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In this paper we discuss stochastic differential delay equations with Markovian switching. These can

be regarded as the result of several stochastic differential delay equations switching among each other

according to the movement of a Markov chain. One of the main aims of this paper is to investigate

the exponential stability of the equations.
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1. Introduction

Stochastic modelling has come to play an important role in many branches of science and

industry. An area of particular interest has been the automatic control of stochastic systems,

with consequent emphasis being placed on the analysis of stability in stochastic models, and

we here mention Arnold (1972), Has'minskii (1981), Kolmanovskii and Myshkis (1992),

Kolmanovskii and Nosov (1986), Ladde and Lakshmikantham (1980), Mao (1991; 1994) and

Mohammed (1986) among others. There has been little work on the stability of stochastic

differential delay equations with Markovian switching, although there are several papers on

the stability of stochastic differential equations with Markovian switching, for example Basak

et al. (1996), Ghosh et al. (1993) and Skorohod (1989).

In this paper we consider a stochastic differential delay equation with Markovian

switching of the form

dx(t) � f (x(t), x(t ÿ ô), t, r(t)) dt � g(x(t), x(t ÿ ô), t, r(t)) dw(t), (1:1)

where r(t) is a Markov chain taking values on S � f1, 2, . . . , Ng. This equation can be

regarded as the result of the N equations

dx(t) � f (x(t), x(t ÿ ô), t, i) dt � g(x(t), x(t ÿ ô), t, i) dw(t), 1 < i < N , (1:2)
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switching among each other according to the movement of the Markov chain. In Section 2 we

shall quickly establish the theorem for the existence and uniqueness of the solution of the

equation and cite the generalized ItoÃ formula. We shall then discuss the mean square

exponential stability of linear stochastic differential delay equations with Markovian

switching in Section 3, and generalize the results to the pth moment exponential stability

for equation (1.1) in Section 4. The almost sure exponential stability will be studied in

Section 5. Finally, we give some illustrative examples in Section 6.

2. Stochastic differential delay equations with Markovian
switching

Throughout this paper, unless otherwise speci®ed, we let (Ù, F , fF tg t>0, P) be a complete

probability space with a ®ltration fF tg t>0 satisfying the usual conditions (i.e. it is right

continuous and F 0 contains all P-null sets). Let w(t) � (w1(t), . . . , wm(t))T be an m-

dimensional Brownian motion de®ned on the probability space. Let ô. 0 and C([ÿô, 0]; Rn)

denote the family of continuous functions j from [ÿô, 0] to Rn with the norm

kjk � supô<è<0jj(è)j, where j:j is the Euclidean norm in Rn. If A is a vector or matrix,

its transpose is denoted by AT. If A is a matrix, its trace norm is denoted by jAj �
����������������
tr(AT A)

p
while its operator norm is denoted by kAk � supfjAxj : jxj � 1g (without any confusion with

kjk). If A is a symmetric matrix, denote by ëmax(A) and ëmin(A) its largest and smallest

eigenvalue, respectively. Denote by Cb
F 0

([ÿô, 0]; Rn) the family of all bounded, F 0-

measurable, C([ÿô, 0]; Rn)-valued random variables. If x(t) is a continuous Rn-valued

stochastic process on t 2 [ÿô, 1), we let xt � fx(t � è): ÿô < è < 0g for t > 0, which is

regarded as a C([ÿô, 0]; Rn)-valued stochastic process.

Let r(t), t > 0, be a right-continuous Markov chain on the probability space taking

values in a ®nite state space S � f1, 2, . . . , Ng with generator Ã � (ãij)N3N given by

Pfr(t � Ä) � jjr(t) � ig �
ãijÄ� o(Ä), if i 6� j,

1� ãiiÄ� o(Ä), if i � j,

(
where Ä. 0. Here ãij > 0 is the transition rate from i to j if i 6� j, while

ãii � ÿ
X
j 6�i

ãij:

We assume that the Markov chain r(:) is independent of the Brownian motion w(:). It is

known that almost every sample path of r(t) is a right-continuous step function with a ®nite

number of simple jumps in any ®nite subinterval of R� (:� [0, 1)).

Consider a stochastic differential delay equation with Markovian switching of the form

dx(t) � f (x(t), x(t ÿ ô), t, r(t)) dt � g(x(t), x(t ÿ ô), t, r(t)) dw(t) (2:1)

on t > 0, with initial data x0 � î 2 Cb
F 0

([ÿô, 0]; Rn), where

f : Rn 3 Rn 3 R� 3 S ! Rn and g : Rn 3 Rn 3 R� 3 S ! Rn3m:
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We impose a hypothesis:

(H1) Both f and g satisfy the local Lipschitz condition and the linear growth condition.

