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Suppose that U is a U -statistic of degree 2 based on N random observations drawn without

replacement from a ®nite population. For the distribution of a standardized version of U we construct

an Edgeworth expansion with remainder O(Nÿ1) provided that the linear part of the statistic satis®es a

CrameÂr type condition.
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1. Introduction and results

Let A � fa1, . . . , ang denote a population of size n and let H : A 3 A ! R denote

symmetric function of its two arguments. By X 1, . . . , X N , N < n, we denote random

variables with values in A such that X � fX 1, . . . , X Ng represents a random sample from

A of size N drawn without replacement, i.e. PfX � Bg � (n
N )ÿ1 for any subset B �A of

size N . We shall investigate the second-order asymptotics of the distribution of the statistic

U �
X

1<i< j<N

H (X i, Xj):

We assume that the statistic is centred. Write

U � L� Q, (1:1)

where

L �
XN

i�1

g1(X i) and Q �
X

1<i< j<N

g2(Xi, Xj)

are respectively the linear and the quadratic part of the statistic. Here

g1(x) � (N ÿ 1)t(x), t(x) � nÿ 1

nÿ 2
E(H (X 1, X2)jX 1 � x)

and
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g2(x1, x2) �H (x1, x2)ÿ t(x1)ÿ t(x2):

Since

E(g2(X 1, X 2)jX 1 � x) � 0, for all x 2A, (1:2)

the random variables g1(X i) and g2(X j, X k), 1 < i < N , 1 < j , k < N (and thus L and Q)

are uncorrelated. If the linear part L dominates the statistic, for large N , the distribution of U

can be approximated by a Gaussian distribution using the central limit theorem (CLT).

The asymptotic normality of linear statistics based on samples drawn without replacement

from ®nite populations has been studied by a number of authors. ErdoÂÂs and ReÂnyi (1959)

proved the CLT under very mild conditions. The rate of convergence in the CLT was ®rst

studied by Bikelis (1969). Berry±Esseen bounds of order O(Nÿ1=2) were obtained by

HoÈglund (1978). Robinson (1978) proved the validity of an Edgeworth expansion with a

remainder of order O(Nÿ3=2); see also Bickel and van Zwet (1978).

Nandi and Sen (1963) studied the asymptotic behaviour of ®nite-population U -statistics

and showed that under proper regularity conditions the sequence of distributions of

normalized U -statistics converges to the standard normal distribution. The rate of this

convergence was investigated by Zhao and Chen (1987; 1990), Kokic and Weber (1990;

1991) and, as a particular case of the rate of convergence of general multivariate sampling

statistics, by Bolthausen and GoÈtze (1993). In the case of independent and identically

distributed (i.i.d.) observations the second-order asymptotic theory has been developed for

U -statistics: see Bickel (1974), GoÈtze (1979), Callaert et al. (1980), Bickel et al. (1986)

and, for more general asymptotically normal symmetric statistics, Bentkus et al. (1997). In

contrast to the independent case, there are only a few results concerned with higher-order

asymptotics of nonlinear ®nite population statistics. Babu and Singh (1985) proved the

validity of an Edgeworth expansion with a remainder o(Nÿ1=2) for ®nite-population

multivariate sample mean and applied this result to establish expansions for statistics that

can be represented as smooth functions of multivariate sample means, e.g. Student's t.

Kokic and Weber (1990) established a one-term Edgeworth expansion with the remainder

o(Nÿ1=2) for ®nite-population U -statistics of degree 2.

By way of comparison to the results described above, we shall provide an explicit

remainder term of order O(Nÿ1) for ®nite population U -statistics which is optimal

assuming a CrameÂr condition on the linear term only. The proof is based on a ®nite-

population variant of Hoeffding's decomposition as well as the ErdoÂÂs±ReÂnyi representation

and some ideas due to Bentkus et al. (1997) such as data-dependent smoothing.

Assume that

ó 2 � N Eg2
1(X 1) . 0:

The distribution function of the standardized statistic, F(x) � PfU < xóg, will be

approximated by the one-term Edgeworth expansion,

G(x) � Ö
x���
q
p
� �

ÿ (qÿ p)qÿ1=2á� 3q1=2k
6ó 3 N 1=2

Ö-
x���
q
p
� �

: (1:3)

Here Ö(x) is the standard normal distribution function,
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p � N=n, q � 1ÿ p

and

á � N3=2Eg3
1(X 1), k � N 5=2Eg2(X1, X 2)g1(X1)g1(X2): (1:4)

We shall derive bounds for the remainder

Ä � sup
x2R

jF(x)ÿ G(x)j:

To prove the validity of an Edgeworth expansion, i.e. to establish bounds for Ä, in

addition to moment conditions one needs to impose a smoothness condition, cf. Bickel and

Robinson (1982). For instance, in the classical case of standardized sums S �
(Y1 � . . . � YN )=

�����
N
p

of i.i.d. random variables Y1, . . . , YN such that EY1 � 0, EY 2
1 � 1

and EY 4
1 ,1, asymptotic expansions for the distribution FS of S with remainder O(Nÿ1)

are obtained assuming CrameÂr's condition,

sup
j tj. a

jE expfitY1gj, 1: (C)

Bentkus et al. (1997) introduced a local version of CrameÂr's condition (C), namely,

rY1
(a, b) :� 1ÿ sup

a<j tj<b

jE expfitY1gj. 0: (C9)

Condition (C9) (with a � 1=EjY1j3 and b � N1=2) is somewhat weaker than (C) but still

suf®cient to prove the validity of Edgeworth expansions for FS up to order O(Nÿ1). This

modi®cation is useful in more general situations, where Y1 depends on N in an implicit way;

see Bentkus et al. (1997).

For a suf®ciently small absolute constant b1, say b1 � 0:0001, we shall assume that the

distribution of the random variable Z � �����
N
p

g1(X 1)=ó satis®es condition (C9) with

a9 � b1=EjZj3 and b9 � N1=2, i.e.

r � rZ(a9, b9) . 0: (1:5)

Write, for r � 1, 2, . . . ,

âr � EjN1=2 g1(X1)jr and ãr � EjN 3=2 g2(X 1, X 2)jr: (1:6)

Then the following estimate holds for the remainder Ä.

Theorem 1.1. There exists an absolute constant A . 0 such that

sup
x2R

jF(x)ÿ G(x)j < A

N

â4 � ã4

r2q2ó 4
:

For linear statistics we obtain the following result.

