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Let H : L2(S, S , P) 7! L2(S, S , P) be a compact integral operator with a symmetric kernel h. Let

X i, i 2 N, be independent S-valued random variables with common probability law P. Consider the

n 3 n matrix ~H n with entries nÿ1 h(Xi, Xj), 1 < i, j < n (this is the matrix of an empirical version of

the operator H with P replaced by the empirical measure Pn), and let Hn denote the modi®cation of
~H n, obtained by deleting its diagonal. It is proved that the l 2 distance between the ordered spectrum

of Hn and the ordered spectrum of H tends to zero a.s. if and only if H is Hilbert±Schmidt. Rates of

convergence and distributional limit theorems for the difference between the ordered spectra of the

operators Hn (or ~H n) and H are also obtained under somewhat stronger conditions. These results

apply in particular to the kernels of certain functions H � j(L) of partial differential operators L

(heat kernels, Green functions).

This paper is dedicated to Richard M. Dudley on his sixtieth birthday.
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1. Introduction

Let (S, S , P) be a probability space and let h: S2 ! R be a symmetric kernel, that is, a

measurable function symmetric in its two entries. Suppose the formula

Hg(x) �
�

S

h(x, y)g(y) dP(y), x 2 S, g 2 L2(S, S , P), (1:1)

de®nes a compact operator on L2(P) :� L2(S, S , P). For instance, if
�

S2 h2 d(P 3 P) ,1,

then H is Hilbert±Schmidt (i.e. Eh2(X1, Y ) ,1), and conversely. Let fX , Y , X i : i 2 Ng be

S-valued random variables, independently and identically P-distributed, and let Pn �
1
n

Pn
i�1äX i

, n 2 N, be the corresponding empirical measures. Then, a candidate for the

empirical counterpart to the operator H is, for each n, the random linear operator

~H n : L2(Pn)! L2(Pn)

de®ned by

~H n g(x) �
�

S

h(x, y)g(y) dPn(y), x 2 S, g 2 L2(S, S , Pn):
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The map g ! ( 1���
n
p (g(X 1(ù)), . . . , g(X n(ù))) de®nes, for each ù 2 Ù, an isometry of

L2(Pn(ù)) onto a subspace of Rn (onto the whole of Rn if the values Xi(ù), i < n, are all

different). By means of this isometry ~H n is identi®ed to the operator of Rn whose matrix in

the canonical basis is

~H n � 1

n
(h(X i, X j) : 1 < i, j < n): (1:2)

Actually, as will be made clear in the next section, ~H n is not the best random operator that

can be used in order to recover properties of the spectrum of H (unless H satis®es certain

additional integrability conditions). It is rather its modi®cation

Hn � 1

n
((1ÿ äij)h(X i, Xj) : 1 < i, j < n), (1:3)

obtained by deleting the diagonal in the matrix ~H n, that should be used to this effect. Clearly,

this should be so because, if P is continuous, the operator H is not altered by modi®cations

on the diagonal of the function h(x, y).

The object of this paper is to show that the (usually in®nite) spectrum of H can be

approximated by the (®nite) spectrum of Hn or the spectrum of ~H n. Our results include a

law of large numbers (LLN), convergence rates, central limit theorems (CLTs) and some

examples. There is an extensive literature on estimation of spectra of random matrices.

Most often one encounters limit theorems for spectra of sample covariance matrices (see,

for example, Hsu 1939; Anderson 1948; James 1954; Geman 1980; Dauxois et al. 1982;

Silverstein 1985; Girko 1990; Eaton and Tyler 1991; Bai 1993b), or for spectra of Wigner

matrices, that is, matrices with independent entries (Wigner 1955; Dyson 1962a; 1962b;

1962c; Grenander 1963; Pastur 1973; Mehta 1991; Girko 1990; Voiculescu 1991; Bai

1993a; and references therein), or for certain random operators of interest in physics (see

Pastur 1973; Cycon et al. 1987). However, the problems considered here, which somehow

originate in U -statistics, do not seem to have been treated before.

Although we do not develop applications in this paper, we believe the results are

potentially useful in several respects. As a ®rst observation in this regard, our law of large

numbers should provide a dimension-robust Monte Carlo method for estimating the

spectrum of an integral Hilbert±Schmidt operator, which should at least be useful in higher

dimensions. The results may also be of interest in nonparametric indirect estimation

problems (for an interesting practical example of such a problem, see Vardi et al. 1985):

suppose, for example, that the goal is to estimate an unknown function g by the

observations of its integral transform Hg at random points Xi, i � 1, . . . , n. Suppose also

that the kernel h of H is unknown, but its observations at the sample Xi, i � 1, . . . , n, are

available. In such cases, preliminary estimation of the spectrum of H (as well as its

eigenfunctions) is crucial for the construction of asymptotically optimal estimators of the

unknown function g.

Another possible application may be found in the theory of U -statistics. Let Un be a U -

statistic with a P-completely degenerate Hilbert±Schmidt kernel h,
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Un :� 2

n(nÿ 1)

X
i , j<n

h(X i, X j):

The limit distribution of nUn is that of the random variable
P1

r�1 ër(g2
r ÿ 1), where ër,

r > 1, are the eigenvalues of h and gr, r > 1, are independent standard normal random

variables (see, for example, Ser¯ing 1980). The eigenvalues of the random matrix Hn can

then be used to approximate the limit distribution of U -statistics. GineÂ and Zhang (1996)

formulated one of the conditions for the law of the iterated logarithm for degenerate U -

statistics in terms of stochastic boundness of the maximal eigenvalue of the random matrix

nÿ1 h(Xi, X j)I h2(Xi ,Xj)<(i_ j)2 log log(i_ j) : 1 < i, j < n
� �

,

which is a truncated version of the matrix ~H n. It is plausible that re®nements of the present

results may help in dealing with this not too practical condition. Dehling and Mikosch (1994)

used the asymptotic properties of the matrices Hn and related quadratic forms in their study

of the bootstrap for U-statistics. They proved a version of the law of large numbers, for the

spectra of Hn, which follows from our Theorem 3.1.

It is also worth noting that the operators ~H n, Hn provide a very simple model for

asymptotically small random perturbations of an operator in a Hilbert space. Thus, the study

of the asymptotic behaviour of their spectra might be related to other problems on

¯uctuations of the spectra of randomly perturbed operators. A physically meaningful

example of this sort is the so-called `crushed ice' problem (see Simon 1979), where one

studies the asymptotics of the spectrum of the Laplacian with a Dirichlet boundary

condition on a bounded open region G with random holes, as the number of holes tends to

in®nity. Ozawa (1987; 1993) obtained rates of convergence and distributional limit theorems

for such random spectra (in some special cases) by considering the Green function of the

random operator as a small random perturbation of the Green function of the Laplace

operator in G. Some of his asymptotics look very similar to the asymptotics in our

problem.

In Section 2 we describe a few known facts on perturbation of spectra of operators,

namely, some very useful inequalities due to Lidskii and to Wielandt. Section 3 contains the

LLN: we show that the l 2 distance between the ordered spectra of Hn and H tends to zero

almost surely if and only if the operator H is Hilbert±Schmidt. We also obtain rates for

this LLN in Section 4. Under strong enough conditions these rates become of the order of���
n
p

, suggesting the possiblity of obtaining CLTs. These are considered in Sections 5 and 6.

The limiting distribution is that of a suitable functional of a Gaussian process. It is worth

noting that we do not assume the spectrum of H to be simple, and therefore application of

the delta method must be circumvented. The conditions on H for rates of convergence or

for the CLT are not always easy to verify. In Section 7 we show, in part via Tauberian type

arguments, how bounds on the heat kernels of certain elliptic partial differential operators

(Davies 1989) imply our conditions and provide estimators for their eigenvalues.

The main non-probabilitic tools throughout are the classical inequalities of Lidskii (1950)

on perturbation of spectra and a less known inequality of Wielandt (1967) (see also Eaton

and Tyler 1991). This last inequality allows us to treat multiple eigenvalues in the CLT.

Random matrix approximation of spectra of integral operators 115



Several ad hoc lemmas on perturbation of operators are also required, and we develop them

as needed (Sections 5 and 6).

2. Some notation and several facts on operator theory

In this paper we consider mostly compact symmetric operators in a Hilbert space H , mainly,

H � L2(S, S , P). Given an operator T : H 7! H , we use the notation kTk for the

operator norm and kTkHS for the Hilbert±Schmidt norm of T (the latter, de®ned as kTkHS �
(
P

ájTeáj2)1=2 for any complete orthonormal system feág).
Let J be a countable set (more speci®cally, J � N or J � Z). As usual l 2 :� l 2(J ) will

denote the Hilbert space of all sequences ì :� fìngn2J , such that
P

n2J jìnj2 ,�1 with

inner product hì, íil 2
:�Pn2J ìnín and norm k:k2

l 2
:� h�, �il 2

. Let kìkc0
:� supn2J jìnj

denote the sup-norm of the sequence ì. Then, c0(N) will denote the Banach space of all

sequences ì :� fìngn2N such that ìn ! 0 as n! �1, equipped with the norm k:kc0
.

Similarly, c0(Z) will denote the Banach space of all sequences ì :� fìngn2Z, such that

ìn ! 0 as jnj ! 1, also with the norm k:kc0
. We will use the same norms in ®nite-

dimensional spaces Rn, considering them as subspaces of c0 or l 2, respectively.

Let P � P (J) be the set of all bijections on the set J , and let P also denote the

equivalence relation on RJ given by fxi : i 2 JgP fyi : i 2 Jg if and only if the sequence

fyig is a rearrangement of the sequence fxig, that is, yi � xó (i), i 2 J , for some ó 2 P .

Then, the spectrum ë(T ) of a compact, symmetric operator T on H , which is the set of all

its eigenvalues, each counted with its multiplicity, is a point in c0=P , and if moreover T is

Hilbert±Schmidt, then ë(T ) 2 l 2=P , as is well known (see, for example, Dunford and

Schwartz 1963, Vol. II, Chapters X and XI). If A is a symmetric operator on Rn, n ,1,

then we make the convention of adding to its spectrum an in®nite number of zeros, so as to

make of it also a point in l 2=P (or, more formally, we denote by ë(A) the spectrum of the

operator on l 2 that coincides with A on Rn and is zero on the orthocomplement of Rn in

l 2). These formalities are introduced because we will measure closeness of spectra of

operators by the following distance ä2 de®ned on l 2=P , which we call the l 2

rearrangement distance: if x � fxi : i 2 Jg and y � fyi : i 2 Jg are in l 2, and if [x], [y]

are the corresponding equivalence classes, then ä2([x], [y]), or, with some abuse of

notation, ä2(x, y), is de®ned as

ä2(x, y) � inf
ó2P

X
(xi ÿ yó (i))

2

" #1
2

:

To see that ä2 is a distance on l 2=P , given x, y, z 2 l 2 and å. 0, let ô 2 P be such that

ä2(x, z) > [
P

(xi ÿ zô(i))
2]

1
2 ÿ å=2 and let ó 2 P be such that ä2(y, z) > [

P
(zô(i) ÿ

yó (i))
2]

1
2 ÿ å=2. Then,

ä2(x, y) <
X

(xi ÿ yó (i))
2

" #1
2

< ä2(x, z)� ä2(z, y)ÿ å
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by the triangle inequality for the l 2 norm. So, ä2 is a well-de®ned distance between spectra

of Hilbert±Schmidt operators and/or spectra of operators in Rn, n ,1.

Given two vectors u :� (u1, . . . , un) 2 Rn and v :� (v1, . . . , vm) 2 Rm, we set

u� v :� (u1, . . . , un, v1, . . . , vm) 2 Rn�m,

with obvious extensions to the cases of ®nite sums, in®nite sums, in®nite-dimensional

vectors, etc.

Given a vector ì in Rd we will denote by ì# (ì") its non-increasing (non-decreasing)

rearrangement, that is, the vector of Rd with the same coordinates as ì, arranged in non-

increasing (non-decreasing) order.

For x � (xi) 2 c0, we set ~x� � (xi _ 0) and ~xÿ � xÿ ~x�. Then, for any x, y 2 l 2,

ä2
2(x, y) � ä2

2(~x�, ~y�)� ä2
2(~xÿ, ~yÿ), and if we let ~x#� denote the point in l 2 with the same

coordinates of ~x�, but arranged in non-increasing order (with the zero coordinates

suppressed if ~x� has an in®nite number of non-zero coordinates), we have

ä2(~x�, ~y�) � k~x#� ÿ ~y#�kl 2
. Likewise, ä2(~xÿ, ~yÿ) � k~x"ÿ ÿ ~y"ÿkl 2

, where the superscript "
indicates non-decreasing rearrangement. (For x � (x1, . . . , xn) 2 Rn, ~x� � (x1 _ 0, . . . ,

xn _ 0, 0, . . .) 2 l 2, and the seemingly super¯uous tilde is introduced in order to distinguish

this point from the vector in a Euclidean space of lower dimension obtained by deleting all

the zeros from ~x�, which will be denoted by x� in Section 5.)

If ì 2 c0(Z), we set ì"# � ~ì"ÿ � ~ì#�. (For instance, if ì � (ÿ2, ÿ3, 1, 2) then ì# �
(2, 1, ÿ2, ÿ3) and ì"# � (ÿ3, ÿ2, 0, . . .)� (2, 1, 0, . . .) 2 c0(Z).) Clearly, for any two

sequences ì, í 2 l 2(Z) � l 2 � l 2,

ä2(ì, í) � kì"# ÿ í"#kl 2
:

We will make frequent use of the following inequality of Lidskii (1950) (see also Kato

1982).

Theorem 2.1 (Lidskii's inequality). Let A, B be symmetric operators on Rd . Then, for any

convex function j on R,Xd

j�1

j(ë#j(B)ÿ ë#j(A)) <
Xd

j�1

j(ë#j(Bÿ A)): (2:1)

In particular, for all p > 1,

Xd

j�1

jë#j(B)ÿ ë#j(A)j p
0@ 1A1= p

<
Xd

j�1

jë#j(Bÿ A)j p
0@ 1A1= p

: (2:2)

For p � �1,

max
1< j<d

jë#j(B)ÿ ë#j(A)j < max
1< j<d

jë#j(Bÿ A)j: (2:3)

We are especially interested in the case p � 2. In this case Lidskii's inequality was

extended by Hoffman and Wielandt (1953) to the more general case of normal operators A
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and B. We formulate this result here in a form covenient for our goals (using the ä2

distance).

Theorem 2.2 (Hoffman±Wielandt Inequality). If A and B are normal operators of Rd, in

particular if they are symmetric, then

ä2(ë(A), ë(B)) < kAÿ BkHS: (2:4)

The ä2 distance is slightly different from the distance used, for example, in Hoffman and

Wielandt (1953); in fact it only coincides with it on pairs of operators that have both non-

negative (or non-positive) spectra. However, as is easy to see, their inequality also applies

to ä2. In what follows we will refer to inequality (2.4), which we only use on symmetric

operators, as the Lidskii±Hoffman±Wielandt inequality.

