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1. Introduction

The purpose of this paper is to study small perturbations of the solution to the stochastic
Volterra equation

kot t
X, :xo—l—ZJ oi(t, s, XS)dW{;JrJ b(t, s, X,)ds, (1.1)
0 0

J=1

xo € R, t € [0, T]. We will consider the family {X¢, e >0} of processes which satisfy

kot t
Xﬁ:xo—kZJer(t, s, Xﬁ)dW£+Jb(t, s, X%)ds. (1.2)
j=170 0
We seek to establish a large-deviation principle (LDP) for {X?, ¢>0} on the space
Z ([0, T], RY). We will prove the existence of a lower semi-continuous function
I:%2,(0, T], R?) — [0, cc], called the rate function, such that {/ < a} is compact for
any a € [0, co) and

1%1 inf &2 log P{X*® € O} = —A(0),
&
1%1 supe?log P{X* € F} < —A(F),

for any open set O and closed set F of 7, ([0, T1], RY), where, for a given subset
A C 240, T1, RY), A(4) = inf ;e 1 I(f).

Large-deviation estimates were obtained by Ventzell and Freidlin (1970) for elliptic
diffusions. Azencott (1980) and later Priouret (1982) extended the estimates to the general
class of diffusions with Lipschitz coefficients. A principle of large-deviation uniformly with
respect to the initial condition was proved in Millet et al. (1992).
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Stochastic Volterra equations in the plane are studied in Rovira and Sanz-Solé (1997),
and an LDP is established assuming that the coefficients satisfy Lipschitz conditions in all
the variables ¢, s and x. Our aim is to prove an LDP for the solution of (1.1) assuming only
Lipschitz continuity in x and Holder continuity in ¢ uniformly with respect to the other
variables.

As an application of the LDP for stochastic Volterra equations we discuss in Section 5
two particular examples of interest: a stochastic differential equation driven by fractional
Brownian motion and a hyperbolic stochastic partial differential equation. On the other
hand, the study of stochastic Volterra equations provides a general framework that includes
stochastic evolution equations.

The LDP is established using Azencott’s method (Azencott 1980; Doss and Priouret
1983) in a general setting. More precisely, let (E;, d;), i = 1, 2, be two Polish spaces and
Xi:Q —E;, >0, i=1,2, families of random variables. Assume that {X}, ¢>0}
satisfies an LDP with rate function 7: E; — [0, co]. Let ®: {I <400} — E, be a mapping
such that its restriction to the compact sets {f < a}, a € [0, c0), is continuous in the
topology of Ej. For any g € E, we set I(g) = inf{i(f): ®(f) = g}. Suppose that for any
R, p, a>0 there exist >0 and & >0 such that for f € E, satisfying I(f) < a and
e < gy we have

P{d,(X5, ©(f)) = p, di(X], /HH<a} < exp(—g%). (1.3)

Then, the family {X%, e >0} satisfies an LDP with rate function /.

Our aim is to apply this result to the random variables X{ = ¢W and X§ = X given in
(1.2).

Although Azencott’s method is well known, we have used two new ingredients in the
proof of the LDP:

(i) We show an exponential inequality for stochastic integrals depending on a parameter.
Due to the lack of the martingale property, the proof is based on the Garsia—Rodemich—
Rumsey lemma. Similar results have been obtained in Sowers (1992) and Rovira and Sanz-
Solé (1996).

(i1) Unlike the case of diffusion processes, we are faced with stochastic integrals of the
form

[F3S]
J o(t, s, X;,)dW;
I
which are not continuous functionals of W. For this reason, we need to use an LDP for the
couple formed by W and the above stochastic integral to obtain the suitable exponential
bound. That is, we apply the LDP for Gaussian stochastic integrals depending on a parameter
established in Ledoux (1990) and Mayer-Wolf er al. (1992).

The paper is organized as follows. In Section 2 we state the rigorous formulation of the
problem and we present the main theorem, Theorem 1. The proof of this theorem requires
an exponential inequality for stochastic integrals given in Section 3. In Section 4 we prove
the LDP. Finally Section 5 contains two examples where we can apply this method.
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Sums on repeated indices are usually omitted and all constants are denoted by C,
although they may change from one expression to the next.

2. Formulation of the problem

Let (Q,.7,.7;, P) be a stochastic basis carrying a k-dimensional .7;-Brownian motion
{(Wi(t),0<t<T,1<j<k} Let xp € R’ and consider the family {X¢, >0} of
processes which satisfy (1.2).