Theorem 1.2. There exists an absolute constant B . 0 such that
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����PfL < xg ÿÖ
x���
q
p
� �

� (qÿ p)qÿ1=2á

6ó3 N1=2
Ö-

x���
q
p
� ����� <

B

N

â4

r2qó 4
:

The estimates in Theorems 1.1 and 1.2 hold for any ®xed sample size N , population size n

and functions H . If â4=ó 4 and ã4=ó 4 are bounded and q and r are bounded away from 0

and N !1 and n!1, then these results establish Edgeworth expansions with the

remainder O(Nÿ1).

The case where n!1 and N is ®xed corresponds to the i.i.d. situation. By the law of

large numbers we obtain a corollary for independent observations. Let E denote a

measurable space and let X 1, X 2, . . . be i.i.d. random variables with values in E . Write

~U �
X

1<i< j<N

H (X i, X j):

Here H : E 3 E ! R denotes a measurable function symmetric in its two arguments such

that EH 2(X 1, X 2) ,1. We assume that E ~U � 0 and decompose

~U �
XN

i�1

~g1(Xi)�
X

1<i< j<N

~g2(X i, Xj):

Here ~g1 and ~g2 are de®ned in the same way as g1 and g2, but using ~t(x) �
E(H (X 1, X 2)jX 1 � x) instead of t(x). Let ~ó , ~á, ~âk , ~ãk , k � 2, 3, 4, and ~k denote the

moments of ~g1(X 1) and ~g2(X 1, X 2) corresponding to ó , á, âk , ãk and k. We shall assume

that

~r � rZ(~a, ~b) . 0, Z �
�����
N
p

~g1(X 1)=~ó ,

where ~a � b1=EjZj3 and ~b � �����
N
p

. Then we have:

Corollary 1.3. There exists an absolute constant A . 0 such that

jPf ~U < ~ó xg ÿÖ(x)� ~á� 3~k
6~ó 3 N1=2

Ö-(x)j < A

N

~â4 � ~ã4

~r2 ~ó 4
:

Hence Theorem 1.1, which yields this result as a special case, may be regarded as a partial

extension of the result of Bentkus et al. (1997) to a simple random sampling model. They

proved the validity of an Edgeworth expansion with remainder O(Nÿ1) for general symmetric

asymptotically normal statistics based on i.i.d. observations. In the case of U -statistics of

degree 2 their result yields the estimate as in Corollary 1.3 but with a lower moment ~ã3=~ó 3

instead of ~ã4=~ó 4 in the remainder.

An example given in Theorem 1.4 of Bentkus et al. (1997) shows that a CrameÂr type

condition on the linear part and the existence of moments of arbitrarily high order of the

linear and quadratic parts of the statistic (based on i.i.d. observations) are not suf®cient to

obtain higher-order approximations (those with remainders o(Nÿ1)) to the distribution

function of U . Hence, in this sense Corollary 1.3 and thus Theorem 1.1 are the best

possible. To prove the validity of an Edgeworth expansion with remainder o(Nÿ1), one
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needs in addition to impose a smoothness condition on the distribution of the quadratic

part; see, for example, Bickel et al. (1986).

Let us compare our results with those of Robinson (1978) and Kokic and Weber (1990).

Robinson (1978) proved the validity of a two-term Edgeworth expansion with remainder

O(Nÿ3=2) for linear statistics like L in (1.1) assuming the following CrameÂr type condition.

This condition, ®rst used in Albers et al. (1976), requires for a random variable Z that there

exists an å. 0 such that

ôZ(å, a, b) � 1ÿ sup
s2R,a<j tj<b

Pft Z 2 L å � sg. 0: (c)

Here L � f2ðr, r � 0, �1, �2, . . .g and B å denotes the å-neighbourhood of a set B � R.

Notice that å1 < å2 implies ôZ(å1, a, b) > ôZ(å2, a, b). Robinson assumed that given C9 . 0

there exist å, ä. 0 and C . 0 such that ô Z(å, a, b) . ä, (1:7)

for

Z �
�����
N
p

g1(X 1)=ó , aÿ1 � max
1<i<n

jzij=C9, bÿ1 � pEjZj5=(CN ):

Here fz1, . . . , zng denotes the set of values of the random variable Z. Note that

maxijzij � maxijzijEZ2 > EjZj3, because of EZ2 � 1. For a sequence of ®nite-population

linear statistics, say (Ln), Robinson's (1978) theorem establishes an Edgeworth expansion

with remainder O(Nÿ3=2) provided that â5=ó 5 is bounded, p and q are bounded away from 0

and (1.7) holds with å, ä and C not depending on n as n!1. Robinson's (1978) result was

used by Kokic and Weber (1990) to show Ä � o(Nÿ1=2). The bounds for the remainders in

these papers involve constants which implicitly depend on p.

In Section 2 we compare conditions (c) and (1.5). Proofs of Theorems 1.1 and 1.2 and of

Corollary 1.3 are given in Sections 3 and 4. Auxiliary results are gathered together in

Section 5.

2. Smoothness conditions

Modi®cations of CrameÂr's condition (C) that ensure the validity of Edgeworth expansions for

sums of random variables assuming a ®nite number of values only were considered by Albers

et al. (1976), van Zwet (1982), Does (1983) and Schneller (1989); see also Bickel and

Robinson (1982). In this section we show that a CrameÂr type condition used in Albers et al.

(1976) and Robinson (1978) is equivalent to that introduced in Bentkus et al. (1997) ±

namely, that the conditions (1.5) and (c) are equivalent. More speci®cally, given a random

variable Z and numbers 0 , a , b, (1.5) implies ôZ(r, a, b) . r=4. Furthermore, if (c) holds

for some å. 0, then rZ(a, b) . å2ô Z(å, a, b)=ð2; see Lemma 2.1 below.

In order to check condition (c) one needs to maximize a bivariate function over the set

(s, t) 2 [ÿð, ð] 3 fa < jtj < bg. Such a (maximization) problem can be dif®cult to solve

numerically. A symmetrization argument suggests a version of condition (c) which is easier

to check. Let Z9 denote an independent copy of Z and let Z� � Z ÿ Z9 denote a

symmetrization of Z. The condition
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there exists å. 0 such that ô�Z(å, a, b) � 1ÿ sup
a<j tj<b

Pft Z� 2 L åg. 0 (c�)

requires the estimation of the maximum of an univariate function only. Condition (c�) was

proposed by V. Bentkus. Notice that å1 , å2 implies ô�Z(å2, a, b) < ô�Z(å1, a, b). The

following lemma shows that conditions (c�) and (c) are equivalent. Write

äZ(a, b) � 1ÿ supfE cos(t Z � s) : s 2 R, a < jtj < bg: (2:1)

Lemma 2.1 Let Z be a random variable. For 0 , a , b and 0 , å,ð, write

r � rZ(a, b), ôå � ôZ(å, a, b) ô�å � ô�Z(å, a, b), u � ðÿ1åô�å , v � ðÿ1åôå:

The following inequalities hold:

å2ôå
ð2

< r < 4ôr,
å2ô�å
ð2

< r < 4ô�r , ô�v >
å2ôå
2ð2

, ôu >
å2ô�å
4ð2

, äZ(a, b) > r:

The proof of Lemma 2.1 is elementary; see Bloznelis and GoÈtze (1997).