Lidskii's inequality (2.3) can be improved for special types of perturbations: in some

cases, the bound on the right-hand side of (2.3) can be replaced by a constant times

kBÿ Ak2 (as opposed to kBÿ Ak). The following result is due to Wielandt (1967) (see, for

example, Eaton and Tyler 1991):

Theorem 2.3 (Wielandt's inequalities). Let A be a symmetric operator on Rn such that

ë#d(A)ÿ ë#d�1(A) . 0, for some 1 < d , n. Let Pd denote the orthogonal projector of Rn onto

the subspace generated by the eigenvectors corresponding to the largest d eigenvalues of A,

and let Pd denote the orthogonal projector onto the subspace generated by the remaining

eigenvectors of A. If B is a symmetric operator such that Pd BPd � 0 and Pd BPd � 0, then

0 < ë#j(A� B)ÿ ë#j(A) <
kBk2

ë#j(A)ÿ ë#d�1(A)
, j � 1, . . . , d, (2:5)

and

0 < ë#j(A)ÿ ë#j(A� B) <
kBk2

ë#d(A)ÿ ë#j(A)
, j � d � 1, . . . , n: (2:6)

Wielandt's inequalities will be used at a crucial step in the derivation of the limiting

distribution of the not necessarily simple eigenvalues of the random matrices considered in

this paper. They have been put to a somewhat similar use in a different situation by Eaton

and Tyler (1991).

3. The law of large numbers

In the setup of Section 1 and with these de®nitions, the LLN for spectra of Hilbert±Schmidt

operators is as follows:

Theorem 3.1. If Eh2(X , Y ) ,1, then
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ä2(ë(Hn), ë(H))! 0 a:s: (3:1)

Proof. h being symmetric and Eh2(X , Y ) ,1, the operator H that corresponds to the kernel

h by equation (1.1) is Hilbert±Schmidt. Then, by the spectral theorem (see e.g. Theorem 4,

Chapter X, and Section XI.6 in Dunford and Schwartz, Part II, 1964), there exists an

orthonormal set of L2(P), föi : i 2 Jg, where J � N or J � f1, . . . , Rg for some R ,1,

and a sequence of real numbers, fëi : i 2 Jg, with non-increasing absolute values and

satisfying
P

i2Jë
2
i ,1, such that

h(x, y) �
X
i2J

ëiöi(x)öi(y) (3:2)

in the L2(P) sense. The set ë(H) :� fëi : i 2 Jg (that we increase with a sequence of zeros

when necessary) is the spectrum of H .

We ®rst prove the theorem in the case where the identity in (3.2) holds pointwise and

J � f1, . . . , Rg for some R ,1 (this will turn out to be the basic case). If we de®ne the

random vectors

Ön
r �

ör(X1)

n
1
2

, . . . ,
ör(X n)

n
1
2

� �
, r < R,

then the operator ~H n (see (1.2)) becomes

~H nu �
XR

r�1

ërhÖn
r , uiÖn

r , u 2 Rn: (3:3)

By the LLN and orthogonality of the functions ör in L2(P), we have

hÖn
r , Ön

s i ! är,s a:s: (3:4)

for all r, s < R. The limit (3.4) indicates that the restriction of ~H n to the linear span of the

vectors Ön
1 , . . . , Ön

R is an asymptotically small perturbation of an operator with spectrum

ë1, . . . , ëR, and therefore, by general principles (the Lidskii±Hoffman±Wielandt inequality),

its spectrum must approach fë1, . . . , ëRg. Indeed, the proof that follows makes this

observation precise and shows as well that the spectra of ~H n and Hn are also asymptotically

close.

Let En, n 2 N, denote the random operators on RR whose matrices in the canonical basis

are given by the relations

I � En � (hÖn
r , Ön

s i : 1 < r, s < R), n 2 N, (3:5)

I :� IR denoting the identity operator on RR. Clearly,X
1<r,s<R

hÖn
r , Ön

s iurus �
XR

r�1

urÖ
n
r ,
XR

r�1

urÖ
n
r

* +
> 0

for all u � (u1, . . . , uR) 2 RR. It follows that the operator I � En is positive de®nite and,

therefore, it has a square root, say An :� (I � En)1=2. Let e1, . . . , eR denote the canonical

basis of RR and set êr � Aner, r � 1, . . . , R. Then, for all 1 < r, s < R,
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hêr, êsi � hAner, Anesi � hA2
ner, esi � hÖn

r , Ön
s i,

that is, the correspondence êr $ Ön
r , r � 1, . . . , R, de®nes an isometry between the linear

spans of the sets of vectors fêr : 1 < r < Rg and fÖn
r : 1 < r < Rg. This isometry implies

that the random operator Ĥ n of RR, given by

Ĥ nu �
XR

r�1

ërhêr, uiêr, u 2 RR, (3:6)

has the same spectrum as ~H n,

ë( ~H n) � ë(Ĥ n):

Finally, let K be the operator de®ned by

Ku �
XR

r�1

ërher, uier, u 2 RR: (3:7)

Obviously,

ë(K) � fëi : 1 < i < Rg � ë(H):

It is also easy to see, using the symmetry of An, that

Ĥ n � An K An: (3:8)

We then have

ä2(ë(H), ë(Hn)) < ä2(ë(H), ë( ~H n))� ä2(ë( ~H n), ë(Hn))

< ä2(ë(K), ë(Ĥ n))� ä2(ë( ~H n), ë(Hn)): (3:9)

Then, using (2.4) and the Marcinkiewicz law of large numbers (Eö2
r(X ) ,1 for all r), we

obtain

ä2
2(ë( ~H n), ë(Hn)) <

Xn

i�1

1

n

XR

r�1

ërö
2
r(X i)

 !2

�
X

1<r,s<R

ërës

1

n2

Xn

i�1

ö2
r(X i)ö

2
s(Xi)

" #
! 0 a:s: (3:10)

In order to estimate the ®rst summand on the right of (3.9), we ®rst observe that, by (3.8) and

Lidskii±Hoffman±Wielandt,

ä2(ë(K), ë(Ĥ n)) < kAn K An ÿ KkHS: (3:11)

Since I � En is positive de®nite, we have ë(En) � [ÿ1, �1). Let

á(ë) :� (1� ë)1=2 ÿ 1, ë > ÿ1:

Then, for all ë > ÿ1,
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já(ë)j �
���� ë

(1� ë)1=2 � 1

���� < jëj:

This observation implies, for example by diagonalization, that

kAn ÿ IkHS � k(I � En)1=2 ÿ IkHS � ká(En)kHS < kEnkHS: (3:12)

Since kEnk2
HS �

P
1<r,s<R(hÖn

r , Ön
s i ÿ är,s)

2 ! 0 a.s. by (3.4), we have

kAn ÿ IkHS ! 0 a:s:

Hence, by continuity of operator composition with respect to the Hilbert±Schmidt topology

(kABkHS < kAkHSkBk and kABkHS < kAk kBkHS), it follows that

kAn K An ÿ KkHS ! 0 a:s:

and, by (3.11), that

ä2(ë(K), ë(Ĥ n))! 0 a:s: (3:13)

Finally, (3.9), (3.10) and (3.13) give

ä2(ë(Hn), ë(H))! 0 a:s:

in the case h(x, y) �PR
r�1ërör(x)ör(y) pointwise and R ,1.

In the general case, h has the representation (3.2) with J � N. For such h, let

hR(x, y) :�PR
r�1ërör(x)ör(y), let HR be the integral operator with kernel hR, and let

H R,n be the operator of Rn whose matrix in the canonical basis is given by

H R,n � 1

n
((1ÿ äij)hR(X i, X j) : 1 < i, j < n):

Then we have

lim
R!1

ä2(ë(H), ë(HR)) � lim
R!1

X1
r�R�1

ë2
r

 !1
2

� 0

since H is Hilbert±Schmidt, and

lim
n!1ä2(ë(HR), ë(H R,n)) � 0 a:s:

for all R ,1 by the ®rst part of this proof. Next we note that if f is a symmetric square-

integrable kernel, then the LLN for U-statistics (see, for example, Ser¯ing 1980, Theorem

5.4.A) gives

1

n2

X
1<i 6� j<n

f 2(X i, Xj)! E f 2(X , Y ) a:s: (3:14)

Then the Lidskii±Hoffman±Wielandt inequality, together with the limit (3.14) for

f (x, y) � h(x, y)ÿ hR(x, y), implies
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lim
R!1

lim
n!1 ä2(ë(H R,n), ë(Hn)) < lim

R!1
lim
n!1kH R,n ÿ HnkHS

� lim
R!1

lim
n!1

1

n2

X
1<i6� j<n

(hÿ hR)2(Xi, X j)

" #

� lim
R!1

X1
r�R�1

ë2
r

 !1
2

� 0 a:s:

Collecting together the previous three limits, we obtain

lim
n!1 ä2(ë(Hn), ë(H))

< lim
R!1

lim sup
n!1

[ä2(ë(H), ë(HR))� ä2(ë(HR), ë(H R,n))� ä2(ë(H R,n), ë(Hn))] � 0 a:s:,

proving the theorem. h

There is some interest in noticing that, if Eh2(X , Y ) ,1, then there is convergence of

all the moments of order 2ÿ ä, 0 , ä, 2, in the law of large numbers (3.1). By the triangle

inequality, ä2(ë(Hn), ë(H)) is dominated by ä2(ë(H), 0)� ä2(ë(Hn), 0), with the ®rst

summand bounded by (Eh2)1=2 and the second satisfying

E[ä2(ë(Hn), 0)]2 � 1

n2
E

X
1<i 6� j<n

h2(Xi, X j)

" #
� nÿ 1

n
Eh2(X , Y ),

so that the assertion follows by uniform integrability.

Theorem 3.1 has a converse. In fact, the following stronger statement holds:

Theorem 3.2. Let h be a symmetric, measurable real function on (S2, S 2), let P be a

probability measure on (S, S ), and let Hn be the random symmetric operators on Rn

corresponding to h and to a sample from P via equation (1.3). If the sequence of spectra

fë(Hn)g is stochastically ä2-bounded, then Eh2(X , Y ) ,1.

Proof. Since ä2
2(ë(Hn), 0) �P1<i6� j<n h2(Xi, X j)=n2, the hypothesis implies, by the

decoupling inequality in GineÂ and Zinn (1994, Theorem 2.b), that the sequence

fP1<i, j<n h2(X i, X 9j)=n2g1n�1 is stochastically bounded, where fX 9ig is an independent

copy of the sequence fX ig. Hence we have

lim
K!1

sup
n2N

Pr
1

n2

X
1<i, j<n

h2(X i, X 9j) . K

( )
� 0: (3:15)

This limit will allow us to apply the extension to U -statistics of Hoffmann-Jùrgensen's

inequality given by GineÂ and Zinn (1992) in a way similar to GineÂ and Zhang's (1996)

inequality: as mentioned in the latter reference, Hoffmann-Jùrgensen's inequality for U-
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statistics also holds for non-negative kernels, and, applied to the kernels h2 ^ n, it gives that

there exist universal constants c1 and c2 such that, for all n 2 N,

E
1

n2

X
1<i, j<n

(h2(Xi, X 9j) ^ n)

 !2

< c1 E max
1<i<n

Xn

j�1

(h2(Xi, X 9j) ^ n)

 !2

� t2
0,n

24 35, (3:16)

where t0,n are any numbers satisfying

Pr
1

n2

X
1<i, j<n

(h2(Xi, X 9j) ^ n)2 . t0,n

( )
< c2:

Now, by positivity, (3.15) implies that the numbers t0,n can be chosen so that t0 :�
supn t0,n ,1; this observation and (3.16) then give

sup
n2N

(E[h2(X , Y ) ^ n])2 < c1(1� t2
0) ,1,

proving the theorem. h

Let ä denote Hausdorff distance between subsets of R, that is,

ä(A, B) � [supa2A inf b2Bjbÿ aj] _ [supb2B inf a2Ajbÿ aj], A, B � R:

Closeness of spectra of operators is sometimes also measured by the Hausdorff distance

between the corresponding sets (although this distance is less appropriate than the ä2 distance

because it does not detect multiplicities). Let us also momentarily denote by ë(T ) the set of

different eigenvalues of a compact operator T. It is then obvious that ä(ë(T ), ë(U ))

< ä2(ë(T ), ë(U )) for any Hilbert±Schmidt operators T and U . Therefore, Theorem 3.1

immediately gives:

Corollary 3.3. If Eh2(X , Y ) ,1, then

ä(ë(Hn), ë(H))! 0 a:s:

Next we make two observations regarding the previous results: one, quite simple, to show

that we cannot replace Hn by ~H n in Theorem 3.1 and Corollary 3.3; and the other, which

requires some more work, to indicate that the condition Eh2 ,1 in Corollary 3.3 is sharp.

Of course, the proof of Theorem 3.1 does not work for ~H n: the limit (3.14) does not hold

without extra assumptions if the sum includes the terms i � j (the diagonal). Moreover, it is

easy to construct an example of a square-integrable kernel h for which

lim supn!1ä(ë( ~H n), ë(H)) � 1: take P continuous and h such that h(x, y) � 0 for

x 6� y and Ejh(X , X )j � 1; in this case, the spectrum of H is f0g, whereas the spectrum

of ~H n is fh(Xi, X i)=n : i � 1, . . . , ng, so that we have

lim sup
n!1

ä(ë( ~H n), ë(H)) � lim sup
n!1

1

n
max

1<i<n
jh(Xi, Xi)j � 1 a:s:

In order to prove that Corollary 3.3 is sharp, we will consider a generalization of the
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example introduced in GineÂ and Zhang (1996) in connection with the law of the iterated

logarithm. We take (S, S , P) � ([0, 1], B , ë), ë denoting Lebesgue measure, and denote

by Ir the indicator function of the interval (1ÿ 2ÿr�1, 1ÿ 2ÿr]. Then, given a sequence

fërg of real numbers, we set

h(x, y) �
X1
r�1

ër2
r Ir(x)Ir(y), (3:17)

a kernel whose eigenfunctions are 2r=2 Ir, r 2 N, each with eigenvalue ër (as well as If0g,
which has eigenvalue zero). The discussion that follows applies also to the degenerate kernel

h((x, á), (y, â)) �
X1
r�1

ër2
r Ir(x)Ir(y)áâ, (3:179)

where now S � [0, 1] 3 fÿ1, 1g and P � ë 3 1
2
(äÿ1 � ä1). (This kernel corresponds to

replacing, for each r, the eigenvector 2r=2 Ir by the Haar function with support Ir.) The

following proposition subsumes a previous weaker result and was obtained in collaboration

with J. Zinn.

Proposition 3.4. Let h be the kernel de®ned by (3.17) or by (3.179), and let fX ig1i�1 be an

independently and identically distributed sequence of random variables uniform on [0, 1].

Then, a necessary and suf®cient condition for

lim sup
n!1

max
1<i 6� j<n

1

n
jh(X i, X j)j,1 a:s: (3:18)

is
P1

i�1ë
2
i ,1 (i.e., Eh2(X , Y ) ,1 or, equivalently, that h is the kernel of a Hilbert±

Schmidt operator on L2([0, 1], B , ë)).

