0Ts)X T

2 (s)� B2 sin(î0Ts)X T
1 (s)ÿ B2 cos(î0Ts)X T

2 (s):

Then

X (t) � T 1=2 X T (t=T )� X (t), X (t ÿ 1) � T 1=2Y T (t=T )� Y (t),

and by Lemma 4.1 it is enough to check that

(V̂T , Î T ) !d (V1, I1), (4:25)

where
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V̂T �
�1

0

X T (t) dW T (t),

�1

0

Y T (t) dW T (t)

 !�
and

Î T �

�1

0

fX T (t)g2 dt

�1

0

X T (t)Y T (t) dt�1

0

X T (t)Y T (t) dt

�T

0

fY T (t)g2 dt

0BBB@
1CCCA:

But �1

0

X T dW T � A0

�1

0

X T
1 dX T

1 � A0

�1

0

X T
2 dX T

2 � B0

�1

0

X T
1 dX T

2 ÿ B0

�1

0

X T
2 dX T

1

and �1

0

Y T dW T � A2

�1

0

X T
1 dX T

1 � A2

�1

0

X T
2 dX T

2 � B2

�1

0

X T
1 dX T

2 ÿ B2

�1

0

X T
2 dX T

1

are represented as linear combinations of the stochastic integrals
�

X T
i dX T

j , i, j � 1, 2. Since

(X T
1 , X T

2 ) !L 1���
2
p ( ~W1, ~W2)

by the functional central limit theorem, the claim follows from Corollary 4.12. h

Proof of Proposition 2.10. According to (4.1)±(4.3),

VT � eÿv0 T

�T

0

X (t) dW (t), Tÿ1

�T

0

Y (t) dW (t)

 !�
and

IT �
eÿ2v0 T

�T

0

X 2(t) dt Tÿ1 eÿv0 T

�T

0

X (t)Y (t) dt

Tÿ1 eÿv0 T

�T

0

X (t)Y (t) dt Tÿ2

�T

0

Y 2(t) dt

0BBB@
1CCCA,

where

Y (t) � X (t)ÿ ev0 X (t ÿ 1), t > 0,

and Y (�) has representation (4.4) with y(t) � x0(t)ÿ ev0 x0(t ÿ 1). It follows from (1.12) that

x0(t) � 1

v0 ÿ a� 1
ev0 t ÿ 1

aÿ 1
� o(eã t)

and
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y(t) � ev0 ÿ 1

aÿ 1
� o(eã t)

for some ã, 0. Due to Lemmas 4.5, 4.6, 4.7 and 4.1, this implies

eÿ2v0 T

�T

0

X 2(t) dt!P U2
0

2v0(v0 ÿ a� 1)2
, (4:26)

Tÿ1=2 eÿv0 T

�T

0

jX (t)j dt!P 0, (4:27)

and

Tÿ1 eÿv0 T

�T

0

X (t)Y (t) dt!P 0: (4:28)

Introduce the following processes on the interval [0, 1]:

W T (s) � Tÿ1=2W (Ts),

X T (s) � eÿv0 T

�Ts

0

X (t) dW (t) � T 1=2 eÿv0 T

� s

0

X (Tt) dW T (t),

Y T (s) � Tÿ1

�Ts

0

W (t) dW (t) �
� s

0

W T (t) dW T (t),

which are continuous local martingales with respect to the ®ltration F T
s �

ófX 0(t), t 2 [ÿ1, 0]; W (t), t 2 [0, Ts]g. Let ô � f0 � t0 , t1 , � � � , tm � 1g be a subdivi-

sion of [0, 1]. It follows from (4.26) and (4.27) that

T eÿ2v0 T

�1

0

X 2(Tt) dt!P U 2
0

2v0(v0 ÿ a� 1)2

and

T 1=2 eÿv0 T

� s

0

X (Tt) dt!P 0, s 2 [0, 1];

therefore, we can apply the stable limit theorem for martingales (Jacod and Shiryaev 1987,

Theorem VIII.5.42; or Touati 1991, Theorem 1) to the process X T (�) and to the stopped

processes W T (t1 ^ �), . . . , W T (tm ^ �), which yields that the vectors (X T (1), W T (t1), . . . ,