3. Proofs

Throughout this section and the next we shall assume without loss of generality that â2 � 1.

Since the proof of our main result, Theorem 1.1 is rather complex and involved we shall ®rst

outline the various steps.

In the ®rst step, choosing m � ln N , we replace the statistic U by

U1 � L9� U 9, U 9 � g1(X m�1) � . . . � g1(X N )�
X

m�1<i , j<N

g2(Xi, X j), (3:1)

where

L9 � l(X1) � . . . � l(X m),

with

l(x) � g1(x)� l0(x), l0(x) �
XN

j�m�1

g2(x, X j),

is a conditionally linear statistic given X m�1, . . . , X N . Write

FX (x) � PfU1 < xjX m�1, . . . , X Ng, f 1(t) � E(expfitU1gjX m�1, . . . , XN ):

In the second step we construct upper/lower bounds for conditional probabilities

FX (x�) <
1

2
� VP

�
R

expfÿixtg 1

H
K

t

H

� �
f 1(t) dt,

FX (xÿ) >
1

2
ÿ VP

�
R

expfÿixtg 1

H
K
ÿt

H

� �
f 1(t) dt,
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where F(x�) � limz#x F(z), F(xÿ) � limz"x F(z) and VP denotes Cauchy's principal value

(Prawitz's (1972) smoothing lemma). The bounded weight function K(t=H), vanishing for

jtj. H , and the cut-off H � O(N ) are speci®ed below. Taking expectations of the left- and

right-hand sides respectively, we obtain upper and lower bounds for the distribution function

F1(x) � PfU1 < xg; see (3.7) and (3.8) below.

In the third step we construct a bound for the integral of f 1(t)K(t=H) over the region

cN 1=2 < jtj < H . In the classical linear statistic case the bounds for the characteristic

function for large values of t, like cN1=2 < jtj < CN , are implied by CrameÂr's condition

(C). We write

j f 1(t)j < jE(expfit(l(X 1) � . . . � l(Xm))gjX m�1, . . . , X N )j
and show that the CrameÂr condition jE expfitg1(X 1)gj, 1ÿ r (we do not require

jE expfitl(X 1)gj, 1ÿ r), in combination with a suitable choice of the cut-off

H � H(X m�1, . . . , X N ) implies a bound like j f 1j < (1ÿ cr)m, for some 0 , c , 1. The

techniques are somewhat complicated by the fact that X1, . . . , Xm are exchangeable only and

we get the independence via the ErdoÂÂs-ReÂnyi decomposition for (conditional and

unconditional) characteristic functions.

In the next step we interchange the conditional characteristic function with the

unconditional one by changing the order of integration with respect to Lebesgue measure

and with respect to the distribution of X m�1, . . . , X N , for jtj < CN 1=2. Finally, by means of

expansions we estimate the difference between the Fourier±Stieltjes transforms of F and G.

Our proofs may be considered as an extension to the case of ®nite-population statistics of

techniques used by Bentkus et al. (1997) in the i.i.d. case. We remark that the approach

developed in the present paper also applies to more general nonlinear symmetric statistics

based on samples drawn without replacement from ®nite populations. These results will

appear elsewhere.

3.1. Notation

By C, C0, C1, . . . and c, c0, c1, . . . we denote generic absolute constants. We shall write

A� B if A , CB. The expression expfixg will be abbreviated to efxg. Write

È(t) � 2

ð

ðÿ t

ð� t

� �2

, K � fa 2A : H1jg1(a)j, b2g, H1 � b1 N1=2

â3

: (3:2)

Here b1 is the same constant as in (1.5) and b2 denotes a suf®ciently small absolute constant.

Let í � fí1, . . . , íng be a sequence of independent Bernoulli random variables with

probabilities Pfíi � 1g � p and Pfíi � 0g � q, for i � 1, 2, . . . , n. Write

â(t) � Eef(í1 ÿ p)tg, ô � ��������
npq
p

, ä � ä(b1=â3, N1=2),

where ä(:, :) is de®ned by (2.1). Let �A � (A1, A2, . . . , An) denote a random permutation

which is uniformly distributed on the permutations of the ordered set (a1, . . . , an) of

elements of A, independent of í. By E� we denote the conditional expectation given �A, i.e.

E�(:) � E(:j �A). Fo k � 1, 2, . . . , write Ùk � f1, . . . , kg and Dk � ÙNnÙk . Given
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D � fi1, i2, . . . , ikg � Ùn, E i1,:::,i k and E D denote the conditional expectation given

Ai1 , . . . , Aik
.

3.2 Proof of Theorem 1.1

We may and shall assume that, for suf®ciently small c0 . 0,

â4

qN
, c0,

ln N

äN
, c0,

ã2

ä2q2 N
, c0,

ln N

äqn
, c0: (3:3)

Indeed, if (3.3) fails, then the bound of Theorem 1.1 follows from the inequalities F(x) < 1,

jG(x)j � 1� qÿ1=2â1=2
4 =N1=2 � q1=2ã2=N 1=2 and r < ä; see Lemma 2.1.

Step 1. Fix an integer m � C0äÿ1 ln N, with suf®ciently large C0, and write

Ëm �
X

1<k , l<m

g2(X k , X l): (3:4)

Note that U � Ëm � U1, where U1 is given by (3.1). Let F1 denote the probability

distribution function of U1 and Ä1 � supxjF1(x)ÿ G(x)j. We have

Ä < Ä1 � PfjËmj > Nÿ1äÿ3=2g � äÿ3=2 Nÿ1max
x
jG9(x)j:

By Chebyshev's inequality and the inequality EjËmj3 � m6Ejg2(X 1, X 2)j3,
PfjËmj > Nÿ1äÿ3=2g < ä9=2 N 3EjËmj3 � äÿ3=2ã3 Nÿ3=2 ln6 N :

Finally, using the bound jG9(x)j � â4=q� ã2 we obtain

Ä� Ä1 � Nÿ1äÿ3=2(â4=q� ã2 � ã3): (3:5)

Therefore, in order to prove the theorem it suf®ces to bound Ä1.