Proof. If
P

ë2
i ,1, that is, if Eh2(X , Y ) ,1, then (3.18) is a consequence of the LLN for

the U -statistics applied to the kernel h2. Let us now assume that (3.18) holds. Then, by

Borel±Cantelli, there exists K ,1 such thatX1
m�1

Pr
1

2m
max

1<i 6� j<2 m
jh(X i, X j)j > K

� �
,1: (3:19)

Since at most one summand in (3.17) or (3.179) is different from zero for any given x, y, we

can replace ër by jërj ^ c in the de®nition of h and continue having (a fortiori) convergence

of the series in (3.19). In other words, we can assume the eigenvalues ër to be non-negative

and bounded. We can also take K � 1 in (3.19). Let X m,1, X m,2 be the ®rst two order

statistics of the sequence X1, . . . , X2 m (with any of the usual conventions for ties). Since

max
1<i6� j<2m

jh(Xi, Xj)j > 2rër Ir(X m,1)Ir(X m,2),

and since the events fX m,1 2 Ir, X m,2 2 Irg, r 2 N, are disjoint, we have
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Pr
1

2m
max

1<i 6� j<2 m
jh(X i, X j)j > 1

� �
>

X
r:2 rë r>2m

PrfXm,1 2 Ir, X m,2 2 Irg: (3:20)

Since 2m=2r < c in the domain of summation of this last series, there exists C . 0 such that,

for r > 2,

PrfX m,1 2 Ir, X m,2 2 Irg �
X2 mÿ2

k�0

2m

k

� �
1ÿ 1

2rÿ1

� �k
1

2r

� �2 mÿk

>
2m

2

� �
1

22r
1ÿ 1

2rÿ1

� �2 mÿ2

> C
22m

22r
, (3:21)

and, for r � 1, PrfX m,1 2 I1, X m,2 2 I1g � 2ÿ2m > C22m=22 since m < log2(2c). Now,

(3.19)±(3.21) give

1.
X1
m�1

X
r:2 rë r>2m

22m

22r

�
X1
r�1

X
m:2 rë r>2m

22m

22r

>
X1
r�1

ë2
r I2 rë r>2:

Since
P1

r�1ë
2
r I2 rë r , 2 ,1, it follows that

P
(jërj ^ c)2 ,1 and, hence, that

P
ë2

r ,1. h

Let ë1,n be the eigenvalue of the matrix Hn of largest absolute value. Then

jë1,nj � 1

n
sup
juj<1

���� X
1<i 6� j<n

h(X i, Xj)uiu j

����, (3:22)

where juj denotes the Euclidean norm of the vector u � (u1, . . . , un) 2 Rn. If the maximum

of jh(X i, X j)j on the set 1 < i 6� j < n is attained at i � r, j � s, taking ur � us � 1=
���
2
p

and ui � 0 for i 6� r, i 6� s, gives

jë1,nj > 1

n
max

1<i 6� j<n
jh(X i, X j)j: (3:23)

It is also clear that ë2
1,n < nÿ2

P
1<i 6� j<n h2(X i, Xj). It then follows from these two

inequalities that Proposition 3.4 has the following corollary to the effect that the LLN in

Corollary 3.3 is the best possible on the class of kernels (3.17), (3.179):

Corollary 3.5. Let Hn be the random operators corresponding, via equation (1.3), to the
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kernel h de®ned in (3.17) or (3.179), and to a sample from the uniform distribution on [0, 1].

Let ë1,n denote the eigenvalue of the operator Hn with largest absolute value, n 2 N. Then

lim sup
n!1

jë1,nj,1 a:s: (3:24)

if and only if
P1

r�1ë
2
r ,1.

Recently, Latala (1998) solved a problem which we raised in the ®rst version of this

paper. He proved that the converse of Corollary 3.3 holds in general, that is, that the

square-integrability of an arbitrary kernel h is necessary for the limit (3.24) to hold.

4. Rates of convergence

In this section för : r 2 Ng and fër : r 2 Ng will be as in the proof of Theorem 3.1, that is,

för : r 2 Ng is an orthonormal sequence in L2(P) and fër : r 2 Ng is a sequence of real

numbers, non-increasing in absolute value, such that
P

ë2
r ,1. We will also assume some

extra integrability for the functions ör, namely,�
ö4

rdP ,1, r 2 N: (4:1)

Our goal is to obtain rates of convergence in the law of large numbers (3.1) for the function

h(x, y) �
X1
r�1

ërör(x)ör(y) (4:2)

in terms of the asymptotic behaviour of the eigenvalues ër and the eigenfunctions ör, under

assumption (4.1).

The main part of the proof of our result will be to obtain a bound for kernels that consist

of a ®nite sum of terms of the form ërör(x)ör(y). We present it separately in the following

lemma. For this, it is convenient to introduce the following notation:

æ2(R) :�
X

1<r,s<R

(ë2
r � ë2

s)

�
ö2

rö
2
s dP: (4:3)

Lemma 4.1. Let h(x, y) �PR
r�1ëiör(x)ör(y) for all x, y 2 S and for some R ,1, with ör

and ër as just described. Then,

Eä2
2(ë( ~H n), ë(H)) <

æ2(R)

n
ÿ 2
PR

r�1 ë
2
r

n
: (4:4)

Proof. As in the ®rst part of the proof of Theorem 3.1, the Lidskii±Hoffman±Wielandt

inequality implies
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ä2
2(ë( ~H n), ë(H)) � ä2

2(ë(Ĥ n), ë(K))

< kĤ n ÿ Kk2
HS

� kAn KAn ÿ Kk2
HS, (4:5)

with the notation as in the proof of Theorem 2.1. Let g1, . . . , g R be a (random) orthonormal

basis of RR of eigenvectors of the (random) symmetric operator En, and let ì1, . . . , ìR be

the corresponding (random) eigenvalues. In this basis, the operator An � (I � En)1=2 has a

diagonal matrix with entries (1� ì j)
1=2, j � 1, . . . , R. Then, letting

k rs � hKgr, gsi, r, s � 1, . . . , R,

we have, from (4.5),

ä2
2(ë( ~H n), ë(H)) < kAn KAn ÿ Kk2

HS

�
X

1<r,s<R

k2
rs[(1� ìr)

1
2(1� ìs)

1
2 ÿ 1]2: (4:6)

To bound this expression we use the following elementary inequality:

[(1� a)
1
2(1� b)

1
2 ÿ 1]2 < a2 _ b2, a, b > ÿ1, (4:7)

which follows because either

0 < (1� a)
1
2(1� b)

1
2 ÿ 1 < (1� a _ b)

1
2(1� a _ b)

1
2 ÿ 1 � a _ b

or

0 < 1ÿ (1� a)
1
2(1� b)

1
2 < 1ÿ (1� a ^ b)

1
2(1� a ^ b)

1
2 � ÿ(a ^ b):

Then, using (4.7), we obtain from (4.6) that

ä2
2(ë( ~H n), ë(H)) <

X
1<r,s<R

k2
rs[(1� ìr)

1
2(1� ìs)

1
2 ÿ 1]2

<
X

1<r,s<R

k2
rs(ì

2
r _ ì2

s)

<
X

1<r,s<R

k2
rs(ì

2
r � ì2

s)

� kEn Kk2
HS � kKEnk2

HS

� 2kEn Kk2
HS, (4:8)

where the last identity follows from the symmetry of K and En. Using the matrix

representation of En and K in the canonical basis, it is clear that
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kEn Kk2
HS �

X
1<r,s<R

ë2
s

�
örös d(Pn ÿ P)

� �2

:

Therefore, since
�
ö2

r dP � 1 for all r,

EkEn Kk2
HS �

X
1<r,s<R

ë2
sE

�
örös d(Pn ÿ P)

� �2

� 1

n

X
1<r,s<R

ë2
s

�
(örös ÿ ärs)

2 dP

� æ2(R)

2n
ÿ
PR

r�1ë
2
r

n
:

The lemma follows from this identity and inequality (4.8). h

Theorem 4.2. If h is as in (4.2), with the eigenfunctions ör, r ,1, satisfying (4.1), then, for

all R, n 2 N,

Eä2
2(ë(Hn), ë(H)) <

4

n

X
1<r,s<R

(ë2
r � ë2

s � ërës)

�
ö2

rö
2
s dP� 8

X1
r�R�1

ë2
r: (4:9)

In particular,

Eä2
2(ë(Hn), ë(H)) <

6

n
æ2(R)� 8

X1
r�R�1

ë2
r: (4:99)

Proof. Let us consider the following decomposition of ä2
2(ë(Hn), ë(H)):

1
4
ä2

2(ë(Hn), ë(H)) < ä2
2(ë(H), ë(HR))� ä2

2(ë(HR), ë( ~H R,n))

� ä2
2(ë( ~H R,n), ë(H R,n))� ä2

2(ë(H R,n), ë(Hn)), (4:10)

where ~H R,n is de®ned as in (1.2) with h replaced by hR. Lemma 4.1 already gives

Eä2
2(ë(HR), ë( ~H R,n)) <

æ2(R)

n
:

By (3.10),

Eä2
2(ë( ~H R,n), ë(H R,n)) <

1

n

X
1<r,s<R

ërës

�
ö2

rö
2
s dP:

The Lidskii±Hoffman±Wielandt inequality gives, as in the proof of Theorem 3.1, that
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Eä2
2(ë(H R,n), ë(Hn)) < EkH R,n ÿ Hnk2

HS

� E
1

n2

X
1<i6� j<n

(hÿ hR)2(Xi, X j)

" #

� nÿ 1

n

X1
r�R�1

ë2
r:

Finally, it is clear from the de®nition and Lidskii±Hoffman±Wielandt that

Eä2
2(ë(H), ë(HR)) <

X1
r�R�1

ë2
r:

Plugging these four estimates into inequality (4.10) proves the theorem. h

Next we single out two particular instances of Theorem 4.2 to be used in Section 7.

Corollary 4.3. Suppose that X1
r,s�1

(ë2
r � ë2

s)

�
S

ö2
rö

2
s dP ,�1: (4:11)

Then

Eä2
2(ë(Hn), ë(H)) <

6

n

X1
r,s�1

(ë2
r � ë2

s)

�
S

ö2
rö

2
s dP: (4:12)

Proof. Under condition (4.11) we can let R!1 in (4.99) and obtain (4.12). h

Corollary 4.4. Suppose that, for some á. 0,

æ2(R) � O(Rá) (4:13)

and that, for some â. 0,

ë2
r � O(rÿ1ÿâ): (4:14)

Then

Eä2
2(ë(Hn), ë(H)) � O(n

ÿ â
á�â) (4:15)

Proof. Under conditions (4.13) and (4.14), the bound in (4.99) is dominated by C[Rá=n �
Rÿâ], for some constant C ,1, and this expression is minimized at R � 1=(á�â). h

Given á. 0, â. 0 and C . 0, let H (á, â, C) denote the class of symmetric kernels
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h(x, y) �
X
r2 I

ërör(x)ör(y)

with

jërj2 < Crÿ1ÿâ, r 2 I ,

and XR

r,s�1

(ë2
r � ë2

s)

�
S

ö2
rö

2
s dP < CRá, R > 1:

It follows from the proof of Theorem 4.2 that in fact

sup
h2H (á,â,C )

Eä2
2(ë(Hn), ë(H)) � O(nÿâ=(á�â)):

5. Asymptotic normality of spectra I: ®nite-dimensional
convergence

In this section we show that the limiting distribution of the spectrum of ~H n (and also of Hn)

can be expressed in terms of the generalized Brownian bridge associated with P. This is the

centred Gaussian process GP indexed by functions f 2 L2(P) whose covariance is that of P,

that is,

EGP( f )GP(g) �
�

S

fg dPÿ
�

S

f dP

�
S

g dP, f , g 2 L2(P):

It will be convenient in this section to index eigenvalues and eigenfunctions of the

operator H with kernel h by all integers as follows:

h(x, y) �
X
r2Z

ërör(x)ör(y), (5:1)

with convergence taking place in L2(P2), where

ë0 > ë1 > ë2 > . . . . 0 . . . . > ëÿ2 > ëÿ1

(we disregard the possible eigenvalue 0 of H , that is, we consider only the restriction of H to

the Hilbert space spanned by för : r 2 Zg). We denote by fìrg the ordered set of distinct

eigenvalues of H other than 0,

ì0 . ì1 . ì2 . . . . . 0 . . . . . ìÿ2 . ìÿ1,

and let mr be the multiplicity of the eigenvalue ìr, r 2 Z. (So, for example, there are m1

eigenvalues ëi equal to ì1, etc.) A blanket assumption that will be in force throughout this

section is that the eigenfunctions of H are in L4(P), that is,
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�
S

ö4
r dP ,�1, r 2 Z:

With the above notation, the object of this section becomes that of proving the following

theorem about weak convergence of the ®nite-dimensional distributions of the spectra of Hn

and ~H n to the corresponding ®nite-dimensional distributions of a random vector associated

with the process GP.

Theorem 5.1. Let h be a symmetric kernel in L2(P2) with the property that there exists a

sequence Rn !1 satisfying X
jrj. Rn

ë2
r � o(nÿ1) (5:2)

and X
jrj<Rn,jsj<Rn

�
S

ö2
rö

2
s dP

X
jrj<Rn,jsj<Rn

(ë2
r � ë2

s)

�
S

ö2
rö

2
s dP � o(n): (5:3)

Suppose that, moreover, X
r2Z

jërjö2
r 2 L2(P): (5:4)

Let Är be the set of indices i 2 Z such that Höi � ìröi. Let GP be the generalized

Brownian bridge associated with P. Let Ãr be the Gaussian matrix

Ãr :� ìr(GP(öiö j): i, j 2 Är), r 2 Z: (5:5)

Then the ®nite-dimensional distributions of the sequence

n1=2(ë"#(Hn)ÿ ë"#(H))

converge weakly to the corresponding ®nite-dimensional distributions of

(�r , 0ë
"(Ãr))� (�r>0ë

#(Ãr)):

If condition (5.4) is replaced byX
r2Z

ërö
2
r(x) � h(x, x) 2 L2(P), (5:49)

then the statement holds with Hn replaced by ~H n.

Dauxois et al. (1982) observed a somewhat similar type of limit behaviour for spectra of

empirical covariance operators.

In fact, we will prove a slightly stronger statement (Theorem 5.6). We begin by proving

three lemmas about approximation of operators.