That is, for each k � 1, 2, . . . , there is an hk . 0 such that

j f (x, y, t, i)ÿ f (x, y, t, i)j � jg(x, y, t, i)ÿ g(x, y, t, i)j < hk(jxÿ xj � jyÿ yj)
for all t > 0, i 2 S and those x, y, x, y 2 Rn with jxj _ jyj _ jxj _ jyj < k; and

there is, moreover, an h . 0 such that

j f (x, y, t, i)j � jg(x, y, t, i)j < h(1� jxj � jyj)
for all x, y 2 Rn, t > 0 and i 2 S.

Theorem 2.1. Under hypothesis (H1), equation (2.1) has a unique continuous solution x(t)

on t > ÿô. Moreover, for every p . 0,

E sup
ÿô<s< t

jx(s)j ph i
,1 on t > 0: (2:2)

Proof. It should be pointed out that the reason why we let the initial data be bounded in this

paper is just for the study of pth moment stability; for the existence and uniqueness of the

solution we only require the initial data to be L2.

Existence and uniqueness. Let us introduce some new notation. For any stopping time r,

denote by L2
F r

([ÿô, 0]; Rn) the family of all F r-measurable C([ÿô, 0]; Rn)-valued random

variables î such that Ekîk2 ,1. Obviously, Cb
F 0

([ÿô, 0]; Rn) � L2
F 0

([ÿô, 0]; Rn). Let

T . 0 be arbitrary. It is suf®cient to show that equation (2.1) has a unique solution on

[ÿô, T ]. It is known (see Skorohod 1989) that there is a sequence fôkgk>0 of stopping

times such that 0 � ô0 , ô1 , . . . , ôk !1 and r(t) is constant on every interval

[ôk , ôk�1), that is, for every k > 0

r(t) � r(ôk) on ôk < t , ôk�1:

We ®rst consider equation (2.1) on t 2 [0, ô1 ^ T ], which becomes

dx(t) � f (x(t), x(t ÿ ô), t, r(0)) dt � g(x(t), x(t ÿ ô), t, r(0)) dw(t), (2:3)

with initial data x0 � î 2 Cb
F 0

([ÿô, 0]; Rn) � L2
F 0

([ÿô, 0]; Rn). By the existence-and-

uniqueness theorem of stochastic differential delay equations (see Mao 1994; 1997; or

Mohammed 1986) we know that equation (2.3) has a unique continuous solution on

[ÿô, ô1 ^ T ] which has the property that

E sup
ÿô<s<ô1^T

jx(s)j2
� �

,1:

We next consider equation (2.1) on t 2 [ô1 ^ T , ô2 ^ T ], which becomes

dx(t) � f (x(t), x(t ÿ ô), t, r(ô1 ^ T )) dt � g(x(t), x(t ÿ ô), t, r(ô1 ^ T )) dw(t), (2:4)

with initial data xô1^T 2 L2
F ô1^T

([ÿô, 0]; Rn) given by the solution of equation (2.3). Again we

know that equation (2.4) has a unique continuous solution on [ô1 ^ T ÿ ô, ô2 ^ T ]. Repeating
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this procedure, we see that equation (2.1) has a unique solution x(t) on [ÿô, T ]. Since T is

arbitrary, the existence and uniqueness have been proved.

Moment estimation. To show (2.2), we note from HoÈlder's inequality that

E sup
ÿô<s< t

jx(s)j ph i� � 1
p< E sup

ÿô<s< t

jx(s)j2
� �� �1

2

if 0 , p , 2:

So we only need to prove (2.2) in the case of p > 2. For each positive integer k, de®ne a

stopping time

rk � infft > 0 : jx(t)j > kg
(as usual we set inf Æ � 1). Clearly, rk !1 almost surely as k !1. Again let T . 0 be

arbitrary. For any t 2 [0, T ] and k > 1, by HoÈlder's inequality, Theorem 1.7.2 of Mao (1997)

and the linear growth condition, we can show that

E sup
0<s< t

jx(s ^ rk)j ph i
< 3 pÿ1Ejî(0)j p � CE

� t

0

(1� jx(s ^ rk)j p � jx(s ^ rk ÿ ô)j p) ds,

where C is a positive constant dependent on p, T and h only. Consequently,

E sup
ÿô<s< t

jx(s ^ rk)j ph i
< Ekîk p � E sup

0<s< t

jx(s ^ rk)j ph i
< (3 pÿ1 � 1)Ekîk p � CT � 2C

� t

0

E sup
ÿô<s<u

jx(s ^ rk)j ph i
du:

An application of the Gronwall inequality implies

E sup
ÿô<s<T

jx(s ^ rk)j ph i
< e2CT [(3 pÿ1 � 1)Ekîk p � CT ]:

Letting k !1, we obtain that

E sup
ÿô<s<T

jx(s)j ph i
< e2CT [(3 pÿ1 � 1)Ekîk p � CT ]:

and the required assertion (2.2) follows. The proof is complete. h

Let C2,1(Rn 3 R� 3 S; R�) denote the family of all non-negative functions V (x, t, i)

on Rn 3 R� 3 S which are twice continuously differentiable in x and once differentiable

in t. If V 2 C2,1(Rn 3 R� 3 S; R�), de®ne an operator LV from Rn 3 Rn 3 R� 3 S to R

by

LV (x, y, t, i) � Vt(x, t, i)� Vx(x, t, i) f (x, y, t, i)