Let k be an integer approximately equal to (N � m)=2. Put I 0 � fm� 1, . . . , Ng,
J 0 � ÙnnI 0, J 1 � J 0 [ fm� 1, . . . , kg and J 2 � J 0 [ fk � 1, . . . , Ng. Given �A,

de®ne (random) subpopulations Ai � fAk , k 2 J ig, i � 0, 1, 2, and let A�i be random

variables uniformly distributed in A i, i � 0, 1, 2, indpendent of í. Write

v1(a) �
XN

j�k�1

g2(a, A j), v2(a) �
Xk

j�m�1

g2(a, A j), (3:6)

H � Nä=(32qÿ1 N (È1 �È2)� 1), Èi � E�jvi(A�i )j, i � 1, 2:

Notice that È1 is a function of the random variables Ak�1, . . . , AN , and that È2 is a function

of Am�1, . . . , Ak .

Step 2. Split the sample as follows. Put Xj � A j, for m , j < N. The rest of the sample,

X 1, . . . , X m, is obtained by simple random sampling without replacement from the

(random) subpopulation A0.

An application of Prawitz's (1972) smoothing lemma conditionally, given X m�1, . . . , X m,

or equivalently, given Am�1, . . . , AN , gives
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F1(x�) <
1

2
� EVP

�
R

efÿxtg 1

H
K

t

H

� �
f 1(t) dt, (3:7)

F1(xÿ) >
1

2
ÿ EVP

�
R

efÿxtg 1

H
K
ÿt

H

� �
f 1(t) dt, (3:8)

where 2K(s) � K1(s)� iK2(s)=(ðs); see, for example, Bentkus et al. (1997). Here

K1(s) � Ifjsj < 1g(1ÿ jsj) and K2(s) � Ifjsj < 1g(1ÿ jsj)ðs cot(ðs):

Combining (3.7) and the inversion formula,

G(x) � 1

2
� i

2ð
lim

M!1
VP

�
j tj<M

efÿtxgĜ(t)
dt

t
, (3:9)

we obtain (see, for example, Bentkus et al. 1997)

F1(x�)ÿ G(x) < EI1 � EI2 � EI3, (3:10)

I1 � 1

2
Hÿ1

�
R

efÿxtgK1

t

H

� �
f 1(t) dt,

I2 � i

2ð
VP

�
R

efÿxtgK2

t

H

� �
( f 1(t)ÿ Ĝ(t))

dt

t
,

I3 � i

2ð
VP

�
R

efÿxtg K2

t

H

� �
ÿ 1

� �
~G(t)

dt

t
,

where VP means also that one should take limM!1 if necessary.

Combining (3.8) and (3.9), we obtain a bound for G(x)ÿ F1(ÿx) similar to (3.10). We

shall bound F1(x�)ÿ G(x) only. To this end, we prove that

jEI1j � jE(I2 � I3)j � Nÿ1(â4=q� äÿ1(äÿ1 � qÿ1)� äÿ2qÿ2(ã1=2
2 � ã2)� ã4): (3:11)

The analogous bound for G(x)ÿ F1(xÿ) can be derived in the same way. Using these

bounds, (3.5) and the inequality ä > r (see Lemma 2.1), we obtain the estimate of the

theorem. in the remaining part of the prooof we verify (3.11).

Step 3: Estimate for jEI1j. We shall replace the random bound H in the integral I1 by a

non-random one and K1(t=H) by 1. We have jEI1j < jEI4j � EI5, where

I4 � Hÿ1

�
Z

efÿtxgK1

t

H

� �
f 1(t) dt, Z � ft 2 R : jtj < H1g,

I5 � Hÿ1

�
H1<j tj

K1

t

H

� �
j f 1(t)j dt < Hÿ1

�
H1<j tj< H

j f 1(t)j dt:

Next we construct bounds for EI5 and jEI4j; see (3.12) and (3.19) below. It follows from

these bounds that jEI1j does not exceed the right-hand side of (3.11).

Let us show
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EI5 � Nÿ2â3: (3:12)

For this purpose we represent f 1(t) in ErdoÂÂs and ReÂnyi (1959) form conditionally, given

Am�1, . . . , AN . Let í� � fí�1 , . . . , í�ng be a sequence of independent Bernoulli random

variables independent of �A and with probabilities

Pfí�i � 1g � p�, Pfí�i � 0g � q�, p� � m

nÿ (N ÿ m)
, q� � 1ÿ p�:

Write S� �
P

k2J 0
(í�k ÿ p�) and L� �

P
k2J 0

l(Ak)í�k . We have

f 1(t) � Pÿ1fS� � 0g 1

2ð

�ð
ÿð

W ds, W � E�eft(L� � U 9)� sS�g: (3:13)

We shall construct an upper bound for jW j. We have

jW j �
Y

k2J 0

jâ�(z(Ak)� tv(Ak))j, â�(x) � Eef(í�1 ÿ p�)xg:

Here we denote

z(a) � tg1(a)� s and v(a) � v1(a)� v2(a),

with vi(a) given by (3.6). Then we apply the identity jâ�(x)j2 � 1ÿ 2 p�q�(1ÿ cos x) to

x � z(a)� tv(a) and expand the cosine function in powers of tv(a) to obtain

jâ�(z(a)� tv(a))j2 < u1(a)� u2(a), (3:14)

u1(a) � 1ÿ 2 p�q�(1ÿ cos(z(a))), u2(a) � 2 p�q�jtv(a)j:
Furthermore, we may assume that p� < 8ÿ1 (this is a consequence of the last inequality of

(3.3) provided that c0 is small enough). This inequality implies u1(a) > 1=2 and, therefore,

u1(a)� u2(a) < u1(a)(1� 2u2(a)): (3:15)

Combining (3.14) and (3.15), we obtain

jW j2 < W1W2, W1 �
Y

k2J 0

u1(Ak), W2 �
Y

k2J 0

(1� 2u2(Ak)): (3:16)

To estimate W2, we apply the arithmetic-geometric mean inequality,

W2 <
1

jJ 0j
X
k2J 0

(1� 2u2(Ak))

0@ 1AjJ 0j

� (E�(1� 2u2(A�0 )))nÿN�m, (3:17)

and use (5.2) to bound E�jv(A�0 )j < qÿ1(È1 �È2). Thus, for jtj < H, we obtain

E�(1� 2u2(A�0 )) < 1� 4 p�q�qÿ1 H(È1 �È2) < 1� p�q� ä
8

< exp p�q� ä
8

� �
:

This inequality, in combination with (3.17), implies W
1=2
2 < expfmq�ä=16g. Now in view of

(3.16) and (3.13) we obtain, for jtj < H,

j f 1(t)j � W3W
1=2
1 , W3 � m1=2 expfmq�ä=16g:
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Here we have estimated Pÿ1fS� � 0g � m1=2; see (5.16). We have

EI5 <
1

H1

E

�
H1<j tj< H

j f 1(t)j dt <
W3

H1

�
H1<j tj<N

EW
1=2
1 dt: (3:18)

To bound EW
1=2
1 we apply HoÈlder's inequality and Theorem 4 of Hoeffding (1963),

(EW
1=2
1 )2 < EW1 < (Eu1(A1))jJ 0j;

see Section 5 below. Note that Eu1(A1) < 1ÿ 2 p�q�ä, for H1 < jtj < N, by the choice of

ä. Therefore,

EW
1=2
1 < (1ÿ 2 p�q�ä)(nÿN�m)=2 < expfÿp�q�ä(nÿ N � m)g � expfÿmq�äg:

Combining this bound with (3.18) and using the inequality q� � 1ÿ p� > 7=8, we obtain

(3.12), provided that the constant C0 (in the de®nition of m) is suf®ciently large.