Lemma 5.2. Let A be a symmetric linear operator on Rd with eigenvalues ì1, . . . , ìk of

respective multiplicities m1, . . . , mk and eigenspaces W1, . . . , W k . Let Pj(A) be the
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orthogonal projector of Rd onto Wj, 1 < j < k. For r < k, let

är � 1
2
min[minfjìi ÿ ì jj : 1 < i , j < rg, minfjìi ÿ ì jj : 1 < i < r, r � 1 < j < kg]:

Let 0 , å < är=2 and let B be another symmetric linear operator with kBkHS , å. Then:

(i) the set of eigenvalues of A� B partitions into r � 1 subsets Ë j(A� B), j � 1,

. . . , r, and Rr such that

Ë j(A� B) � B(ì j, å) and dist(R r, fì1, . . . , ìrg) . 2är ÿ å,

where B(ì j, å) denotes the open ball with centre ì j and radius å;

(ii) if Pj(A� B) denotes the orthogonal projection onto the direct sum of the

eigenspaces of A� B with eigenvalues in the cluster Ë j(A� B), then

tr(Pj(A� B)) � tr(Pj(A)), j � 1, . . . , r; (5:6)

(iii) if ã j denotes the (positively oriented) circle of radius är about ì j (in C) and

RA(æ) :� (Aÿ æI)ÿ1 is the resolvent of A, then

Pj(A� B) � Pj(A)� 1

2ði

�
ã j

RA(æ)BRA(æ) dæ� S j, j � 1, . . . , r, (5:7)

where

kS jkHS < 2
kBk2

HS

ä2
r

, j � 1, . . . , r: (5:8)

Proof. (i) and (ii) are direct consequences of the Lidskii±Hoffmann±Wielandt inequality and

only (iii) requires proof. ã j does not intersect the spectrum Ë(A� B) of A� B and the

intersection of the corresponding disk B(ì j, är) with Ë(A� B) is just Ë j(A� B), j � 1,

. . . , r. Therefore (Kato 1982, p. 39),

Pj(A� B) � ÿ 1

2ði

�
ã j

RA�B(æ) dæ, (5:9)

where RA�B is the resolvent of A� B. For æ 2 ã j,

kRA(æ)k � 1

dist(æ, Ë(A))
,

1

är

(Kato 1982, p. 60), so that

kRA�B(æ)Bk, 1
2

and the following representation holds with uniform (in æ 2 ã j) and absolute convergence of

the series on the right-hand side:
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RA�B(æ) � (A� Bÿ æI)ÿ1 � [(Aÿ æI)(I � RA(æ)B)]ÿ1

� (I � RA(æ)B)ÿ1 RA(æ)

�
X1
n�0

(ÿ1)n(RA(æ)B)n RA(æ):

Hence,

kRA�B(æ)ÿ RA(æ)� RA(æ)BRA(æ)kHS <
X1
n�2

kRA(æ)k kRA(æ)Bkn
HS

<
X1
n�2

kRA(æ)kn�1kBkn
HS

which is dominated byX1
n�2

kBkn
HS

än�1
r

� kBkHS

är

� �2

(är ÿ kBkHS)ÿ1 < 2
kBk2

HS

ä3
r

:

The lemma follows upon setting C(æ) � RA�B(æ)ÿ RA(æ)� RA(æ)BRA(æ) and Sj �
1

2ði

�
ã j

C(æ) dæ. h

Given an operator C on Rd and å. 0, we say that a subset Ë of the spectrum ë(C) of C

is an å-cluster of (the spectrum of) C if Ë has diameter smaller than å. 0 and is at a

distance larger than å from ë(C)ÄË. Then, parts (i) and (ii) of Lemma 5.2 assert that if A

is perturbed by B with kBkHS , å and if the eigenvalues of A are separated by more than

4å, then to each eigenvalue ìr of A there corresponds an å-cluster of A� B about ìr such

that the dimension of the sum of the eigenspaces of A� B corresponding to the eigenvalues

in such a cluster equals the multiplicity mr of ìr.

Part (iii) will now be used to `expand' the restriction of A� B to the orthogonal sum of

the eigenspaces corresponding to any å-cluster of eigenvalues Ër(A� B) as the sum of the

restriction of A to Wr, a `linear' term in B and `lower-order' terms.

Lemma 5.3. Let A and B be symmetric operators on Rd satisfying the conditions of Lemma

5.2 with är < 1. Let e1, . . . , ed be an orthonormal basis of Rd consisting of eigenvectors of

A and let Är denote the set of indices i such that Aei � ìrei. Let Lr(B) be the symmetric

operator of Rd de®ned by the equations

hLr(B)ei, e ji �

hBei, e ji, if i, j 2 Är

ÿ ìr

ë j ÿ ìr

hBei, e ji, if i 2 Är and j =2 Är

ÿ ìr

ëi ÿ ìr

hBei, e ji, if i =2 Är and j 2 Är

0, otherwise,

8>>>>>>>><>>>>>>>>:
(5:10)
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where, for all 1 < j < d, ë j � ìl if Ae j � ìl ej. Then there exists a symmetric operator Cr

on Rd such that

kCrkHS < 8
kBk2

HS

ä2
r

(5:11)

and

Pr(A� B)(A� B)Pr(A� B) � Pr(A)APr(A)� Lr(B)� Cr: (5:12)

Proof. Equation (5.7) gives

Pr(A� B)(A� B)Pr(A� B) � Pr(A)APr(A)� Pr(A)BPr(A)

� 1

2ði

�
ã r

RA(æ)BRA(æ) dæ

 !
APr(A)

� Pr(A)A
1

2ði

�
ã r

RA(æ)BRA(æ) dæ

 !

� Pr(A)B
1

2ði

�
ã r

RA(æ)BRA(æ) dæ

 !

� 1

2ði

�
ã r

RA(æ)BRA(æ) dæ

 !
BPr(A)

� 1

2ði

�
ã r

RA(æ)BRA(æ) dæ

 !
B

1

2ði

�
ã r

RA(æ)BRA(æ) dæ

 !

� `multiples' of Sr: (5:13)

De®ne Lr(B) as the sum of the operators in the second, third and fourth terms of the right-

hand side of (5.13) and Cr as the sum of the operators in subsequent terms. With these

de®nitions, equation (5.12) is just (5.13) and we only need to show that Lr(A) can be written

as in (5.10), and that Cr satis®es the bound (5.11). In order to compute Lr, we ®rst observe

that, by de®nition and by symmetry of Pr(A),

hPr(A)BPr(A)ei, e ji � hBPr(A)ei, Pr(A)e ji

�
hBei, e ji, if i, j 2 Är

0, otherwise:

(

Next, if i =2 Är then, obviously,

134 V. Koltchinskii and E. GineÂ



1

2ði

�
ã r

RA(æ)BRA(æ)APr(A) dæAPr(A)ei, e j

* +
� 0:

Now, if i 2 Är and j =2 Är, since

hRA(æ)BRA(æ)APr(A)ei, e ji � hBRA(æ)APr(A)ei, RA(æ)e ji

� ìr

(ìr ÿ æ)(ë j ÿ æ)
hBei, e ji,

with ë j 6� ìr (hence, ë j lies outside the disk bounded by ãr), we have

1

2ði

�
ã r

RA(æ)BRA(æ)APr(A) dæAPr(A)ei, e j

* +
� ìrhBei, e ji

2ði

�
ã r

dæ

(ìr ÿ æ)(ë j ÿ æ)

� ÿ ìr

ë j ÿ ìr

hBei, e ji:

Thus,

1

2ði

�
ã r

RA(æ)BRA(æ)APr(A) dæAPr(A)ei, e j

* +
�

0, if i =2 Är,

ÿ ìr

ë j ÿ ìr

hBei, e ji, if i 2 Är, j =2 Är:

(

The third component of Lr(B) can be handled in a similar way. The main difference occurs

for i, j 2 Är. In this case we just observe

hPr(A)ARA(æ)BRA(æ)ei, e ji � ìrhRA(æ)BRA(æ)ei, e ji

� ìrhBRA(æ)ei, RA(æ)e ji

� ÿìr

1

ìr ÿ æ
Bei,

1

ìr ÿ æ
e j

� �
� ÿ ìr

(ìr ÿ æ)2
hBei, e ji,

whose integral over ãr is zero. So (5.10) is proved.

Since, as observed above, kRA(æ)k � 1=är for æ 2 ãr, it follows that



 1

2ði

�
ã r

RA(æ)BRA(æ) dæ






HS

<
kBkHS

är

,

showing that the Hilbert±Schmidt norm of each of the operators in the ®fth, sixth and

seventh terms in (5.13) is dominated by kBk2
HS=ä

2
r (note that both är < 1 and kBkHS < 1).

The bound (5.8) for Sr gives the same bound for the ten operators in (5.13) containing Sr as

a factor. Inequality (5.11) follows. h

We will apply Lemma 5.3 to
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A � K Rn
and B � Ĥ Rn,n ÿ K Rn

� (I � ERn,n)1=2 K Rn
(I � ERn,n)1=2 ÿ K Rn

,

in the notation of Section 4. The following lemma will allow us to simplify the linear term in

equation (5.12).

Lemma 5.4. Let K, E : Rd 7! Rd be symmetric operators. Suppose that I � E is non-

negative de®nite. Then



(I � E)1=2 K(I � E)1=2 ÿ K � EK � KE

2

� �




HS

< 3kEkHS[kEKkHS � kKEkHS]: (5:14)

Proof. Let

R :� (I � E)1=2 ÿ I ÿ E

2
:

Then we have

(I � E)1=2 K(I � E)1=2 � K � EK � KE

2
� EKE

4
� RK � KR� RKE � EKR

2
� RKR:

It then follows that



(I � E)1=2 K(I � E)1=2 ÿ K � EK � KE

2

� �




HS

<
kEKEkHS

4
� kRKkHS � kKRkHS

� kRKEkHS � kEKRkHS

2
� kRKRkHS:

(5:15)

We now prove that

kRKkHS < kE2 KkHS: (5:16)

Indeed, let ìi, i � 1, . . . , d, be eigenvalues of the operator E, and let gi, i � 1, . . . , d, be the

corresponding orthonormal eigenvectors (recall that E is symmetric and I � E is non-

negative de®nite). Then the eigenvalues of R are

(1� ìi)
1=2 ÿ 1ÿ ìi

2
, i � 1, . . . , d:

Let kij, 1 < i, j < m, denote the entries of the matrix of the operator K in the basis gi,

i � 1, . . . , d. Then we have

kRKk2
HS <

Xd

i, j�1

(1� ìi)
1=2 ÿ 1ÿ ìi

2

� �2

k2
ij: (5:17)

Expression (5.16) will follow from the following elementary inequality:

0 < 1� ì

2
ÿ (1� ì)1=2 < jìj ^ ì2, ì > ÿ1: (5:18)

To prove (5.18), we note that (1� ì)1=2 < 1� ì=2 for all ì > ÿ1. For jìj < 1
2

the inequality
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1� ì

2
ÿ (1� ì)1=2 <

ì2

8
<
jìj
8

follows from the Taylor expansion of the square root. For ì > 1
2
, we have

1� ì

2
ÿ (1� ì)1=2 <

ì

2
< ì2:

Finally, for ÿ1 < ì < ÿ1
2
,

1� ì

2
ÿ (1� ì)1=2 < 1� ì

2
ÿ (1� ì) � jìj

2
< ì2:

Using (5.17), (5.18) gives

kRKk2
HS <

Xd

i, j�1

ì4
i k2

ij � kE2 Kk2
HS,

thus proving inequality (5.16).

Quite similarly, it can be shown, using (5.18), that

kKRkHS < kKE2kHS, (5:19)

kRKEkHS < kEKEkHS, (5:20)

kEKRkHS < kEKEkHS, (5:21)

kRKRkHS < kEKEkHS, (5:22)

and we obtain from (5.15), (5.16), (5.19)±(5.22) that



(I � E)1=2 K(I � E)1=2 ÿ K � EK � KE

2

� �




HS

<
9

4
kEKEkHS � kKE2kHS � kE2 KkHS:

(5:23)

Since

kEKEkHS <
1

2
kEkHS[kEKkHS � kKEkHS],

kKE2kHS < kEkHSkKEkHS,

and

kE2 KkHS < kEkHSkEKkHS,

(5.23) implies (5.14). h

We now come back to the kernel h de®ned by equation (5.1). We assume, without loss of

generality, that är < 1 for all r, where the numbers är are associated with the eigenvalues

ìr of h essentially as in Lemma 5.2, as follows:
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är �
1
2
minfìi ÿ ìi�1 : 0 < i < rg for r . 0

1
2
minfìiÿ1 ÿ ìi : r < i < ÿ2g for r , 0:

(
Slightly modifying some of the notation of Sections 3 and 4, we set

hR(x, y) :�
X
jrj<R

ërör(x)ör(y),

and denote by HR the integral operator with kernel hR, and by H R,n, ~H R,n the operators of

Rn whose matrices in the canonical basis are respectively

H R,n :� 1

n
((1ÿ äij)hR(Xi, X j) : 1 < i, j < n) and ~H R,n :� 1

n
(hR(Xi, X j) : 1 < i, j < n):

The following lemma gives conditions under which the spectrum of Hn and/or the spectrum

of ~H n can be approximated by that of H Rn,n and/or that of ~H Rn,n, for suitable Rn !1.

Lemma 5.5. Let Rn !1 be a sequence satisfying (5.2). We then have:

(i)

Ekë"#(Hn)ÿ ë"#(H Rn,n)k2
l 2
� o(nÿ1);

(ii) if, moreover,
P

r2Zjërjö2
r 2 L2(P), then

Esup
R>1

kë"#( ~H R,n)ÿ ë"#(H R,n)k2
c0
� o(nÿ1);

(iii) and if, moreover,
P

r2Zërö2
r converges in L2(P) to the function h(x, x), then

Ekë"#( ~H n)ÿ ë"#( ~H Rn,n)k2
l 2
� o(nÿ1):

Proof. The three statements are direct consequences of the Lidskii and Lidskii±Hoffman±

Wielandt inequalities, the simplest being statement (i). We only prove (ii) and (iii). Lidskii's

inequality for p � 1 gives that, for all R > 1,

kë"#( ~H R,n)ÿ ë"#(H R,n)kc0
< k ~H R,n ÿ H R,nk

� nÿ1 max
1<i<n

jhR(X i, X i)j:

Since

jhR(x, x)j �
���� X
jrj<R

ërö
2
r(x)

���� < ø(x),

where

ø :�
X
r2Z

jërjö2
r 2 L2(P),

we have
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n1=2 sup
R>1

kë"#( ~H R,n)ÿ ë"#(H R,n)kc0
<

max1<i<nø(Xi)

n1=2
:

Now, the inequality in (ii) follows from this and the fact that

E max
1<i<n

ø2(Xi) � o(n)

because Eø2(X ) ,�1.