To fomulate our results we assume the following set of assumptions (H):

(Hy) The functions b = b(¢, s, x), 0; = 0j(t, s, x), j =1, ..., k, are measurable functions
from {0 <s<t<T} xR to R’
(Hy) The functions b, o;, j=1,..., k, are Lipschitz in x (uniformly in the other

variables). That is, there exists a constant K such that

k
> loj(t, s, ) = 0yt 5, 0| + |b(1, 5, ¥) = b1, s, )| < K|x =y,
J=1

forall x, ye R, 0<s<t<T.
(H3) The functions b, o;, j=1,..., k, are a-Holder continuous in ¢ on [s, T]
(uniformly in the other variables). That is, there exists a constant K such that

k
Z loj(t, s, x) — 0j(r, s, x)| +|b(t, s, x) — b(r, s, x)| < K|t — r|*,

=

for any #, » = s and for all x € RY, where 0 <a < 1.
(Hy4) There is a constant K such that

k
Z loi(t, s, x) — oi(r, s, x) —0i(t, s, )+ 0,(r, s, )| < K|t — r['|x — ¥,
=1

forany t, r=s,x, y€ R?, where o<y=<l.
(Hs) b(1, s, x0), 0i(t, s, x0), j=1, ..., k, are bounded.

Let .7 be the Cameron—Martin space associated with Z([0, 7], R¥), that is, the set of

absolutely continuous functions g € #4([0, T], R¥) with | g|%, := onr |gs]? ds < 400, where
gs denotes the derivative dg/ds. Given h € .77, we define the skeleton S(%4) by

kot t
S(h)r =x + ZJ oi(t, s, S(h)s)hé' ds + J b(t, s, S(h)s)ds. 2.1
j=170 0

Our main result is as follows.

Theorem 1. Assume (H). The family {X¢, € € (0, 1]} of solutions of (1.2) satisfies a large-
deviation principle on the space 7,,([0, T1, R?) with rate function
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T
1(p) = inf{%L |&5* ds, 0 = S(g). g € 7/}

with S(h) given in (2.1).

3. Exponential inequality

In this section we prove an exponential inequality for a type of stochastic integrals that are
not martingales. Related exponential inequalities have been obtained in Mueller (1991),
Sowers (1992) and Rovira and Sanz-Solé (1996).

Theorem 2. Let Z:[0, T] X [0, T] X Q — RY X R* be a 2([0, T]) @ #([0, T]) ® 7-
measurable process satisfying the following conditions:
(1) Z(t,s) =0 if s>1.
(i) Z(t, s) is .Fs-adapted.
(iii) There exists a positive random variable & and a € (0, 2] such that for all t,
rel0, T

min(r,?)
| 1z - 20 9P as = el o
0

Then, for any 5, 0<f < min(l, a), there exist positive constants K| (depending only on f3),
K, and K3, such that

P{ sup
0=t=<T

for any L=0, C;=0 and K; =0 such that L(T*PC; + T'PK%)"'/? = max(K,
K>(14 T)TF?).

t
J Z(t, s)ydw/
0

LZ
>LZ|lw=<Kz,EsCrpsexp|l ——5——K
I1Z]l 2§ z} P( (TKZZ+TaCZ) 3)

Proof. We will prove the result in the case k£ = d = 1. The extension to the general case is
not difficult. Set I(¢) := Jg Z(t, s)dW,. For any 0 < r<t < T we have

T

1)~ I(r) = JO g1, () AW,

with g,(s) = 1 (<= Z(t, 8) + 1 (3= (Z(t, 5) — Z(r, 5)). Then

T t r
J g, (s)ds = J Z%(t, s)ds +J (Z(t, ) — Z(r, 5))* ds
0 r 0

<|t—rlllZI5 + |t — r|“g

<[t = (@) 2|5 + TP,
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Set p(y) = yP2Ny% y =0 with Np:=T'PK% + T%PC; and y(x) = exp(x*/4), x € R.

Let
T (1) - 1)
B‘J0J0w<p(|r—r|>>dtd’“

For fixed r<t, we consider the continuous .7 ,-martingale defined by

gtr(s)
M, = —————dW;,
Jo p(|t = r))

with quadratic variation

2 — 2 _
= [T 7t
0 21— 7D Np

forO0<u<T. Set A ={||Z||c < Kz, § < Cz}. Note that on the set 4 we have (M) < 1.