We must now bound EI4. We shall show

jEI4j �R0, R0 � Nÿ1äÿ2(1� qÿ2ã2)� Nÿ1äÿ1qÿ1(1� qÿ1ã1=2
2 ): (3:19)

It follows from the inequality jK1(u)ÿ 1j < juj that

I4 � I6 � R, I6 � Hÿ1

�
Z

efÿtxg f 1(t) dt, (3:20)

EjRj < EHÿ1

�
Z
jtjHÿ1 dt � H2

1EHÿ2 �R0,

where in the last step we have applied (5.1). Recall that U � U1 �Ëm. Now, using the

inequality jeftËmg ÿ 1j < jtËmj, we obtain

I6 � I7 � R, I7 � Hÿ1

�
Z

efÿtxg f 2(t) dt, f 2(t) � E Dm eftUg, (3:21)

EjRj < EHÿ1

�
Z

E Dm jtËmj dt < H2
1EHÿ1jËmj �R0,

where in the last step we have used the inequality jËm Hÿ1j < Ë2
m � Hÿ2 and moment

inequalities (5.1) and (5.3). Next we replace I7 by

I8 � Hÿ1

�
Z0

efÿtxg f 2(t) dt, Z0 � fC1qÿ1 < jtj < H1g, (3:22)

where C1 is a suf®ciently large constant. We have I7 � I8 � R with jRj < 2C1qÿ1 Hÿ1.

HoÈlder's inequality, in combination with (5.1), gives EjRj �R0.

It remains to estimate EI8. Write I8 � 32qÿ1äÿ1(J1 � J2)� äÿ1 J3, where

J i �
�

Z0

efÿtxg f 2(t)Èi dt, i � 1, 2, J3 � Nÿ1

�
Z0

efÿtxg f 2(t) dt:

In order to complete the prooof of (3.19), we shall show

EJ i � Nÿ1(1� ã2), i � 1, 2, 3: (3:23)
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Let us prove (3.23) for i � 1, 2. By symmetry, it suf®ces to consider the case where i � 1.

Recall that the random variable È1 is a function of X k�1, . . . , X N . In view of the inequality

k � (N � m)=2 . m, we can write

EÈ1 f2(t) � EÈ1 f 3(t), f 3(t) � E(eftUgjX k�1, . . . , X N ): (3:24)

Given t 2Z0, choose an integer m1 � C2 N tÿ2 ln jtj. Here C2 is a suf®ciently large constant

to be speci®ed later. Given C2, we may choose C1 in (3.22) large enough so that

m1 , 10ÿ1qN , k, for t 2Z0. Write J 3 � Ùm1
\ (ÙnnÙN ). We shall represent our sample

X 1, . . . , X N as follows. For m1 � 1 < j < N, put X j � A j. The remaining part of the sample

(the observations X1, . . . , X m1
) represents a simple random sample drawn without

replacement form the set A3 � fAk , k 2 J 3g. Let A�3 be a random variable uniformly

distributed in A3. Put

v3(a) �
XN

k�m1�1

g2(a, A j) and È3 � E�jv3(A�3 )j: (3:25)

Notice that the random variable È3 is a function of Am1�1, . . . , AN .

Write U � U ?
1 �Ëm1

, where U ?
1 � L9? � U 9?, with

L9? � l?(X1) � . . . � l?(X m1
), l?(x) � g1(x)� l?0(x), l?0(x) �

XN

j�m1�1

g2(x, Xj),

and with U 9? de®ned by (3.1), but with m replaced by m1. Furthermore, Ëm1
is given by (3.4).

Using the inequality jeftËm1
g ÿ 1j < jtËm1

j, we obtain

EÈ1 f 3(t) � EÈ1 f 4(t)� R1, f 4(t) � E(eftU�1 gjX k�1, . . . , X N ), (3:26)

where jR1j < EjtËm1
jÈ1. Furthermore, combining (3.24) and (3.26), we obtain

EJ1 � EJ4 � R, J4 �
�

Z0

efÿtxg f 4(t)È1 dt, (3:27)

jRj <
�

Z0

EjtËm1
jÈ1 dt� Nÿ1ã2:

In the last step we invoke (5.1), (5.3) and apply HoÈlder's inequality to obtain

EjËm1
jÈ1 < (EË2

m1
)1=2(EÈ2

1)1=2 � m1 Nÿ5=2ã2 � tÿ1 ln jtjNÿ3=2ã2

and bound the integral of the function jtjÿ1 ln jtj over the region Z0 by ln2 N.

To estimate EJ4 observe that, by the inequality m1 , k,

EÈ1 f4 � EÈ1 f 5, f 5 � E(eftU 9?gjX m1�1, . . . , X N ):

Therefore, EJ4 � EJ5, where J5 is de®ned in the same way as J4 (see (3.27)) but with f4

replaced by f 5. Furthermore,

EJ5 � EJ6 � R, J6 �
�

Z0

efÿtxg f 5(t)È1 IÈ dt, (3:28)
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IÈ � IfNÈ3 < c1jtjg, jRj <
�

Z0

EÈ1 IfNÈ3 . c1jtjg dt� N EÈ1È3:

Here c1 denotes a small positive constant to be determined below. Combining (5.3) and

HoÈlder's inequality, we obtain jRj � Nÿ1ã2.

In order to bound EJ6 we represent f 5 in the ErdoÂÂs and ReÂnyi (1959) form; see (3.29).

Let í? � fí?1, . . . , í?ng be a sequence of independent Bernoulli random variables in-

dependent of �A and with probabilities

Pfí?i � 1g � p?, Pfí?i � 0g � q?, p? � m1

nÿ (N ÿ m1)
, q? � 1ÿ p?:

Write S? �
P

k2J 3
(í?k ÿ p?), L? �

P
k2J 3

l?(Ak)í?k and ô2
? � m1q?. We have

f 5(t) � ë?