� 1
2
tr[gT(x, y, t, i)Vxx(x, t, i)g(x, y, t, i)]�

XN

j�1

ãijV (x, t, j), (2:5)

where
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Vt(x, t, i) � @V (x, t, i)

@ t
, Vx(x, t, i) � @V (x, t, i)

@x1

, . . . ,
@V (x, t, i)

@xn

� �
,

Vxx(x, t, i) � @2V (x, t, i)

@xi@xj

 !
n3n

:

For the reader's convenience we cite the generalized ItoÃ formula (see Skorohod 1989): if

V 2 C2,1(Rn 3 R� 3 S; R�), then for any stopping times 0 < r1 , r2 ,1,

EV (x(r2), r2, r(r2)) � EV (x(r1), r1, r(r1))� E

�r2

r1

LV (x(s), x(sÿ ô), s, r(s)) ds (2:6)

as long as the expectations of the integrals exist. Let us point out that in the following

whenever we apply this generalized formula the expectations of integrals involved do exist

due to Theorem 2.1 and the conditions to be imposed.

3. Moment exponential stability of linear delay equations

From now on we shall discuss exponential stability. Let us start with the linear stochastic

differential delay equation with Markovian switching of the form

dx(t) � [A(r(t))x(t)� B(r(t))x(t ÿ ô)] dt �
Xm

k�1

[Ck(r(t))x(t)� Dk(r(t))x(t ÿ ô)] dwk(t)

(3:1)

on t > 0, with initial data x0 � î 2 Cb
F 0

([ÿô, 0]; Rn). We shall simply write

A(i) � Ai, B(i) � Bi, Ck(i) � Cki, Dk(i) � Dki,

which are all n 3 n matrices. By Theorem 2.1, equation (3.1) has a unique global solution

which is denoted by x(t; î) in this paper. Clearly, (3.1) admits a trivial solution x(t; 0) � 0.

Theorem 3.1. Assume that there are symmetric positive de®nite matrices Qi, 1 < i < N,

such that all the 2n 3 2n matrices

Hi �
Qi Ai � AT

i Qi � I �
Xm

k�1

CT
kiQiCki �

XN

j�1

ãijQj, Qi Bi �
Xm

k�1

CT
kiQi Dki

BT
i Qi �

Xm

k�1

DT
kiQiCki, ÿI �

Xm

k�1

DT
kiQi Dki

2666664

3777775 (3:2)

are negative de®nite, where I is the n 3 n identity matrix. Then

lim sup
t!1

1

t
log(Ejx(t; î)j2) < ÿã (3:3)
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for all î 2 Cb
F 0

([ÿô, 0]; Rn), where ã. 0 is the unique root of the equation

ã(ëQ � ôeãô) � ëH � [1 ^ (ëH eãô)] (3:4)

with

ëQ � max
1<i<N

ëmax(Qi) and ëH � min
1<i<N

[ÿëmax(Hi)]: (3:5)

In other words, the trivial solution of (3.1) is mean square exponentially stable and the

second moment Lyapunov exponent should not be greater than ÿã.

Proof. Note that ÿ1 < ëmax(Hi) , 0 and 0 , ëH < 1. It is then easy to see that (3.4) has

a unique root ã. 0. Fix any î 2 Cb
F 0

([ÿô, 0]; Rn) and write x(t; î) � x(t). De®ne

V (x, t, i) 2 C2,1(Rn 3 R� 3 S; R�) by

V (x, t, i) � eã t xTQix�
� t

tÿô
Ejx(s)j2 ds

� �
: (3:6)

By ItoÃ's formula, we can derive that

EV (x(t), t, r(t)) � EV (x(0), 0, r(0))� E

� t

0

LV (x(s), x(sÿ ô), s, r(s)) ds

� EV (x(0), 0, r(0))� E

� t

0

eãs ãxT(s)Qix(s)� ã

� s

sÿô
jx(è)j2 dè

�

� (xT(s), xT(sÿ ô))H r(s)

x(s)

x(sÿ r)

 !#
(3:7)

< (ëQ � ô)Ekîk2 � (ãëQ ÿ ëH )E

� t

0

eãsjx(s)j2 ds

� ãE

� t

0

eãs

� s

sÿô
jx(è)j2 dè dsÿ ëH E

� t

0

eãsjx(sÿ ô)j2 ds: (3:8)

Compute

� t

0

eãs

� s

sÿô
jx(è)j2 dè ds �

� t

ÿô
jx(è)j2

�(è�ô)^ t

è_0

eãs ds

 !
dè

<

� t

ÿô
jx(è)j2ôeã(è�ô) dè < ôeãô

kîk2

ã
�
� t

0

eãsjx(s)j2 ds

 !
: (3:9)