Then
I(t) — I(r) B M2T> ] _ i )
o (=5 ] =elon(5) ] <sfow ()] = 2

where Y is a Brownian motion such that M, = Y(y,. So E(B1,4) < 7%y/2 and
E(exp{14(In*B)}) < 1 + E(14exp(In* B)) < 2 + T?V2, 3.1

where In + z = max{Ilnz, 0}. Then, the Garsia—Rodemich—Rumsey lemma (Walsh 1986)
yields, for any w € 4, and ¢, r € [0, T],

[t—r| B
10— 10 =3[y () 4o
0 y
and since /(0) =0,

lo < sup 8

Ost<T

T
j (0 B2 + (in*y )2 dp(y)|.
0

t
[ (55) anc] =22
0 y

Further calculations show that

T
J (1n+y72)1/2y/3/271 dy < 2\/&ﬁ*3/2'
0

Hence,
I <2 ntB T 20—
1l =< ?2[(In* B)'2 p( )+N[13/ﬁ 25172

= NP B2+ Co)
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with C; =2%2 and C, = B~ '/2n!/2,
Now, from (3.1) and Chebyshev’s exponential inequality, we obtain for L/ N = (CCy,

2
L 1
+ = o
P{(|I]|« = Lyn 4} <P} | (In B)>< T cz> 7| N4

1

2

L
< E[exp(14(In* B))] exp{ — ——in ) 75
CINg r

L 1
= exp — <Cw1/2 — C2> Tﬁ + 1[1(2 -+ TZ\/_)
g

2 (1 anpY Ny TP
—exp) ——— || = ~In@ + 72v2) =
exp N7 <C1 7 n2 + I*v2)——

Set C3 = max{2C, Cy, 23/%(In(2 + T?v/2))'/2C, TF/?}, C4 = 1/(8C?) and let L/N‘/2 = (.
Then,

1/2

2

L2

P{(|I]le = L)N 4} < exp) ———8C;4 (1 —iczc1> ——ln(2 + TW2)C TP
NyTF L

L2
= JE
exp N 5C4 .

Then it suffices to choose K| =2C,C, = 2'"2B712\/mt, K, =2%/* and K3 = Cy =272
|

4. Large deviations

In this section we prove Theorem 1. We will obtain the result by transferring a Ventzell—
Freidlin type estimate, (see (1.3)) in Theorem 4. First, we need to study the continuity of the
map h — S(h) defined in (2.1).

Lemma 3. Under (H) the map h — S(h) is continuous from {||h||» < a}, a € (0, o), into
% ([0, T1, RY) with respect to the uniform norm.

Proof. Fix g, h € {||-||» < a}. Using the Lipschitz properties of ¢ and b, we have
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me&ﬂmmg—MMs

1S(g): — S(h)| < KLIS(g)s — S(h)s|(1 + | g ds + .

and, by Gronwall’s lemma,

() = Sl = € sup || oy, s, SChIL = i) s, (.1

for a constant C >0 depending on a.
Consider the function

fep{-C/62— 1} if jul<1,
pl) = { 0, otherwise

and p,(u) := np(nu), with C such that ﬁl p(u)du = 1. By a standard procedure, if we put
¢n = O*p,, that is,
t

¢ALQ=J00Maﬂmow@—umm

0

then s — @,(¢, s) is continuously differentiable and ¢,(z, .) converges in L? to o(t, ., S(h))).
Moreover, from (H3) it is easy to check that t — ¢,(z, s) is a-Holder continuous in ¢
uniformly in s (with constant K,,).

Fix €>0. For any 0 >0, there exists a partition 0 = #; <#, < --- <ty = T such that
sup;|#;41 — #;] < O and ny € N such that for any n = ny

T
sup J lo(ti, s, S(h)s) — ¢u(ti, ) ds < f,
1=<i=NJo 6

where by convention o (¢, s, x) = 0 if ¢t<<s. For any ¢ € [¢;, t;11), we have

Jr|0(t, s, S(h)s) — P (2, 5)| ds
0
=3 [Jf lo(t, s, S(h)s)|2 ds + Jli|0(l, s, S(h)y) — o(ty, s, S(h)s)|2 ds
t 0

t t
] 0t 5000 = gt 9 ds | (Bt 9) = ptr 9 as).
Then, using the a-Hoélder continuity properties, we obtain
t
supicio | 004, 5. S) = fu(t, 9 ds
0

< 3(e/6 + T(K + K,)0** + supo=,.=r|o(t, s, S(h),)|*0) = &,
if

5 . € 1/@a) €
=min| ([ ———— , .
<HK+K»Q Supo=s=7]0 (1, 5, S(),)P?
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On the other hand, notice that there exists a constant C >0 such that ||S(%)||« < C and

‘%(L S) > = noC.