�ðô?
ÿðô?

W? ds, W? � E�e t(L? � U 9?)� s

ô?
S?

� �
, (3:29)

with ëÿ1
? � 2ðô?PfS? � 0g satisfying ë? � 1, by (5.16).

Combining (3.28) and (3.29), we obtain

EJ6 �
�

Z0

dt

�ðô?
ÿðô?

EÈ1 IÈjW?j ds: (3:30)

In the next step we construct an upper bound for EÈ1 IÈjW?j. Note that the inequality

m1 , 10ÿ1qN implies p? < 10ÿ1. The same argument as above (see (3.16)) gives

jW?j2 < W ?
1W ?

2, W ?
1 �

Y
k2J 3

u?1(Ak), W ?
2 �

Y
k2J 3

(1� 2u?2(Ak)), (3:31)

where u?1 and u?2 are given by (3.14), but with p�, q�, z(a) and v(a) replaced by p?, q?,

z?(a) :� tg1(a)� s=ô? and v3(a) (de®ned in (3.25)) respectively.

To bound W ?
2 we proceed as in (3.17) and obtain

W ?
2 < (1� 2E�u?2(A�3 ))nÿN�m1 � (1� 4 p?q?jtjÈ3)nÿN�m1 < expf4m1q?jtjÈ3g:

Furthermore, by our choice of m1, IÈ(W ?
2)1=2 < expf2q?C2c1 ln jtjg. Therefore, in view of

(3.31),

EÈ1 IÈjW?j < expf2q?C2c1 ln jtjgEÈ1(W ?
1)1=2: (3:32)

Now we apply HoÈlder's inequality and invoke (5.1) to obtain

EÈ1(W ?
1)1=2 < (EÈ2

1)1=2(EW ?
1)1=2 � Nÿ1ã1=2

2 (EW ?
1)1=2: (3:33)

To bound EW ?
1 we apply Theorem 4 of Hoeffding (1963) and obtain

EW ?
1 < (Eu?1(A1))jJ 3j � (1ÿ 2 p?q?M)nÿN�m1 < expfÿ2m1q?Mg, (3:34)

where M � E(1ÿ cos z?(A1)). Combining the inequalities

M > E(1ÿ cos z?(A1))IK (A1), IK (a) � Ifa 2K g,
1ÿ cos z?(a) > 2ÿ1È(b2)z2

?(a), a 2K ,
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(see (5.15)) we get M > 2ÿ1È(b2)Ez2
?(A1)IK (A1). Now, by Lemma 5.3,

M > b3(t2 Nÿ1 � s2ôÿ2
? ), b3 � 2ÿ1È(b2)(1ÿ 2b1bÿ1

2 ),

is a positive constant (because of our choice of 0 , 2b1 , b2 in (1.5) and (3.2)). Substituting

this inequality in (3.34) and using q? � 1ÿ p? > 9=10, we obtain

EW ?
1 < expfÿ2b3 m1q?(t2 Nÿ1 � s2ôÿ2

? )g < expfÿ2b3( 9
10

C2 ln jtj � s2)g: (3:35)

Finally, collecting the inequalities (3.32), (3.33) and (3.35) in (3.30), we obtain

EJ6 � Nÿ1ã1=2
2

�
Z0

dt

�ðô?
ÿðô?

expfC2(2c1 ÿ 9
10

b3) ln jtj ÿ b3s2g ds: (3:36)

Choosing c1 � b3=4 and C2 � 4=b3, we obtain bounded integrals in (3.36), and thus

EJ6 � Nÿ1ã1=2
2 < Nÿ1(1� ã2). This inequality, together with (3.27) and (3.28), completes

the proof of (3.23) in the case where i � 1.

The proof of (3.23) in the case where i � 3 is similar but simpler: just write Nÿ1 instead

of È1 in the proof above.

Collecting the bounds (3.20), (3.21), (3.22) and (3.23), we obtain (3.19).

Step 4. Estimate for jE(I2 � I3)j. Write I2 � I3 � i(2ð)ÿ1(I9 � I10 ÿ I11 � I12), where

I9 �
�
j tj< H1

efÿtxg f 1(t)ÿ Ĝ(t)

t
dt, I10 �

�
H1<j tj< H

efÿtxgK2

t

H

� �
f 1(t)

dt

t
,

I11 �
�
j tj. H1

efÿtxgĜ(t)
dt

t
, I12 �

�
j tj< H1

efÿtxg K2

t

H

� �
ÿ 1

� �
f 1(t)

dt

t
:

Using (3.3), it is easy to show that jEI11j � qÿ1â4=N � ã2=N . Using the inequality

jK2(s)ÿ 1j < cs2, and invoking (5.1), we obtain

jEI12j � EHÿ2 H2
1 � äÿ2 Nÿ1(1� qÿ2ã2):

To bound jEI10j write

jEI10j < EI13, I13 �
�

H1<j tj< H

j f 1(t)j dt

jtj :

The bound EI13 � Nÿ1â3 is obtained in a similar way as (3.12) above. Collecting these

inequalities, we obtain

jE(I2 � I3)j � jEI9j � Nÿ1qÿ1â4 � Nÿ1äÿ2(1� qÿ2ã2): (3:37)

In order to complete the proof of (3.11) we shall show that

jEI9j � äÿ2 Nÿ1(1� ã2)� Nÿ1(qÿ1â4 � ã4): (3:38)

We have

EI9 �
�
j tj< H1

efÿtxg(EeftU1g ÿ Ĝ(t))
dt

t
:
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Recall that U1 � U ÿËm. Write eftU1g � eftUgefÿtËmg and expand efÿtËmg in powers

of ÿitËm to obtain EI9 � I14 ÿ iI15 � R, where

I14 �
� H1

ÿH1

efÿtxg F̂(t)ÿ Ĝ(t)

t
dt, I15 �

� H1

ÿH1

efÿtxgEËmeftUg dt,

and where jRj < H2
1EË2

m � äÿ2 Nÿ1ã2, by (5.3). By symmetry, EI15 � (m
2 )EI16, where I16 is

de®ned in the same way as I15, but with Ëm replaced by g2(X Nÿ1, XN ). the bound

EI16 � Nÿ3=2(1� ã2) is obtained in a similar way to (3.23): just take ~f3 �
E(eftUgjX Nÿ1, X N ) instead of f 3 and g2(X Nÿ1, XN ) instead of È1 in the proof of (3.23)

(for i � 1). We obtain

jEI9 ÿ I14j � äÿ2 Nÿ1(1� ã2):

In the next section on expansions (see (4.1) below) we shall show jI14j � Nÿ1(â4=q� ã4),

thus completing the proof of (3.38).