To prove (iii) we ®rst note that, by the Lidskii±Hoffman±Wielandt inequality,

kë"#( ~H n)ÿ ë"#( ~H Rn,n)k2
l 2

< k ~H n ÿ ~H Rn,nk2
HS

� nÿ2
X

1<i 6� j<n

(hÿ hRn
)2(X i, X j)� nÿ2

Xn

i�1

(hÿ hRn
)2(Xi, X i):

Therefore

Ekë#( ~H n)ÿ ë#( ~H Rn,n)k2
l 2

<
n(nÿ 1)

n2
E(hÿ hRn

)2(X , Y )� nÿ1E(hÿ hRn
)2(X , X )

� n(nÿ 1)

n2

X
jrj. Rn

ë2
r � nÿ1

X
jrj. Rn,jsj. Rn

ërës

�
S

ö2
rö

2
s dP:

Since
P

r2Zërö2
r converges in L2(P) to the function h(x, x),X

jrj. Rn,jsj. Rn

ërës

�
S

ö2
rö

2
s dP �





 X
jrj. Rn

ërö
2
r





2

L2 P

! 0,

showing that the second summand on the right of the last inequality is o(nÿ1). Since, by

condition (5.2), the ®rst summand is also o(nÿ1), the proof of (iii) is completed. h

From this point on, we change the de®nition of the å-cluster of an operator C in two

ways: if Ë is an å-cluster of C in the sense indicated just before Lemma 5.3, and Ë
consists of positive (negative) eigenvalues, then we rede®ne Ë as a vector whose

coordinates are the elements of the set Ë each counted with its multiplicity, arranged in

non-increasing (non-decreasing) order. Only strictly positive and strictly negative clusters

will be considered.

The statement of the next theorem requires numbering of the clusters of Hn and ~H n. For

r > 0 (r , 0), an å-cluster of an operator C is the rth å-cluster of C, Ëå
r(C), if there are

exactly r (ÿr ÿ 1) å-clusters of C whose components are larger (smaller) than those of

Ëå
r(C). Ëå

r(C) need not exist.

Theorem 5.6. Let h be a symmetric kernel in L2(P2) with the property that there exists a

sequence Rn !1 satisfying (5.2) and (5.3). If, moreover, (5.4) holds, then so do the

following statements:

(i) For all r 2 Z, and ån � cnÿ1=4, c . 0, the probability that the ån-cluster Ëån

r (Hn) of
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Hn exists, that it is within ån from ìr and that tr(Pr(Hn)) � tr(Pr(H)) tends to 1 as

n!1.

(ii) Let Är be the set of indices i 2 Z such that Höi � ìröi. Let Gp be the generalized

Brownian bridge associated with P. Let Ãr be the Gaussian matrix de®ned in (5.5). Let

M r :� (ìr, . . . , ìr), where the ur term occurs dr times, r 2 Z. Then, for all

0 < R1 < R2 ,1,

n1=2 �R2

r�R1
Ëån

r (Hn)ÿ�R2

r�R M r

� �
!L �R2

r�R1
ë#(Ãr) (5:24)

and, for all ÿ1, R1 < R2 < ÿ1,

n1=2 �R2

r�R1
Ëån

r (Hn)ÿ�R2

r�R1
M r

� �
!L �R2

r�R1
ë"(Ãr) (5:249)

as random vectors in l 2.

If condition (5.4) is replaced byX
r2Z

ërö
2
r(x) � h(x, x) 2 L2(P), (5:49)

then statements (i) and (ii) hold with Hn replaced by ~H n.

Proof. By Lemma 5.5, we can replace Hn and ~H n by ~H Rn,n in all the conclusions above. As

in the proof of Theorem 3.1, we set

En :� ((Pn ÿ P)(örös) : 0 < jrj, jsj < Rn),

observe that I2Rn�1 � En is non-negative de®nite and also de®ne

An :� (I2Rn�1 � En)1=2:

Letting K Rn
be the diagonal matrix with numbers ër : jrj < Rn, on the diagonal, we further

de®ne

Ĥ Rn,n � An K Rn
An:

By the same argument as in Section 3 (see the proof of Theorem 3.1) we have

ë(K Rn
) � ë(H Rn

), ë(Ĥ Rn,n) � ë( ~H Rn,n), n 2 N: (5:25)

As previously mentioned, we will apply Lemma 5.3 with A � K Rn
and B � Ĥ Rn,n ÿ K Rn

.

Thus, we begin by estimating the size of B. The following estimate is contained in the

derivation of the bounds (4.6) and (4.8):

kĤ Rn,n ÿ K Rn
k2

HS � kAn K Rn
An ÿ K Rn

k2
HS < kEn K Rn

k2
HS � kK Rn

Enk2
HS: (5:26)

Next we observe that

EkEnk2
HS �

X
jrj<Rn,jsj<Rn

E((Pn ÿ P)(örös))
2

� nÿ1
X

jrj<Rn,jsj<Rn

(P(ö2
rö

2
s)ÿ ärs) (5:27)
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and that, similarly,

EkEn K Rn
k2

HS � nÿ1
X

jrj<Rn,jsj<Rn

ë2
s(P(ö2

rö
2
s)ÿ ärs) (5:28)

and

EkK Rn
Enk2

HS � nÿ1
X

jrj<Rn,jsj<Rn

ë2
r(P(ö2

rö
2
s)ÿ ärs): (5:289)

Combining these estimates with (5.26), we obtain, by conditions (5.2) and (5.3),

EkĤ Rn,n ÿ K Rn
k2

HS < nÿ1
X

jrj<Rn,jsj<Rn

(ë2
r � ë2

s)

�
S

ö2
rö

2
s dP

< 2
supr2Zjërj

n

X
jrj<Rn

jsj<Rn

�
S

ö2
rö

2
s dP

0B@
1CA

1=2 X
jrj<Rn

jsj<Rn

(ë2
r � ë2

s)

�
S

ö2
rö

2
s dP

0B@
1CA

1=2

� o(nÿ1=2): (5:29)

Then (5.29), Lidskii±Hoffman±Wielandt and the de®nition of ån imply that, for each r 2 Z,

with probability tending to 1, Ëå n

r (Ĥ Rn,n) is well de®ned and tr(Pr(Ĥ Rn,n)) � tr(Pr(K Rn
)). In

particular, conclusion (i) holds for Ĥ Rn,n under the stated hypotheses. Also, we can apply

Lemma 5.3 `in probability' and obtain, by (5.29), that, for each r 2 Z,

Pr(Ĥ Rn,n)Ĥ Rn,n Pr(Ĥ Rn,n) � Pr(K Rn
)K Rn

Pr(K Rn
)� Lr,n � oPr(nÿ1=2) (5:30)

in the sense of Hilbert±Schmidt norms, where Lr,n is given by (5.10) with B replaced by

Ĥ Rn,n ÿ K Rn
.

Next, we make use of Lemma 5.4 to replace B � Ĥ Rn,n ÿ K Rn
in the de®nition of Lr,n

by its linearization (EK � KE)=2 (with the corresponding subindices). To this end we just

observe that, by (5.27) and (5.28), (5.289) the expected value of the Hilbert±Schmidt norm

of the remainder term in this substitution is bounded by

3E[kEnkHS(kEn K Rn
kHS � kK Rn

EnkHS)]

< 3
���
2
p

nÿ1
X
jrj<Rn

jsj<Rn

�
S

ö2
rö

2
s dP

0B@
1CA

1=2 X
jrj<Rn

jsj<Rn

(ë2
r � ë2

s)

�
S

ö2
rö

2
s dP

0B@
1CA

1=2

� o(nÿ1=2): (5:31)

Hence, if �Lr,n is de®ned via equation (5.10) with B replaced by (En K Rn
� K Rn

En)=2, since

also ìr=(ë j ÿ ìr) < ìr=är, we have

k�Lr,n ÿ Lr,nkHS � oPr(nÿ1=2): (5:32)

Then (5.30)±(5.32) give, by Lidskii±Hoffman±Wielandt, that
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n1=2(Ëån

r (Ĥ Rn,n)ÿ ë#(Pr(K Rn
)K Rn

Pr(K Rn
)� �Lr,n))! 0 in probability: (5:33)

for r > 0, and the same limit but with ë# replaced by ë" for r , 0. We show next that we can

discard from the matrix �Ln in (5.33) the entries not in Är 3 Är, by applying Wielandt's

inequalities (2.5) and (2.6). Note that the matrix representation of (En K Rn
� K Rn

En)=2 in the

basis feig is

1

2
(En K Rn

� K Rn
En) � ëi � ë j

2
(Pn ÿ P)(öiö j) : jij, j jj < Rn

� �
,

and therefore the matrix entries of the operator

Lr,n :� Pr(K Rn
)

En K Rn
� K Rn

En

2
Pr(K Rn

)

are

hLr,nei, e ji �
ìr(Pn ÿ P)(öiö j), for i, j 2 Är,

0, otherwise:

(
(5:34)

Let us set

An :� Pr(K Rn
)K Rn

Pr(K Rn
)� Lr,n and Bn :� Lr,n ÿ Lr,n:

An has a block diagonal matrix such that, by (5.34) and Lidskii±Hoffman±Wieland, all the

eigenvalues of its Är 3 Är block converge in probability to ìr 6� 0, whereas the Äc
r 3 Äc

r

block of An is 0. Also

kBnk2
HS � kLr,n ÿ �Lr,nk2

HS � 2
X
i2Ä r

X
j=2Ä r ,j jj<Rn

ìr � ë j

2

� �2
ì2

r

(ë j ÿ ìr)2
((Pn ÿ P)(öiö j))

2

so that, by (5.29),

EkBnk2
HS � EkLr,n ÿ �Lr,nk2

HS

<
2ì2

r

ä2
r

supr2Zjërj
n

X
jrj<Rn

jsj<Rn

�
S

ö2
rö

2
s dP

0B@
1CA

1=2 X
jrj<Rn

jsj<Rn

(ë2
r � ë2

s)

�
S

ö2
rö

2
s dP

0B@
1CA

1=2

� o nÿ1=2� �:
Then, we can apply Wielandt's inequalities (2.5) and (2.6) in probability to A � An and

B � Bn and obtain

ë#(An � Bn)ÿ ë#(An) � oPr nÿ1=2� �:
This estimate, combined with (5.33), gives

n1=2(Ëå n

r (Ĥ Rn,n)ÿ ë#(Pr(K Rn
)K Rn

Pr(K Rn
)� Lr,n))! 0 in probability (5:35)
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for r > 0, and the same limit with ë# replaced by ë" for r , 0. But Pr(K Rn
)K Rn

Pr(K Rn
)

being ìr times the identity on the linear span of ei, i 2 Är, we have

ë#(Pr(K Rn
)K Rn

Pr(K Rn
)� Lr,n) � M r � ë# Lr,n

� �
for r > 0

ë"(Pr(K Rn
)K Rn

Pr(K Rn
)� Lr,n) � M r � ë" Lr,n

� �
for r , 0:

Now, the central limit theorem in ®nite dimensions applied to the vectors (hLr,nei, e ji :
i, j 2 Är) (see (5.34)), together with continuity of the mappings ë", ë#, shows that

n1=2ë# Lr,n

� �
!L ë# Ãr� �

and

n1=2ë" Lr,n

� �
!L ë" Ãr� �

as random vectors in l 2. We then conclude from this and (5.35) that

n1=2(Ëån

r (Ĥ Rn,n)ÿ M r)!L
ë#(Ãr), for r > 0

ë"(Ãr), for r , 0,

�
(5:36)

this being just the limit (5.24) or (5.249) in the case R1 � R2 � r. Now (5.24) and (5.249)
with arbitrary R1 < R2 (of the same sign) follow by continuity of the direct sum �. h

For a compact symmetric operator A, let ër(A) denote the rth eigenvalue of A in the

ordering given below (5.1). With this notation we have:

Corollary 5.7. If all the eigenvalues of H are simple and hypotheses (5.2), (5.3), and (5.4) of

Theorem 5.6 hold, then, with probability tending to one, the ®rst r eigenvalues of Hn are also

simple for jrj,1 and conclusions (5.24), (5.249) become

n1=2[(ëR1
(Hn), ëR1�1(Hn), . . . , ëR2

(Hn))ÿ (ëR1
(H), ëR1�1(H) . . . , ëR2

(H))

!L (ëR1
(H)GP(ö2

R1
), ëR1�1(H)GP(ö2

R1�1), . . . , ëR2
(H)GP(ö2

R2
)):

If (5.49) holds instead of (5.4) and we consider ~H n rather than Hn, then the analogous

conclusion for ~H n holds.

Corollary 5.8. Suppose that, for some R > 1,

h(x, y) :�
XR

r�1

ërör(x)ör(y),

where

ë1 > ë2 > . . . > ëR

and
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�
S

ö4
r dP ,�1, r � 1, . . . , R:

Let ì1 . . . . . ìr be the ordered sequence of distinct eigenvalues ë j. Then the sequence

fn1=2(ë#( ~H n)ÿ ë#(H))g1n�1

converges weakly in RR to

ë#(Ã1) � . . . � ë#(Ãr),

which, if the eigenvalues ë j are all distinct, becomes

(ë1GP(ö2
1), . . . , ëRGP(ö2

R)):

Remark 5.9. It is worth mentioning that the condition�
S

ö4
r dP ,�1, r � 1, . . . , R,

is sharp, in fact, that it is necessary for the CLT whenever the eigenfunctions ör : 1 < r < R,

have disjoint supports. In this case the matrix En is diagonal with eigenvalues (Pn ÿ P)(ö2
r),

r � 1, . . . , R. It follows that Ĥ n is also diagonal with eigenvalues ër Pn(ö2
r), r � 1, . . . , R.

Since, by the LLN, Pn(ö2
r)! P(ö2

r) � 1 as n!1 almost everywhere, assuming for

simplicity that

ë1 . ë2 . . . . . ëR,

we have that, with probability tending to 1,

ë#( ~H n) � ë#(Ĥ n) � (ër Pn(ö2
r) : 1 < r < R):

It follows that, with probability tending to 1,

n1=2(ë#( ~H n)ÿ ë#(H)) � (n1=2(Pn ÿ P)(ö2
r) : 1 < r < R),

and, if this sequence converges in distribution to a Gaussian random vector in RR, then, by

the converse CLT,
�
ö4

r dP ,�1 for all r � 1, . . . , R.

6. Asymptotic normality of spectra II: tightness in l 2(Z) and
c0(Z)

The ordered spectrum ë"#(H) of a Hilbert±Schmidt operator H is a vector in l 2(Z) and

therefore also in c0(Z), and so are the ordered spectra ë"#(Hn) and ë"#( ~H n) (see Section 2).

The object of this section is to strengthen the ®nite-dimensional convergence in distribution

proved in Theorem 5.1 to weak convergence of the corresponding spectra as random vectors

in l 2(Z) and c0(Z). Concretely, we prove the following two theorems.

Theorem 6.1. Suppose that
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X
r,s2Z

(ë2
r � ë2

s)

�
S

ö2
rö

2
s dP ,�1, (6:1)

and that, moreover, there exists a sequence Rn !1 such that bothX
jrj<Rn,jsj<Rn

�
S

ö2
rö

2
s dP � o(n) (6:2)

and condition (5.2) hold. Suppose, in addition, that P-a.e.

h(x, x) �
X
r2Z

ërö
2
r(x): (6:3)

Then the sequence

fn1=2(ë"#( ~H n)ÿ ë"#(H))g1n�1 (6:4)

converges weakly in l 2(Z) to the random vector

(�r , 0ë
"(Ãr))� (�r>0ë

#(Ãr)), (6:5)

where Ãr, r 2 Z, denote the Gaussian matrices de®ned by (5.5).

Theorem 6.2. If conditions (5.2), (6.1) and (6.2) hold, then the sequence of random vectors

fn1=2(ë"#(Hn)ÿ ë"#(H))g1n�1

converges weakly in c0(Z) to the random vector given by (6.5).