Also
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ÿëH E

� t

0

eãsjx(sÿ ô)j2 ds � ÿëH eãôE

� tÿô

ÿô
eãsjx(s)j2 ds

< ÿ[1 ^ (ëH eãô)]E

� tÿô

0

eãsjx(s)j2 ds

< ÿ[1 ^ (ëH eãô)]E

� t

0

eãsjx(s)j2 ds� E

� t

tÿô
eãsjx(s)j2 ds: (3:10)

Substituting (3.9) and (3.10) into (3.8) and using (3.4), we obtain that

EV (x(t), t, r(t)) < [ëQ � ô(1� eãô)]Ekîk2 � E

� t

tÿô
eãsjx(s)j2 ds: (3:11)

On the other hand,

EV (x(t), t, r(t)) > eã tëqEjx(t)j2 � E

� t

tÿô
eãsjx(s)j2 ds, (3:12)

where ëq � min1<i<Nëmin(Qi). Combining (3.11) with (3.12) and using (3.6), we have

eã tëqEjx(t)j2 < [ëQ � ô(1� eãô)]Ekîk2

and the required assertion (3.3) follows. The proof is complete. h

Corollary 3.2. Let ëi � ëmax(Ai � AT
i ) for 1 < i < N. Assume that there exist N positive

constants qi such that

1� qi ëi � kBik �
Xm

k�1

[kCT
ki Dkik � kCkik2]

 !
�
XN

j�1

ãijq j , 0 (3:13)

and

ÿ1� qi kBik �
Xm

k�1

[kCT
ki Dkik � kDkik2]

 !
, 0, (3:14)

for all 1 < i < N. Then the trivial solution of equation (3.1) is mean square exponentially

stable.

Proof. By choosing Qi � qi I , Hi de®ned by (3.2) becomes

Hi �
qi(Ai � AT

i )� I � qi

Xm

k�1

CT
kiCki �

XN

j�1

ãijq j I , qi Bi � qi

Xm

k�1

CT
ki Dki

qi B
T
i � qi

Xm

k�1

DT
kiCki, ÿI � qi

Xm

k�1

DT
ki Dki

2666664

3777775:
For any x, y 2 Rn, compute
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(xT, yT)Hi

x

y

 !
� xT qi(Ai � AT

i )� I � qi

Xm

k�1

CT
kiCki �

XN

j�1

ãijq j I

0@ 1Ax

� 2qix
T Bi �

Xm

k�1

CT
ki Dki

 !
y� yT ÿI � qi

Xm

k�1

DT
ki Dki

 !
y

< qiëi � 1� qi

Xm

k�1

kCkik2 �
XN

j�1

ãijq j

0@ 1Ajxj2
� qi kBik �

Xm

k�1

kCT
ki Dkik

 !
(jxj2 � jyj2)� ÿ1� qi

Xm

k�1

kDkik2

 !
jyj2

� 1� qi ëi � kBik �
Xm

k�1

[kCT
ki Dkik � kCkik2]

 !
�
XN

j�1

ãijq j

24 35jxj2
� ÿ1� qi kBik �

Xm

k�1

[kCT
ki Dkik � kDkik2]

 !" #
jyj2:

By conditions (3.13) and (3.14), Hi is negative de®nite. The assertion of the corollary now

follows from Theorem 3.1. The proof is complete. h

It is easier to apply Corollary 3.2 than Theorem 3.1 since one needs only to ®nd N

positive numbers qi instead of N symmetric positive de®nite matrices. But it is still dif®cult

to ®nd such qi sometimes. We shall now establish a criterion, which is easy to verify, for

the existence of such qi and hence for the mean square exponential stability.

Let us introduce some new notation. Let B be a vector or matrix. By B > 0 we mean

that each element of B is non-negative. By B . 0 we mean B > 0 and at least one element

of B is positive. By B� 0 we mean all elements of B are positive. Let B1 and B2 be two

vectors or matrices with same dimensions. We write B1 > B2, B1 . B2 and B1 � B2 if and

only if B1 ÿ B2 > 0, B1 ÿ B2 . 0 and B1 ÿ B2 � 0, respectively. De®ne

È �

èÿ1
1

èÿ1
2

..

.

èÿ1
N

26666664

37777775, ~q �

q1

q2

..

.

qN

26666664

37777775, A � diag(r1, r2, . . . , rN )ÿ Ã, (3:15)

where

èi � kBik �
Xm

k�1

[kCT
ki Dkik � kDkik2],
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ri � ÿëi ÿ kBik ÿ
Xm

k�1

[kCT
ki Dkik � kCkik2]

and èÿ1
i � 1 if èi � 0. We can then write (3.13) and (3.14) as

È�~q� 0 and A~q�~1 :� (1, 1, . . . , 1)T: (3:16)

The following corollary describes the suf®cient conditions which guarantee the existence of

the qis and hence the mean square exponential stability of the trivial solution of (3.1).