SUPo<s,1<T <|¢no(t, )|+

Then, using Hélder’s inequality and integration by parts,

t t L.
Jaj(t, s, S(h)s)(&) — h}) ds| < J(Uj(t, s, S(h)s) — ¢}, (1, ))& — hl)ds
0 0
4 . . ..
|| one g - i as
0
. o "
< 26" 4|}k - gl (nmonoc ] o] as
0 S
and from (4.1) the proof is finished. O

The main theorem is the following.

Theorem 4. Assume (H). For any g € 7, R, p >0, there exist >0 and &y >0 such that

R
P{|X* = S(loc > p, leW — glloc <m} < eXp( E)
for any € € (0, &)

Let {Y%, 0 =<1t=< T} be the solution process of

t t

t
eoi(t, s, Y)dw! +J b(t, s, Yo)ds +J o(t, s, Y) gl ds. 4.2)
0

Y‘;ZX()+J
0

0
A reduced version of the proof of Theorem 4 can be used to establish the following result.

Proposition 5. Assume (H). For all g € 7, R, p >0, there exist >0 and &y € (0, 1] such
that

R
PUY = S@l =, oWl <) = exp( %) @3)
for any € € (0, &].

Indeed, let W¢ = W, — (1/¢)g(¢). Girsanov’s theorem ensures that {W¢, 0<¢<T} is a
k-dimensional Wiener process with respect to the probability P? given by

dpe (T, . .
= —| & dwi —— | |&/*ds .
P exp{gjog OR Uy JO |&s] S}
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Set, for any p, 1, € >0,
B = {||X* = S(g)llec >p, [[eW — glloc <m},

(7. .
Uezexp{——J gf(s)dWé}.
€Jo :

Then
PBY)< PyB*Nn|U*< 4 Py U*® > 4
(Bf) < < exp po) + €xp 2
A+al2\ . v(r A
< exp( 2 )PF(BS)+P{—€JO gédW‘{,>€—2 , “4.4)
where a = || g||>, and A € R. For A big enough, a well-known inequality for Gaussian random
variables yields
roo A A2 R
p{ L gl dwi >g < 2exp ~ 50, < exp(—8—2>. 4.5)

Set Y¥(w?®) = Xé(w® + %g). Then,
PA(B*) = P{||Y* = S(&)llx > p, W]l <n},

with Y?¢ satisfying (4.2). Consequently, the estimates (4.4), (4.5) and Proposition 5 complete
the proof of Theorem 4.

We first prove Proposition 5 under some assumptions stronger than (H). We assume that
the coefficients o and b satisfy (H) and, moreover, that they satisfy hypothesis (H. ), that is:

(H,) There exists a constant K >0 such that

o(t,s,x)=o0 <t, S, ik),
|x]

b1, s, x) = b(t, s, iK),
x|

for any x, x| >K and for all s < ¢.

Notice that under such assumptions ¢ and b are bounded. We denote by K a bound of
these coefficients. The proof of Proposition 5 relies on the following lemma and
propositions.

Lemma 6. Fix g € .7, ||g||» < a. There exists a non-negative constant K| depending only
on the coefficients and a such that P-a.s.

1Y = S(g)llw < K1 sup

0=<T

t
J eo(t, s, Yo)dwl|. (4.6)
0
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Proof. From identities (4.2) and (2.1) and Gronwall’s lemma it is easy to obtain the estimate
(4.6). O

We now consider a discretization of Y¢. To this end we first introduce some notation. For
neN, I=0,1,....,n, set 1] =TI/", Aj =[t], t},,). Let Y{" =Y, and 1" =1} if
teA].

Proposition 7. For all R>0 and u>0 there exists ny € N (depending on R and u), such
that for all n = ny and &(0, 1]

& &n R
P{|]Y* =Yoo > u} < exp(—g—z)

Proof. Fix n. For t € A}, using condition (/) and the boundedness of coefficients o and b,
we have

Yoy = Y- v,

i .
<g¢ + & J (oi(t, s, Y5) —oi(t], s, Y5))dW!