The following corollary is immediate:

Corollary 6.3. (a) If conditions (5.2), (6.1)±(6.3) hold, then the sequence of random

variables

fnä2
2(ë( ~H n), ë(H))g1n�1

converges weakly to the square of the l 2 norm of the random vector given by (6.5).

(b) If conditions (5.2), (6.1) and (6.2) hold, then the sequence of random variables

fn1=2kë"#(Hn)ÿ ë"#(H)kc0
g1n�1

converges weakly to the c0 norm of the random vector (6.5).

Remark 6.4. If the spectrum of H consists of only simple eigenvalues, then the limiting

random vector in the previous theorems becomes (ërGP(ö2
r))r2Z (see Corollaries 5.7 and 5.8),

and the same change occurs in the corollary.

The proofs are based on the results from Section 5 and the following two lemmas. To

formulate them, we introduce some more notation.
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If A is a linear operator on Rn and B is a linear operator on Rm, we let A� B denote

the linear operator on Rn�m such that

(A� B)(u� v) � (Au)� (Bv):

For u � (u1, . . . , un) 2 Rn, if d� is the number of non-negative coordinates among u1,

. . . , un and dÿ � nÿ d�, we denote by u� the vector of Rd� obtained from u by deleting its

negative coordinates, and by uÿ the vector in Rdÿ obtained from u by deleting its non-

negative coordinates. Finally, 0n will denote 0 in Rn.

Lemma 6.5. Let K1 and K2 be symmetric operators respectively on Rm1 and Rm2 . Suppose

that

ä :� minfjìj : ì 2 ë(K1)g ÿmaxfjìj : ì 2 ë(K2)g. 0: (6:6)

Then, for any symmetric operators C1 on Rm1 and C2 on Rm2 such that

kC1 ÿ K1kHS _ kC2 ÿ K2kHS ,
ä

2
, (6:7)

we have

kë"#(C1 � C2)ÿ ë"#(K1 � K2)ÿ (ë"#(C1)ÿ ë"#(K1))kl 2
< kC2 ÿ K2kHS: (6:8)

Proof. Proving (6.8) is obviously equivalent to showing

kë#(C1 � C2)ÿ ë#(K1 � K2)ÿ (ë#�(C1)ÿ ë#�(K1))� 0m2
� (ë#ÿ(C1)ÿ ë#ÿ(K1))kl 2

< kC2 ÿ K2kHS: (6:89)

To prove (6.89), ®rst we note that, under condition (6.6),

ë#(K1 � K2) � ë#�(K1)� ë#(K2)� ë#ÿ(K1): (6:9)

Condition (6.7) and the Lidskii±Hoffman±Wielandt inequality imply that

kë#(C1)ÿ ë#(K1)kl 2
_ kë#(C2)ÿ ë#(K2)kl 2

,
ä

2
: (6:10)

It follows from (6.9) and (6.10) that

d�(ë#(C1)) � d�(ë#(K1)), dÿ(ë#(C1)) � dÿ(ë#(K1)):

This and (6.10) imply

kë#�(C1)ÿ ë#�(K1)kl 2
_ kë#ÿ(C1)ÿ ë#ÿ(K1)kl 2

,
ä

2
,

so that, by (6.9),

ë#(C1 � C2) � ë#�(C1)� ë#(C2)� ë#ÿ(C1):

Therefore
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ë#(C1 � C2)ÿ ë#(K1 � K2) � (ë#�(C1)ÿ ë#�(K1))� (ë#(C2)ÿ ë#(K2))� (ë#ÿ(C1)ÿ ë#ÿ(K1)),

and we have

ë#(C1 � C2)ÿ ë#(K1 � K2)ÿ (ë#�(C1)ÿ ë#�(K1))� 0m2
� (ë#ÿ(C1)ÿ ë#ÿ(K1))

� 0m�
1
� (ë#(C2)ÿ ë#(K2))� 0mÿ

1
,

where

m�1 :� d�(ë#(K1)), mÿ1 :� dÿ(ë#(K1)):

This implies (6.89) by yet another application of Lidskii±Hoffman±Wielandt inequality:

kë#(C1 � C2)ÿ ë#(K1 � K2)ÿ (ë#�(C1)ÿ ë#�(K1))� 0m2
� (ë#ÿ(C1)ÿ ë#ÿ(K1))kl 2

� k0m�
1
� (ë#(C2)ÿ ë#(K2))� 0mÿ

1
kl 2

� kë#(C2)ÿ ë#(K2)kl 2

< kC2 ÿ K2kHS: h

Let K1 : Rm1 7! Rm1 , K2 : Rm2 7! Rm2 be symmetric operators and let K :� K1 � K2.

We denote by P1, P2 the orthogonal projectors of Rm1�m2 onto Rm1 , Rm2 , respectively; and

by I, I1, I2 the identity operators on Rm1 , Rm2 , Rm1�m2 , respectively. Let E : Rm1�m2 7!
Rm1�m2 be a symmetric operator, and let us set E1 :� P1 EP1 and E2 :� P2 EP2.

Lemma 6.6. Assuming I � E to be non-negative de®nite and setting

C :� (I � E)1=2 K(I � E)1=2,

C1 :� (I1 � E1)1=2 K1(I1 � E1)1=2, C2 :� (I2 � E2)1=2 K2(I2 � E2)1=2,

we have

kC ÿ (C1 � C2)kHS < 1
2
[k(P1 EP2 � P2 EP1)KkHS � kK(P1 EP2 � P2 EP1)kHS]

� 6kEkHS[kEKkHS � kKEkHS]:

Proof. Setting

~E :� E1 � E2,

we have

C1 � C2 � (I � ~E)1=2 K(I � ~E)1=2: (6:11)

By Lemma 5.4,



(I � E)1=2 K(I � E)1=2 ÿ K � EK � KE

2

� �




HS

< 3kEkHS[kEKkHS � kKEkHS]: (6:12)

Similarly,
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(I � ~E)1=2 K(I � ~E)1=2 ÿ K �
~EK � K ~E

2

� �




HS

< 3k~EkHS[k~EKkHS � kK ~EkHS], (6:13)

and, since

k~EkHS < kEkHS, kK ~EkHS < kKEkHS, k~EKkHS < kEKkHS,

(6.13) implies



(I � ~E)1=2 K(I � ~E)1=2 ÿ K �
~EK � K ~E

2

� �




HS

< 3kEkHS[kEKkHS � kKEkHS]: (6:14)

It follows from (6.12) and (6.14) that

kC ÿ (C1 � C2)kHS � k(I � E)1=2 K(I � E)1=2 ÿ (I � ~E)1=2 K(I � ~E)1=2kHS

<
1

2
[k(E ÿ ~E)KkHS � kK(E ÿ ~E)kHS]� 6kEkHS[kEKkHS � kKEkHS],

which is the bound in the lemma. h

Proof of Theorem 6.1. The proof of the theorem for general kernels h is completely

analogous to the proof for non-negative de®nite kernels, but the notation it requires is more

complicated. So, in order to simplify notation, we assume in what follows that

h(x, y) �P1r�1ërör(x)ör(y), ë1 > ë2 > . . . > 0 (instead of r 2 Z). We continue using the

notation introduced before Lemma 5.5 for the operators HR, H R,n, ~H R,n, as well as the

notation in the proof of Theorem 5.6 for the operators K R and Ĥ R,n, applied now to the non-

negative de®nite case, and recall that

ë(K R) � ë(HR), ë(Ĥ R,n) � ë( ~H R,n), R > 1, n 2 N (6:15)

(see the proof of Theorem 3.1 and (5.25)). We also set

ER,n :� ((Pn ÿ P)(örös) : 1 < r, s < R), AR,n :� (IR � ER,n)1=2

for all R . 0, although will keep the notation En and An for ERn,n and ARn,n, as in the proof

of Theorem 5.6. And we introduce the following notation: for 1 < R1 < R2 and n 2 N, we

set

ER1,R2,n :� ((Pn ÿ P)(örös) : R1 , r, s < R2),

AR1,R2,n :� (I R2ÿR1
� ER1,R2,n)1=2

(note that I R2ÿR1
� ER1,R2,n is a non-negative de®nite matrix) and

Ĥ R1,R2,n :� AR1,R2,n K R1,R2
AR1,R2,n,

where K R1,R2
is the diagonal matrix with entries ër, R1 , r < R2, on its diagonal.

For the proof, ®rst we observe that the hypotheses imply that we can replace H and ~H n

by H Rn
and ~H Rn,n: conditions (5.2), (6.1) and (6.3) imply, by Lemma 5.5(iii), that

Ekë#( ~H n)ÿ ë#( ~H Rn,n)k2
l 2
� o(nÿ1), (6:16)
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and the Lidskii±Hoffman±Wielandt inequality together with (5.2) gives

kë#(H)ÿ ë#(H Rn
)k2

l 2
< kH ÿ H Rn

k2
HS �

X
r . Rn

ë2
r � o(nÿ1): (6:17)

The theorem will follow from the ®nite-dimensional result in Section 5 after `decoupling' the

convergence to in®nity of n and R in the sequence n1=2(ë#( ~H Rn,n)ÿ ë#(H Rn
)).

Our ®rst objective is now to show that

lim
R!1

lim sup
n!1

n1=2EkĤ Rn,n ÿ (Ĥ R,n � Ĥ R,Rn,n)kHS � 0: (6:18)

To this end, given R > 1 and Rn . R, we de®ne PR and PR,Rn
as the orthogonal projectors of

the space RRn onto RR and onto RRn given respectively by the equations

PR(ur : r < Rn) � (ur : r < R)

and

PR,Rn
(ur : r < Rn) � (ur : R , r < Rn):

It follows from Lemma 6.6 that for all n large enough, so that Rn . R,

kĤ Rn,nÿ (Ĥ R,n � Ĥ R,Rn,n)kHS < 1
2
[k(PR En PR,Rn

� PR,Rn
En PR)K Rn

kHS

� kK Rn
(PR En PR,Rn

� PR,Rn
En PR)kHS]

� 6kEnkHS[kEn K Rn
kHS � kK Rn

EnkHS]: (6:19)

Then, regarding the ®rst summand in (6.19), we have

Ek(PR En PR,Rn
� PR,Rn

En PR)K Rn
k2

HS � E
X

r<R,R , s<Rn

�
X

R , r<Rn,s<R

 !
((Pn ÿ P)(örös))

2ë2
s

� nÿ1
X

r<RR , s<Rn

�
X

R , r<Rn,s<R

 !
ë2

s(P(ö2
rö

2
s)ÿ ärs):

Similarly, we have, for the second, that

EkK Rn
(PR En PR,Rn

� PR,Rn
En PR)k2

HS

� nÿ1
X

r<R,R , s<Rn

�
X

R , r<Rn,s<R

 !
ë2

r(P(ö2
rö

2
s)ÿ ärs):

Therefore, by HoÈlder and condition (6.1), we have
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lim
R!1

lim sup
n!1

n1=2E1
2
[k(PR En PR,Rn

� PR,Rn
En PR)K Rn

kHS � kK Rn
(PR En PR,Rn

� PR,Rn
En PR)kHS]

< lim
R!1

lim sup
n!1

nÿ1=2 1
2

X
r<R,R , s<Rn

�
X

R , r<Rn,s<R

 !
(ë2

r � ë2
s)(P(ö2

rö
2
s)ÿ ärs)

 !1=2

� 0: (6:20)

Under conditions (6.1) and (6.2), it follows from (5.27)±(5.289) that

EkEnk2
HS � o(1), EkEn K Rn

k2
HS � O(nÿ1) and EkK Rn

Enk2
HS � O(nÿ1),

and therefore,

E(kEnkHS[kEn K Rn
kHS � kK Rn

EnkHS]) � o(nÿ1=2): (6:21)

Combining (6.19), (6.20) and (6.21) gives (6.18).

Equation (6.18) and the Lidskii±Hoffman±Wielandt inequality yield

lim
R!1

lim sup
n!1

n1=2Ekë#(Ĥ , Rn,n)ÿ ë#(Ĥ R,n � Ĥ R,Rn,n)kl 2
� 0: (6:22)

The last step in the proof will then consist of showing that, for all å. 0,

lim
R!1
R2R

lim sup
n!1

Prfn1=2kë#(Ĥ R,n � Ĥ R,Rn,n)ÿ ë#(K Rn
)ÿ (ë#(Ĥ R,n)ÿ ë#(K R))kl 2

> åg � 0,

(6:23)

where R � fr : ër 6� ër�1g. For this, we apply Lemma 6.5 to the operators

K1 :� K R, K2 :� K R,Rn
, K :� K Rn

� K R � K R,Rn
,

C1 :� Ĥ R,n, C2 � Ĥ R,Rn,n:

By the de®nition of R, for every R 2R we have

äR :� minfjìj : ì 2 ë(K R)g ÿmaxfjìj : j 2 ë(K R,Rn
)g. 0,

so that condition (6.6) holds. Using bounds similar to (4.6) and (4.8), we obtain

kĤ R,n ÿ K Rk2
HS < 2kER,n K Rk2

HS,

which, by (5.5), implies (see (5.28))

EkĤ R,n ÿ K Rk2
HS <

X
r,s<R

(ë2
r � ë2

s)E((Pn ÿ P)(örös))
2

� nÿ1
X
r,s<R

(ë2
r � ë2

s)(P(ö2
rö

2
s)ÿ ärs)

2 � O(nÿ1): (6:24)

Similarly,
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EkĤ R,Rn,n ÿ K R,Rn
k2

HS <
X

R , r<Rn,R , s<Rn

(ë2
r � ë2

s)E((Pn ÿ P)(örös))
2

� nÿ1
X

R , r<Rn,R , s<Rn

(ë2
r � ë2

s)(P(ö2
rö

2
s)ÿ ärs)

2

� O(nÿ1): (6:25)

In particular, this implies that, for all R > 1,

lim
n!1 PrfkĤ R,n ÿ K RkHS > äg � 0 (6:26)

and

lim
n!1 PrfkĤ R,Rn,n ÿ K R,Rn

kHS > äg � 0: (6:27)

Equation (6.25) also gives that, for all å. 0,

lim
R!1

lim sup
n!1

Prfn1=2kĤ R,Rn,n ÿ K R,Rn
kHS > åg � 0: (6:28)

By Lemma 6.5, on the event

fkĤ R,n ÿ K R,nkHS _ kĤ R,Rn,n ÿ K R,Rn
kHS , äRg,

we have

n1=2kë#(Ĥ R,n � Ĥ R,Rn,n)ÿ ë#(K Rn
)ÿ (ë#(Ĥ R,n)ÿ ë#(K R))kl 2

< n1=2kĤ R,Rn,n ÿ K R,Rn
kHS:

(6:29)

Now (6.23) easily follows from (6.29), (6.28), (6.26) and (6.27).