W T (tm)) converge F -stably (where F � ófX0(t), t 2 [ÿ1, 0]; W (t), t > 0g) to the vector

U0 Z�������
2v0

p
(v0 ÿ a� 1)

, ~W (t1), . . . , ~W (tm)

� �
as T !1. Clearly, W T!L ~W . Applying Corollary 4.12, we obtain the F -stable convergence

of the vector

eÿv0 T

�T

0

X (t) dW (t), Tÿ1

�T

0

W (t) dW (t), Tÿ2

�T

0

W 2(t) dt

 !
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to the vector

U0 Z�������
2v0

p
(v0 ÿ a� 1)

,

�1

0

~W (t) d ~W (t),

�1

0

~W 2(t) dt

 !
:

By Lemmas 4.1 and 4.2, we have the F -stable convergence of the vector

eÿv0 T

�T

0

X (t) dW (t), Tÿ1

�T

0

Y (t) dW (t), Tÿ2

�T

0

Y 2(t) dt

 !
to the vector

U0 Z�������
2v0

p
(v0 ÿ a� 1)

,
ev0 ÿ 1

aÿ 1

�1

0

~W (t) d ~W (t),
(ev0 ÿ 1)2

(aÿ 1)2

�1

0

~W 2(t) dt

 !
:

Now the convergence (VT , IT ) !d (V1, I1) follows from the properties of the stable

convergence and relations (4.26) and (4.28). h

Proof of Proposition 2.11. The proof follows the same lines as that of Proposition 2.10. Here

we have

x0(t) � 1

v0 ÿ a� 1
ev0 t � A1 cos(î1 t)� B1 sin(î1 t)� o(eã t)

and

y(t) � A cos(î1 t)� B sin(î1 t)� o(eã t)

for some ã, 0; in particuar, (4.26), (4.27) and (4.28) are still true.

Introduce the processes W T (s) and X T (s), s 2 [0, 1], as in the proof of Proposition 2.10

and the processes

X T
1 (s) �

� s

0

cos(î1Tt) dW T (t), X T
2 (t) �

� s

0

sin(î1Tt) dW T (t),

Y T (s) � A cos(î1Ts)X T
1 (s)� A sin(î1Ts)X T

2 (s)� B sin(î1Ts)X T
1 (s)ÿ B cos(î1Ts)X T

2 (s):

Note that�1

0

Y T dW T � A

�1

0

X T
1 dX T

1 � A

�1

0

X T
2 dX T

2 � B

�1

0

X T
1 dX T

2 ÿ B

�1

0

X T
2 dX T

1 (4:29)

and

(X T
1 , X T

2 ) !L 1���
2
p ( ~W1, ~W2): (4:30)

In view of (4.26) and (4.27), we have

T eÿ2v0 T

�1

0

X 2(Tt) dt!P U2
0

2v0(v0 ÿ a� 1)2
,
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T 1=2 eÿv0 T

� s

0

X (Tt)cos(î1Tt) dt!P 0,

T 1=2 eÿv0 T

� s

0

X (Tt)sin(î1Tt) dt!P 0,

where s 2 [0, 1]. Let us again apply the stable limit theorem for martingales but now to the

process X T (�) and to the stopped processes X T
1 (t1 ^ �), . . . , X T

1 (tm ^ �), X T
2 (t1 ^ �), . . . ,

X T
2 (tm ^ �), where ô � f0 � t0 , t1 , � � � , tm � 1g is a subdivision of [0, 1], which yields

the F -stable convergence of the vectors

(X T (1), X T
1 (t1), . . . , X T

1 (tm), X T
2 (t1), . . . , X T

2 (tm))

to the vector

U0 Z�������
2v0

p
(v0 ÿ a� 1)

,
1���
2
p ~W1(t1), . . . ,

1���
2
p ~W1(tm),

1���
2
p ~W2(t1), . . . ,

1���
2
p ~W2(tm)

� �
:

In view of (4.29) and (4.30), applying Corollary 4.12, we obtain the F -stable convergence of

the vector

X T (1),

�1

0

Y T (t) dW T (t),

�1

0

fY T (t)g2 dt

 !
to the vector

U0 Z�������
2v0

p
(v0 ÿ a� 1)