Corollary 3.3. Assume that A is inverse-positive, that is, Aÿ1 exists and Aÿ1 . 0. If

È� Aÿ1~1, (3:17)

then the trivial solution of (3.1) is exponentially stable in mean square.

Proof. Note that Aÿ1~1� 0 since each row of Aÿ1 has all non-negative elements and has at

least one positive element, that is, each row . 0. By (3.17), we can choose a constant â. 1

suf®ciently close to 1 for

È� âAÿ1~1:

Set ~q � âAÿ1~1. Then È�~q� 0. Moreover,

A~q � â~1�~1:

In other words, we can ®nd ~q � (q1, . . . , qN )T which satis®es (3.16), that is, (3.13) and

(3.14). Hence, by Corollary 3.2, the trivial solution of (3.1) is exponentially stable in mean

square. The proof is complete. h

It is useful to point out that the matrix A de®ned by (3.15) has non-positive off-diagonal

entries. That is, if we adopt here the traditional notation by letting

Z N3N � fB � (bij) 2 RN3N : bij < 0, i 6� jg
then A 2 Z N3N . It is known that A 2 Z N3N is inverse-positive if and only if A is a non-

singular so-called M-matrix. Berman and Plemmons (1994) has an excellent discussion on

M-matrices and lists many equivalent conditions. For example, A is a non-singular M-matrix

if and only if all the leading principal minors of A are positive.

4. Moment exponential stability of nonlinear delay equations

Let us now return to the general delay equation (2.1), namely

dx(t) � f (x(t), x(t ÿ ô), t, r(t)) dt � g(x(t), x(t ÿ ô), t, r(t)) dw(t) (4:1)

on t > 0, with initial data x0 � î 2 Cb
F 0

([ÿô, 0]; Rn). The solution of this equation is

denoted by x(t; î) again. For the purpose of stability we may assume, without loss of
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generality, that f (0, 0, t, i) � 0 and g(0, 0, t, i) � 0. So (4.1) admits a trivial solution

x(t; 0) � 0.

Theorem 4.1. Let (H1) hold. Let p, c1, c2 be positive numbers and ë1 . ë2 > 0. Assume that

there exists a function V (x, t, i) 2 C2,1(Rn 3 R� 3 S; R�) such that

c1jxj p < V (x, t, i) < c2jxj p (4:2)

for all (x, t, i) 2 Rn 3 R� 3 S, and

LV (x, y, t, i) < ÿë1jxj p � ë2jyj p (4:3)

for all (x, y, t, i) 2 Rn 3 Rn 3 R� 3 S. Then

lim sup
t!1

1

t
log(Ejx(t; î)j p) < ÿã (4:4)

for all î 2 Cb
F 0

([ÿô, 0]; Rn), where ã. 0 is the unique root to the equation

ã(c2 � ôë2eãô) � ë1 ÿ ë2: (4:5)

In other words, the trivial solution of (4.1) is pth moment exponentially stable and the pth

moment Lyapunov exponent is not greater than ÿã.

Proof. Fix any î 2 Cb
F 0

([ÿô, 0]; Rn) and write x(t; î) � x(t). De®ne U (x, t, i) 2
C2,1(Rn 3 R� 3 S; R�) by

U (x, t, i) � eã t V (x, t, i)� ë2

� t

tÿô
Ejx(s)j p ds

� �
: (4:6)

By ItoÃ's formula, we can derive that

EU (x(t), t, r(t)) � EU (x(0), 0, r(0))� E

� t

0

LU (x(s), x(sÿ ô), s, r(s)) ds

� EU (x(0), 0, r(0))� E

� t

0

eãs ãV (x(s), s, r(s))� ãë2

� s

sÿô
jx(è)j p dè

�
� ë2(jx(s)j p ÿ jx(sÿ ô)j p)� LV (x(s), x(sÿ ô), s, r(s))� ds

< (c2 � ôë2)Ekîk p � (ãc2 � ë2 ÿ ë1)E

� t

0

eãsjx(s)j p ds

� ãë2E

� t

0

eãs

� s

sÿô
jx(è)j p dè ds: (4:7)

Compute
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E

� t

0

eãs

� s

sÿô
jx(è)j p dè ds � E

� t

ÿô
jx(è)j p

�(è�ô)^ t

è_0

eãs ds

 !
dè

< E

� t

ÿô
jx(è)j pôeã(è�ô) dè < ôeãô

Ekîk p

ã
� E

� t

0

eãsjx(s)j p ds

 !
: (4:8)

Substituting this into (4.7) and using (4.5), we obtain that

EU (x(t), t, r(t)) < [c2 � ôë2(1� eãô)]Ekîk p:

But

EU (x(t), t, r(t)) > c1eã tEjx(t)j p:
Consequently

Ejx(t)j p <
1

c1

[c2 � ôë2(1� eãô)]eÿã t,

and the required assertion (4.4) follows. The proof is complete. h

5. Almost sure exponential stability

We now begin to discuss the almost sure exponential stability for the delay equation (4.1).