Combining (6.22) and (6.23), we obtain that, for all å. 0,

lim
R!1
R2R

lim sup
n!1

Prfn1=2kë#(Ĥ Rn,n)ÿ ë#(K Rn
)ÿ (ë#(Ĥ R,n)ÿ ë#(K R))kl 2

> åg � 0,

which, in view of (6.15), implies

lim
R!1
R2R

lim sup
n!1

Prfn1=2kë#( ~H Rn,n)ÿ ë#(H Rn
)ÿ (ë#( ~H R,n)ÿ ë#(HR))kl 2

> åg � 0: (6:30)

Since, for all R ,1, R 2R, the sequence fn1=2(ë#( ~H R,n)ÿ ë#(HR))g1n�1 converges in law

as n!1 to �l <S(R)ë#(Ãl ) for an appropriate S(R) ,1 by Theorem 5.1 (note that (6.1)

implies (5.4)), and since these random vectors (in l 2) converge a.s. to �r2Në#(Ãr) as R!1
(as S(R)!1 with R), it follows from (6.30) that the sequence

fn1=2(ë#( ~H Rn,n)ÿ ë#(H Rn
))g1n�1

converges weakly in l 2 to �r2Në#(Ãr). Together with (6.15) and (6.16), this completes the

proof. h

Proof of Theorem 6.2. As in the previous proof, we assume that h is a non-negative defnite
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kernel since the proof in the general case is the same up to formal, obvious changes. By

Lemma 5.5(ii),

sup
R>1

kë#( ~H R,n)ÿ ë#(H R,n)kc0
� o p(nÿ1=2): (6:31)

It then follows that

kë#( ~H Rn,n)ÿ ë#(H Rn,n)kc0
� o p(nÿ1=2): (6:32)

Now (6.31) and (6.32) along with (6.30) (whose proof above does not make use of condition

(6.3)) imply

lim
R!1
R2R

lim sup
n!1

Prfn1=2kë#(H Rn,n)ÿ ë#(H Rn
)ÿ (ë#(H R,n)ÿ ë#(HR))kc0

> åg � 0: (6:33)

Now, the result follows as in the argument following (6.30) in the previous proof, but

invoking the part of Theorem 5.1 corresponding to the operators Hn. h

7. Some examples

Whereas it is easy to decide whether the LLN in Section 3 applies for a given kernel (one

just checks if Eh2(X , Y ) ,1), it is not necessarily straightforward to verify the hypotheses

ensuring the validity of the bounds on the speed of convergence in the LLN (Section 4) or of

the distributional limit theorems for the spectrum of Hn in Sections 5 and 6. In this section

we outline two techniques, one based on integrablity and smoothness of the kernel and the

other more speci®c to kernels arising from partial differential operators.

7.1. Kernel integrability and smoothness

It is known that smoothness of the kernel h(x, y) has a direct bearing on the rate of decrease

of the eigenvalues: for instance (Gohberg and Krein, 1968, }10, Propositions 3 and 4), if h

de®ned on [0, 1] 3 [0, 1] is non-negative de®nite, Hilbert±Schmidt and l times differenti-

able in square mean (see the reference cited for the de®nition: this is weaker than h being

pointwise differentiable with continuous partial derivatives of order l ), with l th derivative

being Hilbert±Schmidt, then the eigenvalues of h for Lebesgue measure decrease at least as

fast as nÿl ÿ1=2. So, in the following proposition we will concentrate on an easy estimate for

the function æ2(R) appearing in Theorem 4.2. See the beginning of Section 4 for notation and

conventions.

Proposition 7.1. Let S be a locally compact space with Borel probability measure P. Suppose

that the mapping

S 3 S 3 S 3 S 3 (x, y; u, v) 7!
�

S

h(z, x)h(z, y)h(z, u)h(z, v) dP(z)

is continuous, that
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�
S

�
S

�
S

h2(z, x)h2(z, y) dP(x) dP(y) dP(z) ,�1, (7:1)

and that, for some â. 0,

ë2
r � rÿ1ÿâ: (7:2)

Then

Eä2
2(ë(Hn), ë(H)) � O(nÿâ=(2â�1)): (7:3)

Proof. Let K be the integral operator on L2(P2) :� L2(S 3 S, S 
 S , P 3 P) de®ned as

Kg(x, y) �
�

S

�
S

k(x, y; u, v)g(u, v) dP(u) dP(v), x, y 2 S, g 2 L2(P2),

where

k(x, y; u, v) :�
�

S

h(z, x)h(z, y)h(z, u)h(z, v) dP(z), x, y, u, v 2 S:

It is easy to check that K is non-negative de®nite. Then, condition (7.1) and continuity of the

kernel k imply that K is a nuclear operator with trace

tr(K) �
�

S

�
S

k(x, y; x, y) dP(x) dP(y) �
�

S

�
S

�
S

h2(z, x)h2(z, y) dP(x) dP(y) dP(z):

In order to estimate æ2(R) (recall its de®nition from (4.3)), we note

ë2
rë

2
sö

2
r(z)ö2

s(z)

� (Hör(z))2(Hös(z))2

�
�

S

h(z, x)ör(x) dP(x)

�
S

h(z, u)ör(u) dP(u)

�
S

h(z, y)ös(y) dP(u)

�
S

h(z, v)ös(v) dP(v)

�
�

S

�
S

�
S

�
S

h(z, x)h(z, y)h(z, u)h(z, v)ör(x)ös(y)ör(u)ös(v) dP(x) dP(y) dP(u) dP(v):

Therefore

ë2
rë

2
s

�
S

ö2
r(z)ö2

s(z) dP(z)

�
�

S

�
S

�
S

�
S

k(x, y; u, v)(ör 
 ös)(x, y)(ör 
 ös)(u, v) dP(x) dP(y) dP(u) dP(v)

� hK(ör 
 ös), ör 
 ösiL2(P2),

which, since ör 
 ös, r, s 2 N, is an orthonormal system in L2(P2), gives
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æ2(R) � 2
X

1<r,s<R

ë2
r

�
S

ö2
rö

2
s dP

� 2
X

1<r,s<R

ëÿ2
s hK(ör 
 ös), ör 
 ösiL2(P2)

< 2 min
1<s<R

jësj
� �ÿ2

tr(K):

Hence, it follows from conditions (7.1) and (7.2) that

æ2(R) � O(R(1�â)):

This and (7.2) give the estimate (7.3) by Corollary 4.4 applied with á � 1� â. h

For example, if h(x, y) � (1� xyÿ jxÿ yj)=2, ÿ1 < x, y < 1, which is the Green

function for the Dirichlet problem ÿu 0 � f , u(1) � u(ÿ1) � 0, then ër � 4ðÿ2 rÿ2 and the

previous proposition gives Eä2
2(ë(Hn), ë(H)) � O(nÿ3=7).

7.2. Heat kernels and the estimation of spectra of differential operators

Our aim here is to show that heat kernels and, less often, also Green functions of certain

strictly elliptic differential operators on bounded domains, the Laplacian on a compact

Riemannian manifold and SchroÈdinger operators satisfy the conditions of some of the

theorems in Sections 4 and 6 so that, if these kernels are known, Monte Carlo techniques

should be of value in the approximate evaluation of the spectra of these operators. (The fact

that the Green function or the heat kernel have to be known does indeed hinder the

usefulness of the results; on the other hand, one only has to be able to simulate h(Xi, X j) at

random points X i, and this may conceivably require less than full knowledge of h; at any

rate, we only show a way to check the conditions of our theorems and do not claim to have

answers to any numerical questions regarding solutions of partial differential equations.) Even

though our immediate interest lies in the concrete type of operators just mentioned, we place

ourselves in a more abstract setting. This whole subsection is inspired by Davies' (1989)

book on heat kernels.

Let för : r > 1g be an orthonormal system in L2(P) and let 0 , ì1 < ì2 < . . . be a

sequence of real numbers such that, for all t . 0,X1
r�1

eÿì r t ,�1: (7:4)

The map ör 7! Lör :� ìrör, r > 1, extends to a linear operator L, on the linear span D L of

the functions ör, r > 1 (in general, L is unbounded). De®ne

ht(x, y) :�
X1
r�1

eÿì r tör(x)ör(y): (7:5)
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Under condition (7.4) the series (7.5) converges in L2(P2) for all t . 0. We also assume that

the kernel ht is de®ned by (7.5) on the diagonal, that is,

ht(x, x) :�
X1
r�1

eÿì r tö2
r(x):

Then

X1
r�1

eÿì r tjör(x)ör(y)j <
X1
r�1

eÿì r tjör(x)j2
 !1=2 X1

r�1

eÿì r tjör(y)j2
 !1=2

� ht(x, x)1=2 ht(y, y)1=2,

which means that the series (7.5) converges for all x, y 2 S such that ht(x, x) ,�1 and

ht(y, y) ,�1.

The kernel ht de®nes a bounded operator H t from L2(P) into L2(P). Moreover, fH t :

t . 0g is a semigroup of bounded operators in L2(P) (since H t�s � H t Hs for all t . 0,

s . 0) and

ô(t) :� tr(H t) �
�

S

ht(x, x)P(dx) �
X1
r�1

eÿì r t ,�1, (7:6)

kH tkHS �
�

S3S

h2
t (x, y)P(dx)P(dy)

� �1=2

�
X1
r�1

eÿ2ì r t

 !1=2

,�1: (7:7)

In fact, H t can be viewed as the operator eÿLt. We call the function (t, x, y) 7! ht(x, y) from

(0, 1) 3 S 3 S into R1 the heat kernel of the operator L (since this is an abstract version of

the heat kernel of a differential operator). Most of the information we will need on regularity

of heat kernels can be found in Davies (1989).

A warning on notation: whereas H t or Hs will denote a `heat operator' as just de®ned,

we will still use the notation Hn for the random operator de®ned by (1.3); no confusion

should arise from this slight inconsistency.

Let í be a measure on [0, �1) such that í([0, t]) ,�1 for all t . 0 and í(R) 6� 0.

Assume that the Laplace transform of í,

j(ì) :�
��1

0

eÿì tí(dt) (7:8)

exists for all ì > ì1. Let ër :� j(ìr). Clearly, ër . 0 for all r > 1. The condition��1
0

��1
0

ô(t � s) dí(t) dí(s) ,�1 (7:9)

implies that
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X1
r�1

ë2
r �

X1
r�1

��1
0

��1
0

eÿì r( t�s) dí(t) dí(s)

�
��1

0

��1
0

ô(t � s) dí(t) dí(s) ,�1, (7:10)

which means that the operator H from L2(P) into L2(P) with kernel

h(x, y) :�
X1
r�1

ërör(x)ör(y)

is Hilbert±Schmidt. This operator can be and will be viewed as H � j(L). The kernel h is

well de®ned as a function in L2(P 3 P). In what follows, we assume for convenience that

h(x, x) :�
X1
r�1

ërö
2
r(x), x 2 S:

Then, h(x, y) is also well de®ned at least for all x, y 2 S such that h(x, x) ,�1 and

h(y, y) ,�1, since

X1
r�1

ërjör(x)kör(y)j <
X1
r�1

ërö
2
r(x)

 !1=2 X1
r�1

ërö
2
r(y)

 !1=2

� h1=2(x, x)h1=2(y, y) ,�1:

Suppose now that �1
0

kH tkHS dí(t) ,�1: (7:11)

Then

H �
��1

0

H t dí(t) (7:12)

and its kernel h has the representation

h(x, y) �
��1

0

ht(x, y) dí(t): (7:13)

Note that condition (7.11) implies (7.8) (since kH tkHS > eÿì1 t by (7.7)) and (7.10) (since

tr(H t�s) � tr(H t Hs) < kH tkHSkHskHS).

De®ne

ã(t) :�
��1

0

��1
0

�
S

ht(x; x)ht�u�v(x; x)P(dx) dí(u) dí(v), t . 0: (7:14)

Theorem 7.2. (a) If ã(0�) ,1, then

Eä2
2(ë(Hn), ë(H)) � O(nÿ1): (7:15)

(b) Suppose that, for some r. 0,
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ã(t) � O(tÿr) as t! 0; (7:16)

for some a . 0,

ô(t) � tÿa as t! 0; (7:17)

and, for some b . a,

j(ì) � O(ìÿb=2) as ì!1: (7:18)

Then

Eä2
2(ë(Hn), ë(H)) � O(nÿ(bÿa)=(bÿa�r)): (7:19)

To prove the theorem we need the following lemma (which is in fact a weak version of

known Tauberian theorems).

Lemma 7.3. Let F be a non-decreasing function on [0, �1) with F(0) � 0. Suppose that,

for all t . 0,

f (t) :�
��1

0

eÿ tu dF(u) ,�1:

Then,

(i) f (0�) ,�1 , F(�1) ,�1:
For any r. 0,

(ii) F(u) � O(ur) as u!1, f (t) � O(tÿr) as t! 0,

and

(iii) F(u) � ur as u!1, f (t) � tÿr as t! 0:

Proof (sketch). Indeed, we have, for all u . 0,

f (t) >

�u

0

eÿv t dF(v) > eÿut F(u),

which implies (with t � 1=u)

F(u) < e f (1=u), u . 0: (7:20)

On the other hand, if F(u) � o(e tu) as u!1 for all t . 0, then, by integration by parts,

f (t) �
��1

0

F(u)teÿut du �
��1

0

F(v=t)eÿv dv: (7:21)

The lemma follows rather trivially from (7.20) and (7.21). We just check (iii). If

F(u) � ur, then (7.21) implies f (t) � O(tÿr) and (7.20) implies f (t) > ctÿr for some

constant c . 0, so f (t) � tÿr holds. If, on the other hand, we have f (t) � tÿr, then, by

(7.20), F(u) � O(ur). Using (7.21), we obtain that, for some constants c . 0, C . 0 and for

all R . 0,
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ctÿr < f (t) < F(R=t)�
��1

R

F(v=t)eÿv dv < F(R=t)� Ctÿr
��1

R

vreÿv dv:

Choosing R large enough, so that ��1
R

vreÿvdv ,
c

2C
,

the previous inequality gives that, for all t . 0,

F(R=t) >
c

2
tÿr:

It follows that F(u) � ur, and (iii) is proved. h

Proof of Theorem 7.2. To prove part (a), we de®ne

G(u) :� 1

2

X
r,s:ì r�ìs<u

(ë2
r � ë2

s)P(ö2
rö

2
s), u . 0,

and observe

ã(t) �
��1

0

��1
0

�
S

X1
r�1

eÿì r tö2
r(x)

X1
s�1

eÿìs( t�u�v)ö2
s(x) dP(x) dí(u) dí(v)

�
X1
r�1

X1
s�1

�
S

eÿ(ì r�ìs) tö2
r(x)ö2

s(x)P(dx)

��1
0

��1
0

eÿìs ueÿìsv dí(u) dí(v)

�
X1
r�1

X1
s�1

ë2
seÿ(ì r�ìs) t

�
S

ö2
r(x)ö2

s(x) dP(x)

� 1

2

X1
r�1

X1
s�1

(ë2
r � ë2

s)eÿ(ì r�ìs) t P(ö2
rö

2
s)

�
��1

0

eÿ tu dG(u): (7:22)

Then the condition ã(0�) ,1 and the representation (7.22) imply, by Lemma 7.3(i), thatX1
r,s�1

(ë2
r � ë2

s)P(ö2
rö

2
s) � G(�1) ,�1,

which gives (7.15) by Corollary 4.3.