,
1

2
A

�1

0

~W1 d ~W1 � A

�1

0

~W2 d ~W2 � B

�1

0

~W1 d ~W2 ÿ B

�1

0

~W2 d ~W1

 !
,

 

1

4
(A2 � B2)

�1

0

( ~W 2
1 � ~W 2

2) dt

�
:

But X T (1) � eÿv0 T
� T

0
X (t) dW (t) by the de®nition of X T , Y (t) � T 1=2Y T (t=T )� Y (t),

where Tÿ2
� T

0
Y 2(t) dt!P 0 as in the proof of Proposition 2.9, hence

Tÿ1

�T

0

Y (t) dW (t)ÿ
�1

0

Y T (t) dW T (t) � Tÿ1

�T

0

Y (t) dW (t) !P 0

and, similarly,

Tÿ2

�T

0

Y 2(t) dt ÿ
�1

0

fY T (t)g2 dt!P 0:

So we have the F -stable convergence of the vector

eÿv0 T

�T

0

X (t) dW (t), Tÿ1

�T

0

Y (t) dW (t), Tÿ2

�T

0

Y 2(t) dt

 !
to the vector
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U0 Z�������
2v0

p
(v0 ÿ a� 1)

,
1

2
A

�1

0

~W1 d ~W1 � A

�1

0

~W2 d ~W2 � B

�1

0

~W1 d ~W2 ÿ B

�1

0

~W2 d ~W1

 !
,

 
1

4
(A2 � B2)

�1

0

( ~W 2
1 � ~W 2

2) dt

�
,

and we ®nish the proof as in the previous proposition. h

5. Appendix

In this section we present the proof of Lemma 1.1. We took the idea from Myschkis (1972);

see also Hale and Verduyn Lunel (1993).

Proof of Lemma 1.1. Equation (1.3) is equivalent to

x0(t) � 1� a

� t

0

x0(s) ds� b

� t

0

x0(sÿ 1) ds, t > 0:

Thus we have the inequality

jx0(t)j < 1� (jaj � jbj)
� t

0

jx0(s)j ds, t > 0:

From a Gronwall-type lemma (Liptser and Shiryaev 1977, Lemma 4.13) it follows that

jx0(t)j < ect, t > 0,

with c � jaj � jbj. Thus the Laplace transform

x̂0(ë) �
�1

0

eÿë t x0(t) dt

exists at least for all ë with Re ë. c and can be calculated from (1.3) as

x̂0(ë) � hÿ1(ë), Re ë. c, where h(ë) � ëÿ aÿ b eÿë: (5:1)

The inversion formula yields, for every v . c,

x0(t) � lim
w!1

1

2ði

�v�iw

vÿiw

eì t x̂0(ì) dì, t > 0:

If ë 2 Ë, then jëj < jaj � jbjeÿRe ë. This implies jv0j < jaj � jbjeÿv0 and, consequently,

v0 < jaj � jbj � c. Now choose a real u , v0 and ®x a u0 , u such that Re ë =2 [u0, u) for

every ë 2 Ë. Then, by using Cauchy's residue theorem, we obtain

x0(t) �
X

ë2Ë:Re ë>u

Res ÷ t(ë)� lim
w!1

1

2ði

�u0�iw

u0ÿiw

÷ t(ì) dì, t > 0, (5:2)

where ÷ t(ë) � eë t hÿ1(ë), t > 0, ë =2 Ë. Here we have used the fact that j÷ t(ë)j tends to zero

uniformly on ë 2 [u0 � iw, v� iw] and on ë 2 [u0 ÿ iw, vÿ iw] if jwj ! 1.
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Now observe that either v0 2 Ë (if b > v(a)) or ë0 � v0 � iî0 2 Ë for some î0 . 0 (if

b , v(a)). The explicit calculation of the residues in v0 in the ®rst case and in ë0 and ë0 in

the second case yields the form ø0(�) given in Lemma 1.1. The limit in (5.2) can be

estimated by K eu0 t for some K . 0, thus it is o(eã t) for some ã, u , v0.
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