Theorem 5.1. Let (H1) hold. Assume that there is a constant K . 0 such that for all

(x, y, t, i) 2 Rn 3 Rn 3 R� 3 S,

j f (x, y, t, i)j _ jg(x, y, t, i)j < K(jxj � jyj): (5:1)

Let p . 0. Assume that the trivial solution of (4.1) is pth moment exponentially stable, that is,

there is a positive constant ã such that

lim sup
t!1

1

t
log(Ejx(t; î)j p) < ÿã (5:2)

for all î 2 Cb
F 0

([ÿô, 0]; Rn). Then

lim sup
t!1

1

t
log(jx(t; î)j) < ÿ ã

p
a:s: (5:3)

In other words, pth moment exponential stability implies almost sure exponential stability.

Proof. The case when p > 1 without Markovian switching has been proved by Mao (1997);

here we extend to the case when p . 0 with Markovian switching. Fix the initial value î
arbitrarily and write x(t; î) � x(t). Let å 2 (0, ã=2) be arbitrary. By (5.2) and Theorem 2.1,
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there is a positive constant k such that

Ejx(t)j p < keÿ(ãÿå) t on t > ÿô: (5:4)

Let �k be an integer suf®ciently large for

(6K) p[(ô=�k) p � Cp(ô=�k) p=2] < 1
2
(1 ^ eÿãô), (5:5)

where Cp is the constant given by the Burkholder±Davis±Gundy inequality (see Karatzas and

Shreve 1991; or Mao 1997). Let ó � ô=�k and k � �k � 1, �k � 2, . . . . Noting that for any

a, b, c > 0,

(a� b� c) p < [3(a _ b _ c)] p � 3 p(a p _ b p _ c p) < 3 p(a p � b p � c p),

we have that

E sup
(kÿ1)ó< t<kó

jx(t)j p
� �

< 3 pEjx((k ÿ 1)ó )j p � 3 pE

� kó

(kÿ1)ó
j f (x(s), x(sÿ ô), s, r(s))j ds

 ! p

� 3 pE sup
(kÿ1)ó< t<kó

����� t

(kÿ1)ó
g(x(s), x(sÿ ô), s, r(s)) dw(s)

���� p
" #

:

(5:6)

By (5.4),

Ejx((k ÿ 1)ó )j p < keÿ(ãÿå)(kÿ1)ó : (5:7)

Compute that

E

� kó

(kÿ1)ó
j f (x(s), x(sÿ ô), s, r(s))j ds

 ! p

< E ó sup
(kÿ1)ó<s<kó

j f (x(s), x(sÿ ô), s, r(s))j
� � p

< (2ó K) pE sup
(kÿ1)ó< t<kó

jx(t)j p
� �

� (2ó K) pE sup
(kÿ1)ó< t<kó

jx(t ÿ ô)j p
� �

< (2ó K) pE sup
(kÿ1)ó< t<kó

jx(t)j p
� �

� (2ó K) pE sup
(kÿ1ÿ�k)ó< t<(kÿ�k)ó

jx(t)j p
� �

: (5:8)

Compute also that
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E sup
(kÿ1)ó< t<kó

����� t

(kÿ1)ó
g(x(s), x(sÿ ô), s, r(s)) dw(s)

���� p
" #

< Cp E

� kó

(kÿ1)ó
jg(x(s), x(sÿ ô), s, r(s))j2 ds

 ! p=2

< Cp E ó sup
(kÿ1)ó<s<kó

jg(x(s), x(sÿ ô), s, r(s))j2
� � p=2

< Cp(2K) pó p=2E sup
(kÿ1)ó< t<kó

jx(t)j p
� �

� Cp(2K) pó p=2E sup
(kÿ1ÿ�k)ó< t<(kÿ�k)ó

jx(t)j p
� �

: (5:9)

Substituting (5.7)±(5.9) into (5.6) yields

E sup
(kÿ1)ó< t<kó

jx(t)j p
� �

< 3 pkeÿ(ãÿå)(kÿ1)ó � (6K) p(ó p � Cpó
p=2)E sup

(kÿ1)ó< t<kó
jx(t)j p

� �
� (6K) p(ó p � Cpó

p=2)E sup
(kÿ1ÿ�k)ó< t<(kÿ�k)ó

jx(t)j p
� �

: (5:10)