3.3. Proof of Theorem 1.2

The bound of the theorem follows from (3.11). Just note that for a linear statistic we have

g2(x, y) � 0, for any x, y 2A. In particular, we do not need to assume that the last two

inequalities of (3.3) hold.

3.4. Proof of Corollary 1.3

The corollary follows from Theorem 1.1, by the law of large numbers (LLN) for U-statistics;

see, for example, Ser¯ing (1980). Given N , the function H and a sequence of i.i.d.

observations X 1, X 2, . . . , introduce the sequence of ®nite populations An �
fX 1, . . . , X ng and the corresponding sequence of U -statistics, (U n). Given x 2 R, apply

the bound of Theorem 1.1 to the sequence of probabilities Pnfxg � PfUn < xg. By the LLN,

we obtain limn Pnfxg � Pf ~U < xg. Furthermore, the moments of the linear and quadratic

parts of Un in the expansion and in the remainder (in the estimate of Theorem 1.1) converge

to the corresponding moments of the statistics ~U , thus proving Corollary 1.3.

4. Expansions

As in the previous section, we assume that â2 � 1 and that inequalities (3.3) hold. With H1

given in (3.2), in this section we shall prove the inequality�
j tj< H1

jtjÿ1jF̂(t)ÿ Ĝ(t)j dt�R, R :� 1

N

â4

q
� ã4

� �
: (4:1)

We introduce some notation. Let è1, è2, . . . denote independent random variables
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uniformly distributed in [0, 1] and independent of all other random variables considered.

For a vector-valued smooth function H we use the Taylor expansion

H(x) � H(0)� H9(0)x � . . . � H (n)(0)
x n

n!
� Eè1

H (n�1)(è1x)(1ÿ è1)n x n�1

n!
:

Here Eè1
denotes the conditional expectation given all the random variables but è1. In

particular, we have the mean value formula, H(x)ÿ H(0) � Eè1
H9(è1x)x.

Given a sum S � s1 � . . . � sk , denote S(i) � S ÿ si and, similarly, S(i, j) � S ÿ si ÿ s j.

Using the fact that the distribution of U coincides with the conditional distribution of

U0 :�
X

1<i , j<n

h(Ai, A j)íií j

�
Xn

i�1

g1(Ai)(íi ÿ p)�
X

1<i , j<n

g2(Ai, A j)(íi ÿ p)(í j ÿ p),

conditioned on the event B :� fS0 � Ng, where S0 �
Pn

i�1íi, we obtain

F̂(t) � 1

2ðPfBg
�ð
ÿð

EeftU0 � s(S0 ÿ N )g ds;

see ErdoÂÂs and ReÂnyi (1959). Write

T �
Xn

i�1

Ti, Ti � zi(íi ÿ p), zi � txi � sôÿ1, xi � g1(Ai), ô � (npq)1=2,

Q �
X

1<i , j<n

Qi, j, Qi, j � tyi, j(íi ÿ p)(í j ÿ p), yi, j � g2(Ai, A j):

We have T � Q � tU0 � sôÿ1(S0 ÿ N ) and, therefore,

F̂(t) � ë

�ðô
ÿðô

EefT � Qg ds, ëÿ1 � 2ðôPfBg:

HoÈglund (1978) showed that 2ÿ1=2ð < ëÿ1 < (2ð)1=2; see (5.16). We shall approximate the

integrand EefT � Qg by the sum h1 � h2, where

h1 � Eeftg, h2 � i3
n

2

� �
EefT (1,2)gV , V � Q1,2T1T2:

To prove (4.1) it clearly suf®ces to prove the inequalities�
j tj< H1

����ë�jsj<ðô
(h1 � h2) dsÿ Ĝ(t)

���� dt

jtj �R, (4:2)

I :�
�
j tj< H1

ë

�
jsj<ðô

jEefT � Qg ÿ (h1 � h2)j ds
dt

jtj �R: (4:3)

Note that in the i.i.d. case the inequality corresponding to (4.2) is proved in Lemma 6.1 of

Bentkus et al. (1997). We prove (4.2) by combining the proof of this lemma with the proof of
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the Berry±Esseen bound for the ®nite-population sample mean given in HoÈglund (1978). For

details we refer to Lemma 4.3 of Bloznelis and GoÈtze (1997).

To prove (4.3), we expand efT � Qg in powers of Ti and Qi, j. In order to ensure the

integrability (with respect to the measure ds dt=jtj) of the remainders of these expansions

we split EefT � Qg into a product of two functions (different for different values of s and

t) so that the ®rst one is the characteristic function of a sum of conditionally independent

random variables and vanishes suf®ciently fast as s and t tend to in®nity. This type of

approach has been used earlier by Helmers and van Zwet (1982), van Zwet (1984), GoÈtze

and van Zwet (1991) and Bentkus et al. (1997) in the i.i.d. situation.

Introduce the set Z � f(s, t) : jsj < ðô, jtj < H1g. For technical reasons it is convenient

to split the integral I in two parts I � I1 I2 according to the regions Z �Z1 [Z2,

Z1 �Z \ fjtj < C3qÿ1g and Z2 �Z \ fC3qÿ1 , jtj < H1g: (4:4)

Here C3 denotes a suf®ciently large absolute constant. We choose C3 � 600Èÿ1(1). In

Lemma 4.1 we prove the bound I2 �R. The proof of the bound I2 �R is similar but

simpler. We skip it and refer to Lemma 4.2 Bloznelis and GoÈtze (1997) for details. It remains

to prove Lemma 4.1.

Note that, for any i, j, i1, . . . , ik 2 Ùn such that fi, jg \ fi1, . . . , ikg � Æ we have

E i1,:::,i k jyi, jjr < c(k, r)Ejyi, jjr, E i1,:::,i k jxjjr < c(k, r)Ejxjjr, r > 0: (4:5)

We need to introduce some more notation. Given D � fi, j, . . . , kg � Ùn, let EfDg �
Efi, j,:::,kg and E[D] � E[i, j,:::,k] denote the conditional expectation given all the random

variables but fí j, j 2 Dg and the conditional expectation given fí j, A j, j 2 Dg,
respectively. Given 1 < m < n, introduce the random variables

îi � t(íi ÿ p)æm(Ai), æm(a) �
Xn

j�m�1

g2(a, A j)(í j ÿ p): (4:6)

Here i 2 Ùm and a 2AnfAm�1, . . . , Ang. Given B � Ùm, denote

YB � EfBge
X
i2B

Ti

( )�����
�����, Z B � EfBge

X
i2B

(Ti � îi)