0

t
J oi(t, s, Yo)dw!

t

t

t
J b(t, s, Y%)ds +J oi(t, s, Y9)glds
0 0

+

o 4 A
— J b(t!, s, Yi)ds — J oi(t!, s, Yo)glds
0 0

I .
<e¢ + e J (oi(t, s, Yi) —oi(t}, s, Y))dW/

t
J oi(t, s, Yo)dw/
n 0

t
i

+ K(a|t — ' + (T +aT" )|t = 17|* + |t — 1}).
Then

n

P(IYE =Yl >my < )
i=1

t . /l
J eoi(t, s, Y5)dw/ >§>
t

P <5uPteAl."

>ﬁ>
3

' P<supt€Af"K(”f — )2 (T4 aT )|t — 2]+ | - t;’l)>§>]

1 )
J() (Ol(ta S, Yﬁ) - Ol(t:la S, Yi))dWé

+P (SuPteAf'e

= ) [P(4}) + P(45) + P(4))]. (4.7)
=1
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Let S <min(1, 2a). Theorem 2 ensures the existence of positive constants K|, K, and Kj
such that

) 2
P4}y < exp<—m@>, (4.8)

whenever
u/{3K(D'F + Ly« 7)1} = max(K)1, Ko(1+ DLy,

Now choose 8 < min(l, ). Using hypothesis (H3), Theorem 2 with Cz = K(%)“ yields the
existence of positive constants K;, K, and K3 such that

2
P(4}) < exp<— 529K2(T(%)/;a T K3>, (4.9)
whenever
w/{3K(T Py 4 7o HD)HY2) = max(Ky, Kao(1 + T)TP2.
On the other hand, for » big enough
P(45) = 0. (4.10)
Finally, from (4.7)—(4.10) for n big enough we obtain the desired result. O

Proposition 8. For all R>0, p>0, n € N there exist uy (depending only on R and p) and
no >0 (depending on R, p and n) such that, for all u < uy, n < no and € € (0, 1],

! \ ; : : R
P{ sup ij(t, s, YO AW >p, [eW oo <m, [ Y5 = Y |o < ﬂ} < em(—;)- (4.11)
0=t<T|Jo
Proof: We can write
t .
Pq sup J eoi(t, s, YO AWl >p, [[eW |l <n, |[Y = Y| S p < Pi + Py,
0=<t<T|Jo
with

t
J 0,1, 5, Y5) — o1, 5, Yo" AW
0

Py :=P{ sup LN D G Ny
0<t<T 2

P, = P{ sup

t
J eai(t, s, Yo dw!
0

0=<t<T

0
>, ||sW|x<n}.

Consider Z(¢t, s) = o(t, s, Y2) — (¢, s, Y2"). Then || Z||oo < K||YE — Y5"|| and from (Hs)
we have, for any ¢, r = s,
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|21, 5) = Z(r, s)P =< K|V = Yo" — rf.
Theorem 2 yields the existence of positive constants K;, K, and K3 such that

2

0
P < exp(— AR T + T 58) K3> , (4.12)

if p/{e2K(T"Pu? + T2 1-Pu?)12} = max(K,, K»(1 + T)TP/?), with B = min(1, 2y). This
is possible by choosing u in a suitable way. On the other hand,
)

P, = P<J sup J
0=/<T| "= J[0,ANA!

= iP{ sup
i=1

n

oi(t, s, Yo dW!

o
>2, ||8W||oo<'7}

SJ o(t, s, Ye)dw!
[0,7NA” /

0=t<T

0
> NeW||y <
2wl 17}

=> P(B)). (4.13)
i=1
Fix i € {1,..., n} and define W, = W, — Ws, for t = t]. Then

J o(t, s, Yo dW/ :J oi(t, s, i) dW.
[0,£]NA ! [0,£]NA! !

Notice that Y§, is independent of {I¥,, t = #'}. So

J oj(t, s, Y5,)dW] = J oj(t, s, y)dWﬂy:Y”,n-
[0,71NA] ! [0,£]NA" i

Using again the independence of Y7, and {W,, t =1}, we have

P(B) = P< sup

0=t<T

EJ oi(t, s, Yo, AW/
[0,/]NA" !