To prove part (b), we will apply Corollary 4.4 and, once more, Lemma 7.3. By the

representation (7.22) for ã, condition (7.16) and Lemma 7.3 imply

G(u) � O(ur) as u!1: (7:23)

Setting
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F(u) :�
X1
r�1

Ifì r<ug as u . 0,

we have, by (7.6),

ô(t) � tr(H t) �
��1

0

eÿut dF(u):

Then, condition (7.17) implies, by Lemma 7.3(iii), that

F(u) � ua as u! �1:
fìrg being a non-decreasing sequence, it follows easily that

ìr � r1=a as r!1: (7:24)

Setting á :� raÿ1, it follows from (7.23) and (7.24), thatX
1<r,s<R

(ë2
r � ë2

s)P(ö2
rö

2
s) <

X
r,s:ì r�ìs<CR1=a

(ë2
r � ë2

s)P(ö2
rö

2
s) � O(Rá), (7:25)

for some constant C . 0. On the other hand, by (7.18) and (7.24)

ë2
r � j2(ìr) � O(rÿb=a) � O(rÿ1ÿâ), (7:26)

where â :� baÿ1 ÿ 1. Expressions (7.25) and (7.26) are all that is needed in order to

conclude, by Corollary 4.4, that

Eä2
2(ë(Hn), ë(H)) � O(nÿâ=(á�â)) � O(nÿ(bÿa)=(bÿa�r)),

proving (7.19). h

Next we give an example of a CLT for the spectrum of H . More re®ned results can be

obtained, but the one whose proof we present suf®ces for our purposes. In order to prove

the CLT for the spectrum of H , it is convenient to introduce a new function:

ø(t) :�
�

S

h2
t (x, x) dP(x), t . 0:

Theorem 7.4. Let H be de®ned by (7.12) and let Hn and ~H n be the random operators

corresponding to H given respectively by equations (1.3) and (1.2). Suppose ø(t) ,1 for all

t . 0, �1
0

ø1=2(t) dí(t) ,1 (7:27)

and

j(ì) �
�1

0

eÿ tì dí(t)

� �
� O(eÿbì) as ì! �1: (7:28)

Then the ®nite-dimensional distributions of the sequences
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fn1=2(ë#(Hn)ÿ ë#(H)g1n�1 and fn1=2(ë#( ~H n)ÿ ë#(H)g1n�1 (7:29)

converge in law to the corresponding ®nite-dimensional distributions of the random vector

�1r�1ë
#(Ãr), de®ned by equation (5.5) for the operator H. If, moreover, ã(0�) ,1 then the

sequences (7.29) converge weakly in l 2.

Proof. Condition (7.27) gives, by the generalized Minkowski inequality, that

h(x, x) �
X1
r�1

ërö
2
r(x) 2 L2(P)

which is conditions (5.4) and (5.49) in Theorem 5.1. The ®niteness of j(t) implies that, for

all å. 0, XR

r,s�1

P(ö2
rö

2
s) < e2åìR

XR

r,s�1

P(eÿåì rö2
re
ÿåìsö2

s)

< e2åìR P
X1
r�1

eÿåì rö2
r

X1
s�1

eÿåìsö2
s

 !

� e2åìR

�
S

h2
å(x, x)P(dx)

� O e2åìR� � as R!1: (7:30)

Since the eigenvalues ër are uniformly bounded, it follows from (7.30) thatX
1<r,s<R

(ë2
r � ë2

s)P(ö2
rö

2
s)

X
1<r,s<R

P(ö2
rö

2
s) � O(e4åìR ) as R!1: (7:31)

This will allow us to verify condition (5.3) in Theorem 5.1, and we prepare next for condition

(5.2). To this effect we begin by noting that, for all r > 1,

reÿåì r <
X1
k�1

eÿåì k �
�

S

hå(x, x)P(dx) < ø1=2(å),

which implies

ìr >
log r

å
ÿ 0:5 logø(å)

å
(7:32)

for all r > 1. Condition (7.28) impliesX
r>R�1

ë2
r �

X
r>R�1

ë2
r < C

X
r>R�1

eÿ2bì r ,

for some constant C . 0 and for all R > 1. Combining this with (7.32) gives that, for all

å. b,
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X
r>R�1

ë2
r < CeÿbìR�1

X
r>1

eÿbì r < C expf0:5 logø(å)=ågeÿbìR�1

X
r>1

rÿb=å � C(å)eÿbìR�1 :

(7:33)

Taking R � Rn such that

expfìRn
b=2g < n , expfìRn�1b=2g,

in (7.30) (where we can take å, b=8) and in (7.33) yields conditions (5.3) and (5.2) in

Theorem 5.1. Now Theorem 5.1 gives ®nite-dimensional convergence of the sequences

(7.29). If ã(0�) ,1 then the proof of Theorem 7.2(a), shows that condition (6.1) in

Theorem 6.1 holds; on the other hand, condition (6.2) follows from (7.30) with the same Rn

as above. Therefore, convergence in l 2 of the sequences (7.29) follows from Theorem

6.1. h

With some extra care, the following can be proved using Lemma 7.3.

Theorem 7.5. Suppose that condition (7.27) holds, that

ã(t)ø(t) � O(tÿr) as t! 0

for some r. 0, that condition (7.17) holds for some a . 0 and that condition (7.18) holds for

some b . r� a. Then the ®nite-dimensional distributions of the sequences (7.29) converge in

law to the corresponding ®nite-dimensional distributions of the random vector �1r�1ë
#(Ãr),

de®ned by equation (5.5) for the operator H. If, moreover, ã(0�) ,1 then the sequences

(7.29) converge weakly in l 2.

Next we show how the above theorems allow us to estimate the eigenvalues of the

operator L by means of random matrices associated to its heat kernel. Consider the family

of sequences of random matrices

~H s
n :� hs(X i, Xj)

n

� �n

i, j�1

: n > 1

( )
(7:34)

for some s . 0, and let H s
n denote the matrix obtained from ~H s

n by deleting the diagonal. It is

easily seen that ~H s
n is a non-negative de®nite matrix, so that ë#r( ~H s

n) > 0 for all r > 1. De®ne

ìs
r,n :� ÿ 1

s
log ë#r( ~H s

n), r > 1: (7:35)

The next corollary shows that, for all s . 0, ìs
r,n provides an asymptotic estimator of the

eigenvalue ìr of the operator L for all r > 1.

Corollary 7.6. Suppose that ø(t) ,�1 for all t . 0. Then, for all s . 0, the ®nite

dimensional distributions of the sequence of random vectors

f(n1=2(ìs
r,n ÿ ìr) : r > 1)g1n�1
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converge weakly to the corresponding ®nite-dimensional distributions of the random vector

sÿ1 �1l �1 ë
#(Ãl ), where Ãl is the matrix (GP(öiö j) : i, j 2 Äl ) and Äl is the set of indices

corresponding to the l th largest eigenvalue of Hs.

Proof. Take í � äs for some s . 0, so that j(ì) � eÿìs and h � hs. Theorem 7.4 then

implies that the sequence

fn1=2(ë#r( ~H s
n)ÿ eÿì r s)g1n�1

converges weakly to �eÿsìl ~Ãl . Since

ìs
r,n � ÿ

1

s
log(ë#r( ~H s

n))

� ìr ÿ 1

s
log 1� ë#r( ~H s

n)ÿ eÿì r s

eÿì r s

� �

� ìr ÿ sÿ1 ë
#
r(

~H s
n)ÿ eÿsì r

eÿì r s
� o

ë#r( ~H s
n)ÿ eÿsì r

eÿsì r

� �
,

the result follows. h

It can also be proved as a consequence of Theorem 7.2 that, if in addition to the

hypotheses of the previous corollary, h2s(x, x) is uniformly bounded for some s . 0 and

condition (7.17) holds for some a . 0, then, for all E. 0,

E sup
r>1

eÿ2ì r s(ìs
r,n ÿ ìr)

2 � O(nÿ1�E): (7:36)

The eigenvalues of L can also be estimated by the eigenvalues of random matrices

associated with Green functions as kernels. This is more dif®cult to justify from our results

because Green functions in general are much less well behaved than heat kernels. Consider

the operator Gá,s :� (L� sI)ÿá for some s . 0 and á. 0. It can be represented as

Gá,s � j(L) with

j(ì) :� (ì� s)ÿá � Ã(á)ÿ1

��1
0

uáÿ1eÿu(ì�s) du �
��1

0

eÿìu dí(u),

where

dí(u) :� Ã(á)ÿ1uáÿ1eÿsu du:

Assuming thatX1
r�1

(s� ìr)
ÿ2á �

��1
0

��1
0

ô(u� v)uáÿ1váÿ1eÿs(u�v) du dv ,�1,

the operator Gá,s is Hilbert±Schmidt with kernel
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gá,s(x, y) :�
X1
r�1

ërör(x)ör(y),

where ër :� (s� ìr)
ÿá; gá,s is a Green function of L. Setting

~Gá,s
n �

gá,s(X i, Xj)

n

� �n

i, j�1

and letting Gá,s
n denote the matrix obtained from ~Gá,s

n by deleting the diagonal, we have the

following consequence of Theorem 7.2:

Corollary 7.7. If, for some r. 0 and a , 2á, conditions (7.16) and (7.17) hold, then

Eä2
2(ë(Gá,s

n ), ë(Gá,s)) � O(nÿ(2áÿa)=(2áÿa�r)):

It is not dif®cult to also extract a CLT for ë(Gá,s
n ) from the above results.

We now apply these corollaries to some speci®c examples of differential operators.

Strictly elliptic operators on bounded regions

We take S to be a bounded open connected subset of Rd and let P be the uniform distribution

on S. Consider the operator

L :� ÿ
Xd

i, j�1

@

@xi

aij(x)
@

@xj

� �
with Dirichlet boundary condition, where the functions x 7! a(x) :� (aij(x))d

i, j�1 are locally

integrable in S with values in the set of non-negative real symmetric matrices and satisfy

á < a(x) < A for some constants á. 0 and A ,1 and for all x 2 S (see, for example,

Davies, 1989, p. 10). Then (see Davies 1989, Corollary 3.2.8) the semigroup eÿLt, t . 0, has

a kernel ht, which satis®es the bound

0 < ht(x, y) < Ctÿd=2 expfÿ(xÿ y)2=4(1� ä)Atg
for all t . 0, x, y 2 S, ä 2 (0, 1), and a constant C � C(ä, á) ,1. It follows from this

bound that ø(t) � � G h2
t (x, x) dP(x) ,�1 for all t . 0. Therefore, Corollary 7.6 applies,

thus concluding that the ®nite-dimensional distributions of the sequence

f(n1=2(ìs
r,n ÿ ìr) : r > 1)g1n�1

converge weakly to the corresponding ®nite-dimensional distributions of the random vector

sÿ1 �1l �1 ë
#(Ãl ) for all s . 0.

Moreover (Davies 1989, Theorem 3.3.4),�
G

ht(x; x) dx � sup
x2G

ht(x; x) � tÿd=2 (7:37)

as t! 0, so that condition (7.16) holds with r � d. If í is a ®nite measure on [0, 1), (7.37)

yields

Random matrix approximation of spectra of integral operators 163



ã(t) < Ctÿd

�1
0

�1
0

1� u� v

t

� �ÿd=2

dí(u) dí(v) < Ctÿd ,

and, as a consequence, condition (7.17) holds with a � d=2. Thus Corollary 7.7, for á. d=4

and any s . 0, gives

Eä2
2(ë(Gá,s

n ), ë(Gá,s)) � O(nÿ(4áÿd)=(4á�d)): (7:38)

The case of Neumann boundary condition can be treated in a similar way.

The Laplace±Beltrami operator on a compact Riemannian manifold

We let S � M be a compact d-dimensional Rimmannian manifold and let P be the uniform

distribution on M . Let Ä be the Laplace±Beltrami operator (de®ned on the space C1(M) of

all in®nitely differentiable functions on M) and let L be the closure ± more precisely, form

closure, using the terminology of Davies (1989) ± of ÿÄ. Then eÿLt is a positivity-

preserving contraction semigroup of L2(M) which has a strictly positive C1 kernel (heat

kernel) (t, x, y) 7! ht(x, y) on (0, 1) 3 M 3 M , so that

(eÿLt f )(x) �
�

S

ht(x, y) f (y) dP(y), f 2 L2(M)

(Davies 1989, Theorem 5.2.1). Since, M being compact, ht is bounded for each t, the

operator eÿLt is Hilbert±Schmidt and the heat kernel can be represented as

ht(x, y) �
X1
r�1

eÿì r tör(x)ör(y),

where 0 , ì1 < ì2 < . . . and för, r > 1g is an orthonormal system in L2(M). Again by

boundedness, ø(t) � � h2
t (x, x)P(dx) ,�1 for all t . 0, and Corollary 7.6 gives the weak

convergence of the ®nite-dimensional distributions of the sequence

f(n1=2(ìs
r,n ÿ ìr) : r > 1)g1n�1

for all s . 0. Estimates similar to (7.38) can also be obtained, using the bounds on the heat

kernel of Laplace±Beltrami operators, in Davies (1989, Chapter 5).

SchroÈdinger operators

We now assume that L :� ÿÄ� V on L2(Rd). Suppose the potential V is continuous and

V (x)! �1 as jxj ! 1. Let ö be the eigenfunction of L corresponding to the minimal

eigenvalue E (the so-called `ground state' which, under the above conditions on V , exists and

is a strictly positive C2 function). Suppose, in addition, that, for some constants a1 . 2,

2 , a2 , 2a1 ÿ 2 and c1 . 0, c2 . 0, c3 . 0, c4 . 0, V satis®es the inequalities

c1jxja1 ÿ c2 < V (x)ÿ E < c3jxja2 � c4

for all x 2 Rd .
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Then (Davies 1989, Theorem 4.5.4) the kernel �ht of the semigroup eÿLt, t . 0, satis®es

the bound

0 < �ht(x, y) < b1 expfÿb2 tÿbgö(x)ö(y),

for all x, y. Moreover, under the above condition on the potential V , there exists ä. 0 such

that jö(x)j � O(eÿäjxj) (see, for example, Simon 1982, Theorem C.3.4). It follows that
�ht(x, x) � O(eÿäjxj). Let p be a continuous density on Rd such that p(x) . 0 for all x and

p(x) > cjxjÿã for some ã. 0 and c . 0, and all x of large enough norm, and let P be the

Borel measure with density p. De®ne

ht(x, y) �
�ht(x, y)

p1=2(x) p1=2(y)
:

Then we have ht(x, x) � O(eÿä=2jxj), which implies�
Rd

h2
t (x, x) dP(x) �

�
Rd

�h2
t (x, x)

p(x)
dx ,�1

for all t . 0. Therefore, Corollary 7.6 gives weak convergence of the ®nite-dimensional

distributions of the sequence

f(n1=2(ìs
r,n ÿ ìr) : r > 1)g1n�1

for all s . 0.
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