Noting from (5.5) that (6K) p(ó p � Cpó p=2) < 1=2, we obtain from (5.10) that

E sup
(kÿ1)ó< t<kó

jx(t)j p
� �

< 2k3 peÿ(ãÿå)(kÿ1)ó � 2(6K) p(ó p � Cpó
p=2)E sup

(kÿ1ÿ�k)ó< t<(kÿ�k)ó

jx(t)j p
� �

< 2k3 peÿ(ãÿå)(kÿ1)ó � eÿ(ãÿå)�kó E sup
(kÿ1ÿ�k)ó< t<(kÿ�k)ó

jx(t)j p
� �

, (5:11)

where (5.5) has been used once again. Let r � [k=�k, the integer part of k=�k. By induction,

we can show from (5.11) that

E sup
(kÿ1)ó< t<kó

jx(t)j p
� �

< 2rk3 peÿ(ãÿå)(kÿ1)ó � eÿ(ãÿå)r�kó E sup
(kÿ1ÿr�k)ó< t<(kÿr�k)ó

jx(t)j p
� �

:

(5:12)

Since k=�k ÿ 1 < r < k=�k, we have k ÿ �k < r�k < k and hence

ÿô < ÿó < (k ÿ 1ÿ r�k)ó < (k ÿ r�k)ó < �kó � ô:

We therefore see from (5.12) that
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E sup
(kÿ1)ó< t<kó

jx(t)j p
� �

<
2kk

�k
3 peÿ(ãÿå)(kÿ1)ó � eÿ(ãÿå)(kÿ�k)ó E sup

ÿô< t<ô
jx(t)j ph i

< C(k � 1)eÿ(ãÿå)kó , (5:13)

where

C � 2k
�k

3 peãó � eã
�kó E sup

ÿô< t<ô
jx(t)j ph i

and, by Theorem 2.1, C ,1. Hence

P ù: sup
(kÿ1)ó< t<kó

jx(t)j. eÿ(ãÿ2å)kó = p
� �

< C(k � 1)eÿåkó :

In view of the well-known Borel±Cantelli lemma, we see that for almost all ù 2 Ù,

sup
(kÿ1)ó< t<kó

jx(t)j < eÿ(ãÿ2å)kó = p (5:14)

holds for all but ®nitely many k. Hence there exists a k0(ù), for all ù 2 Ù excluding a P-null

set, for which (5.14) holds whenever k > k0. Consequently, for almost all ù 2 Ù,

1

t
log(jx(t)j) < ÿ (ãÿ 2å)kó

pt
< ÿ ãÿ 2å

p

if (k ÿ 1)ó < t < kó . Therefore

lim sup
t!1

1

t
log(jx(t)j) < ÿ ãÿ 2å

p
a:s:

and the required (5.3) follows by letting å! 0. The proof is complete. h

6. Examples

In this Section we shall discuss three examples to illustrate our theory. In the following

examples we shall omit mentioning the initial data.

Example 6.1. Consider a one-dimensional linear stochastic differential delay equation with

Markovian switching of the form

dx(t) � á(r(t))x(t) dt � ó (r(t))x(t ÿ ô) dw(t) (6:1)

on t > 0. Here the Markov chain r(t) is the same as before, but w(t) is a scalar Brownian

motion independent of r(t), á(i) and ó (i) are all constants and we shall write á(i) � ái and

ó (i) � ó i. To apply Corollary 3.3, we note that È and A de®ned by (3.15) become

86 X. Mao, A. Matasov and A.B. Piunovskiy



È �

óÿ2
1

óÿ2
2

..

.

óÿ2
N

266664
377775 and A � diag(ÿ2á1, ÿ2á2, . . . , ÿ2áN )ÿ Ã,

where óÿ2
i � 1 if ó i � 0. By Corollary 3.3, if Aÿ1 . 0 and

È� Aÿ1~1, (6:2)

then the trivial solution of (6.1) is exponentially stable in mean square. Moreover, by

Theorem 5.1, the trivial solution is also almost surely exponentially stable. It is interesting to

note that (6.2) holds if all ó i � 0. We therefore observe that if Aÿ1 . 0, then the trivial

solution of the delay equation

dx(t)

dt
� á(r(t))x(t) (6:3)

is exponentially stable in mean square. Moreover, equation (6.1) can be regarded as the

stochastically perturbed system of (6.3), while condition (6.2) means that if the intensity ó i

of the stochastic perturbation is suf®ciently small then the perturbed system (6.1) will remain

stable.

Example 6.2. Let w(t) be a scalar Brownian motion. Let r(t) be a right-continuous Markov

chain taking values in S � f1, 2, 3g with generator

Ã �
ÿ2 1 1

3 ÿ4 1

1 1 ÿ2

264
375:

Assume that w(t) and r(t) are independent. Consider a three-dimensional linear stochastic

differential delay equation with Markovian switching of the form

dx(t) � A(r(t))x(t) dt � D(r(t))x(t ÿ ô) dw(t) (6:4)

on t > 0, where

A(1) � A1 �
ÿ2 1 ÿ2

2 ÿ2 1

1 ÿ2 ÿ3

264
375, A(2) � A2 �

0:5 1 0:5

ÿ0:8 0:5 1

ÿ0:7 ÿ0:9 0:2

264
375,

A(3) � A3 �
ÿ0:5 ÿ0:9 ÿ1

1 ÿ0:6 ÿ0:7

0:8 1 ÿ1

264
375,

and D(i) � Di are all 3 3 3 constant matrices. To apply Corollary 3.3, we compute ëi �
ëmax(Ai � AT

i ):