P supleW,| < 277)
2n

n
121[

- J 4%y, (y)P{ sup
R i

0<(<T

SJ oi(t, s, y)dW’! >£, supleW,|<2n 5. (4.14)
[0,JNA” 2n

=t

The Gaussian process {([(o.qnar0i(t, s, y)dW], W), t; < t < T} satisfies an LDP in
Zo([ti, T], RY ® R¥) with rate function

T
I(h) = inf{%J & ds, h, = (J oi(t, s, y) gl ds, gt>}
ti [0,/1NA}

(see, for instance, Mayer-Wolf et al. 1992; Ledoux 1990). Then, from the LDP, we have
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P{ sup EJ oi(t, s, y)dw! P sup [e,| <217}

o=<s=71| Jio,qnAr 2n =

< exp 1mf 1 | 2ds, |lglle <2 (t o ds| > L 4.15

= &s 8lloo = 217, SUp oj(t, s, y) &g ds - (415)
&2 L=<t<T|J[0,/]nA" 2n

Using the same arguments as in Lemma 3, it is easy to check that for each R, the map
g— f[o,z]mA;Uj(f» s, )&l ds is continuous in the uniform norm in {g, %HgH;/ < R}.
Hypotheses (H.) and (H;) imply that the continuity is uniform in y. So, there exists 7
(depending on R, p, n) such that if || g||.o <2% and ||g|l.» < R then

P

= —.

sup sup <5,

y s<I<T

Then, (4.14) and (4.15) imply

J oi(t, s, y)gf: ds
[0,1NA}

J o, 5, )i ds
[0,7]NA”

¥ ti<t<T

>£>

2n
R

< exp(— ;), (4.16)

for a suitable # (depending on R, p and »). Finally, (4.12), (4.13) and (4.16) imply (4.11) for
u (depending on R and p) small enough. This argument has been used in Baldi and Sanz-
Solé (1991) to show the equivalence between the estimate (1.3) and the large-deviation
principle for the couple {(X7{, X3), ¢ >0}. O

1
P(Bi)<supe><p< 2 mf{ J |&5]*ds, [|gllo <27, sup

Using the auxiliary results established so far it is now possible to prove Proposition 5.

Proof of Proposition 5. Set A° = {||Y* — S(2)|lo >0, |EW]|co <n}. The inequality (4.6)
yields for all n € N, u>0, 4° C U2, 47™", with

AT =AY = Yoo > i},

t
Jeoj(t s, Yorydw!
0

A;»w:{osupT > LW o <. 7 - Y“noosu}-
<<

Fix R, p>0. Proposition 8 yields the existence of uo(R, p) >0 and 5(R, p, n) >0 (for
each fixed n € N) such that for all u < uy, 7 <o and ¢ € (0, 1],

e,n,u R
P47 = exp(— €2>

By Proposition 7, there exists ng(R, (o) € N such that for any n = ny and ¢ € (0, €]

n R
P(AT™) < exp<— 8—2)
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Then, (4.3) holds true with 7 = 7y(R, p, no). This finishes the proof of Proposition 5 under
(H) v (Hy). Assume now the weaker hypothesis (H). Fix g € .7 and set

rg(p):inf{t>0: sup |Y¢ —S(g)s|>p} AT.

Osss<t
By definition,
sup [Yi| < p+[|S(g)]l := Clp, &) (4.17)

1<7°(p)
Consider the new coefficients

o(t, s, x), if |x| < C(p, 2),

ot 5% =9 o (r, s, ﬁC(p, g)), if x| > Clp, 9),
X

and b defined in an analogous way. Then, (4.17) and the local property of the stochastic
integral yield

P{YE = S(2)loe > p, leW ]| <7} < P{ sup Y% — S(g)| > p, ||eW|m<n}

I<T(p)
= P{ sup |75 — S(g)| > p. |67 ]| <n},
I<7°(p)

where {Y%, ¢ [0, T1} (or {8(g);, t €[0, T]}) is defined as in (4.2) (or (2.1)) with
coefficients 0 and b which satisfy also assumptions (H. ). The first part of the proof allow us
to conclude that Proposition 5 holds under (H). Hence the LDP is checked. O

5. Applications

In this section we discuss two different applications of Theorem 1.