ë1 � ÿ2:4385, ë2 � 1:207 18, ë3 � ÿ0:950 67:
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The vector È and matrix A de®ned by (3.15) become

È � (kD1kÿ2, . . . , kDNk2)T

and

A � diag(2:4385, ÿ1:207 18, 0:950 67)ÿ Ã �
4:4385 ÿ1 ÿ1

ÿ3 2:792 82 ÿ1

ÿ1 ÿ1 2:950 67

264
375:

Compute

Aÿ1 �
0:439 017 0:239 537 0:229 966

0:597 346 0:733 437 0:451 010

0:351 230 0:329 746 0:569 693

264
375

and

Aÿ1(1, 1, 1)T � (0:908 52, 1:781 79, 1:250 67)T:

Therefore, by Corollary 3.3, if È� Aÿ1(1, 1, 1)T, that is,

kD1k2 , 1:100 69, kD2k2 , 0:561 23, kD3k2 , 0:799 57, (6:5)

then the trivial solution of equation (6.4) is exponentially stable in mean square. Moreover,

by Theorem 5.1, it is also almost surely exponentially stable. As explained in Section 1,

equation (6.4) can be regarded as the result of the following three stochastic differential delay

equations

dx(t) � A1x(t) dt � D1x(t ÿ ô) dw(t), (6:6a)

dx(t) � A2x(t) dt � D2x(t ÿ ô) dw(t), (6:6b)

dx(t) � A3x(t) dt � D3x(t ÿ ô) dw(t) (6:6c)

switching among each other according to the movement of the Markov chain. Note that

(6.6b) is not exponentially stable in mean square (since A2 � AT
2 is positive de®nite) but

(6.6a) is, while (6.6c) may be. However, as the result of Markovian switching, the overall

behaviour, expressed by (6.4), is exponentially stable.

Example 6.3. Let w(t) be a scalar Brownian motion. Let r(t) be a right-continuous Markov

chain taking values in S � f1, 2g with generator

Ã � (ãij)232 �
ÿ1 1

1 ÿ1

� �
:

Assume that w(t) and r(t) are independent. Consider a one-dimensional stochastic differential

delay equation with Markovian switching of the form

dx(t) � f (x(t), t, r(t)) dt � g(x(t ÿ ô), t, r(t)) dw(t) (6:7)
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on t > 0, where f , g : R 3 R� 3 S ! R. Assume that

xf (x, t, 1) <
x2

4
, xf (x, t, 2) < ÿ3x2 (6:8)

for all (x, t) 2 R 3 R�, while

jg(y, t, 1)j < jyj
8

, jg(y, t, 2)j < jyj
4

(6:9)

for all (y, t) 2 R 3 R�. To examine the third moment exponential stability, we construct a

function V : R 3 R� 3 S ! R� by

V (x, t, i) � âijxj3,

with â2 � 1 and â1 � â. 0 a constant to be determined. It is easy to show that the operator

LV from R 3 R 3 R� 3 S to R has the form

LV (x, y, t, i) � 3âijxjxf (x, t, i)� 3âijxkg(y, t, i)j2 � (ãi1â� ãi2)jxj3:
By conditions (6.8) and (6.9), we then have

LV (x, y, t, i) <

ÿ[0:25âÿ 1]jxj3 � 3â

64
jxkyj2 if i � 1,

ÿ(10ÿ â)jxj3 � 3

16
jxkyj2 if i � 2:

8>><>>:
Noting that

jxj jyj2 < 1
3
jxj3 � 2

3
jyj3,

we obtain that

LV (x, y, t, 1) < ÿ(0:234 375âÿ 1)jxj3 � 0:031 25âjyj3

and

LV (x, y, t, 2) < ÿ(9:9375ÿ â)jxj3 � 0:125jyj3:
Choosing â as the solution to

0:234 375âÿ 1 � 9:9375ÿ â,

that is, â � 8:8608, we then have

LV (x, y, t, i) <
ÿ1:0767jxj3 � 0:2769jyj3 if i � 1,

ÿ1:0767jxj3 � 0:125jyj3 if i � 2:

(
So

LV (x, y, t, i) < ÿ1:0767jxj3 � 0:2769jyj3:
By Theorem 4.1, we conclude that the trivial solution of (6.7) is third moment exponentially

stable and, moreover, the third moment Lyapunov exponent is not greater than the unique root

ã. 0 of the equation
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ã(8:8608� 0:2769ôeãô) � 0:7998: (6:10)

For instance, the unique root of this equation is ã � 0:09 if ô � 0:1.
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