5.1. Stochastic differential equations driven by a fractional Brownian
motion

For any H in (0, 1) the fractional Brownian motion of index H, {W/, t = 0} is the unique
centred Gaussian process whose covariance kernel is given by

Vi
Ru(s, 1) = (2 4+ 21 — |1 = 5P,

where Vy is the normalizing constant
~ I'(2 — 2H)cos(tH)

.
" nH(1 —2H)

It is known that the fractional Brownian motion admits the representation
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t
wH = J Ku(t, s)dwy, (5.1)
0

where Kpy(t, s) is the square root of the covariance operator:

1

Ry(s, 1) = JOKH(S, r)Kg(t, r)dr.

More precisely,

(t—nf=2 (1 1 1 t
Kpylt,y=——-F\-—-H H—-, H+-,1—-]1
H( P 7”) F(H-i-%) P ) 2’ +25 , [0’[)(7‘),

where F is the Gauss hypergeometric function. We refer to Decreusefond and Ustiinel (1999)
and the references therein for a detailed presentation of these notions.

Following the work of Coutin and Decreusefond (1997), by a stochastic differential
equation driven by a fractional Brownian motion we mean an equation of the form

t t
X =0+ | Kt b6, X0 ds+ | Knlr, 966, X0 d., (5.2)
0 0

where b and & are deterministic functions and {W;; t = 0} is the standard Brownian motion
appearing in the representation (5.1).

Assume that G and b are bounded measurable functions Lipschitz in x. Then, the
coefficients

o(t, s, x) = Ky(t, s)a(s, x),
b(t, s, x) = Kp(t, s)b(s, x)

satisfy assumptions (H) in Theorem 1 provided % < H <. As a consequence, from Theorem
1 we deduce an LDP for a family of processes obtained by small perturbations of equation
(5.2).

5.2. Hyperbolic stochastic partial differential equations

Let T = [0, 11> and {W,,, (s, 1) € T} be a Wiener sheet. Consider the hyperbolic stochastic
partial differential equation

azXq t 8 s,t 8X§ t
= ~ , H——, 53
Bs01 as Tl 0, (5-3)
with deterministic initial condition X, = xo if (s, ) € T, s.t = 0.
We assume the following set of assumptions (F):

(F1) a;: T — R, i=1,2 are bounded.
(Fy) There exists a constant K >0 such that for all (s, 1) € T and i =3, 4

. X,
= a3(S, t) XS,[) WS,I + a4(sa tﬂ XS,T) + al(sa t)
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|ai(S’ Z y) - ai(Sp Z, x)| = K|x - y|9

lai(s, t, 0)] < K.
A solution of (5.3) is a stochastic process {X., z € T} satisfying
Xo=t | ynlastn. 2, AW, + astr. X, dn)
R.

where 7 = (u, v), z = (s, t), R, denotes the rectangle [0, s] X [0, 7] and y.(%) is the Green
function associated with the second-order differential operator

Of(s, 1) _ of (s, 1) af (s, 1)
OsOt Os ot

Under assumptions (F), the Green function is bounded and Lipschitz continuous in the
variable z, uniformly in #, and we can prove the existence and uniqueness of a continuous
and adapted process {X., z € T} bounded in L?, for any p = 2.

Consider the family {X%, ¢>0} of processes that satisfy the equation

Tf(s, 1) = a(s, t)

ax(s, 1)

Xi=x+ JR v:(m{eas(n, X;) AWy + as(n, X;) dnp}. (54)

The coefficients
o(z, 1, x) = y=(n)as(n, x),

b(z, n, x) = y.(m)as(n, x)

satisfy conditions analogous to assumptions (H). Applying the same arguments as in the proof
of Theorem 1 we can establish the following result:

Theorem 9. Assume (F). The family {X*®, €>0} of solutions of (5.4) satisfies a large-
deviation principle on the space %, (T, R) (continuous functions which take the value xy in
the axes) with rate function

. 1 g
@)= mf{i u 9501

2

dsdz, o = S(g), g € 7/}

where

2

0
S(E) =0+ | Vz(ﬁ){aa(ﬂa S(8)m) 5= + as(. S(2)m) dn},

and 7 is the set of absolutely continuous functions g¢€ Zo(T,R) such that
| 710*g/0s01t|* ds dt < co.

This result is obtained in Rovira and Sanz-Solé (1997) assuming that a;, i = 3, 4, are
Lipschitz functions in all the variables, the derivatives das/ds, daz /0t and 9*a3/0tds exist
and are Lipschtiz functions, and a;, i = 1, 2, are differentiable with bounded derivatives.
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