( )�����
�����:

Furthermore, given Ai, i 2 B, let A�B denote the random variable uniformly distributed in the

set fAi, i 2 Bg and let E�B denote the conditional expectation given all the random variables

but A�B. Introduce the random variables

ØB � gB(t)
Y
k2B

u
1=2
[1] (zk), kB � áN E�Bæ2

m(A�B), I B � IfkB . äg, (4:7)

where á � 2ð(4Èÿ1(1)� 1) and ä � È(1)=40 are constants,

gB(t) � exp pq
ä

2

jBj
N

t2

� �
, u[d](x) � 1ÿ pq

2
È(d)x2 Ifjxj, d � ðg, d . 0: (4:8)

In Lemma 5.4 below, for jtj < H1 and jsj < ðô, we prove the inequalities
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Z B � I B �ØB, YB � ØB, E i1,:::,i4Ør
B � F r

B, r � 1, 2, (4:9)

where i1, . . . , i4 2 ÙnnB. Here we denote

FB � expfÿ8äpqjBjNÿ1(t2 � s2=q)g:
We often take jBj > m=4, with m given by (4.13). In this case we have

FB < (t2 � s2=q)ÿ10: (4:10)

Lemma 4.1. Assume that â2 � 1 and that (3.3) holds. Then

I2 � ë

�
Z2

jEefT � Qg ÿ (h1 � h2)j
jtj ds dt�R, (4:11)

where Z2 is given by (4.4).

Proof. Given a positive number L and a complex-valued function f (s, t), we write f � L if�
Z2

j f (s, t)ktjÿ1 ds dt� L:

Furthermore, for two complex-valued functions f , g we write f � g if f ÿ g �R. In view

of the inequality ë < 21=2ðÿ1, (4.11) can be abbreviated as follows:

EefT � Qg � h1 � h2: (4:12)

Given (s, t) 2Z2 wirte u � t2 � s2=q and let

m � m(s, t) . C4qÿ1 nuÿ1 ln u, C4 � 300Èÿ1(1), (4:13)

denote the smallest integer which is greater than C4qÿ1 nuÿ1 ln u. A simple calculation shows

that C4 < m(s, t) < C4Cÿ1
3 n, for (s, t) 2Z2. Since C4 � C3=2 we have 10 < m(s, t) <

n=2.

Write ì :� mpqNÿ1 � C4uÿ1 ln u. We shall often use the following fact,

(t2)á(s2)âìã � qâ�1=2c(á, â, ã), for ã.á� â� 1
2
, á, â > 0:

In what follows B always denote the set f4, . . . , mg. R, R1, R2 . . . will denote random

variables (remainders) which may be different in different places. This will not cause any

misunderstanding if we assume that R, R1, R2 . . . always take the latest prescribed values.

Let us prove (4.12). Split Q � QA � QD � î and T � TA � TD, where

QA �
X

1<i , j<m

Qi, j, QD �
X

m , i , j<N

Qi, j, î �
X

1<i<m

îi,

TA �
X

1<i<m

Ti, TD �
X

m , i<N

Ti,

and where the îi are given by (4.6). Furthermore, write W � TD � QD. We have T � Q

� TA � QA � î� W and efT � Qg � vefQAg, with v � efW � TA � îg. Expanding in

powers of iQA and using symmetry, we obtain
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EefT � Qg � f �1 � f �2 � R, F�1 � Ev, f �2 � i
m

2

� �
EvQ1,2, (4:14)

with jRj < EQ2
A. By symmetry, we have

EQ2
A �

m

2

� �
p2q2 t2Ey2

1,2 < ì2 t2 Nÿ1ã2 �R:

Now (4.14) implies efT � Qg � f �1 � f �2 .

The rest of the proof consists of two steps. In the ®rst step we show that

f �2 � h3, h3 � i3
m

2

� �
EefT (1,2)gV : (4:15)

In the second step we prove

f �1 � h1 � h4, where h4 � h2 ÿ h3: (4:16)

Step 1. We start by showing

f �2 � f �3 , f �3 � i
m

2

� �
Ev1Q1,2, v1 � efW � TA � î(1,2)g: (4:17)

Write v � v1efî1 � î2g. expanding the exponent in powers of (î1 � î2), we obtain

f �2 � f �3 � f �4 � f �5 � f �6 , f �j � i2 m

2

� �
Ev1Q1,2 l j, j � 4, 5, 6,

l4 � î1 � î2, l5 � (î2
1 � î2

2)v2, l6 � 2î1î2v2, v2 � i2efè1(î1 � î2)g(1ÿ è):

In order to prove (4.17) we shall show f �i � 0, for i � 4, 5, 6.

To show f �6 � 0, we bound jv1v2j < 1 and obtain

j f �6 j < m2EjQ1,2î1î2j � m2 p2q2jtj3Ejy1,2æm(A1)æm(A2)j:
Combining the inequalities jæm(A1)æm(A2)j < æ2

m(A1)� æ2
m(A2) and

Ejy1,2jæ2
m(Ai) � pq(nÿ m)Ejy1,2jy2

i,n < qNÿ7=2ã3, i � 1, 2,

and the bound jtj < N 1=2, we obtain j f 6j � ì2 t2ã3 Nÿ1 �R.

Let us show f �5 � 0. By symmetry, it suf®ces to show m2Ev1v2Q1,2î
2
1 � 0. Expanding the

exponent in v2 in powers of ièî2 and then the exponent in v1 in powers of iT2 we obtain

jEv1v2Q1,2î
2
1j < R1 � R2, R1 � EjQ1,2î2jî2

1, R2 � EjQ1,2T2jî2
1:

Invoking (4.45) and the inequality jtj < N 1=2, we obtain

m2 R1 � ì2 t4 Nÿ5=2ã4 �R, m2 R2 � ì2 t2 Nÿ1(1� ã4) �R,

thus completing the proof of f �5 � 0.

Let us show f �4 � 0. By symmetry, it suf®ces to show m2 R � 0 with R � Ev1Q1,2î1.

Expanding v1 in powers of iT2, we can replace v1 by iT2v3, with v3 � efW �
T

(2)
A � î(1,2) � è1T2g. Now, using the simple bound jEfBgv3j < Z B, we obtain
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jRj < ER1 R2, R1 � jQ1,2T2j, R2 � E[1,2]jî1jZ B: (4:18)

First we bound R2. By HoÈlder's inequality,

R2 < R3 R4, R2
3 � E[1,2]î

2
1, R2

4 � E[1,2] Z2
B: (4:19)

Furthermore, by (4.9), R2
4 < 2R2

5 � 2R2
6, where

R2
5 � E[1,2] I

2
B < äÿ1E[1,2]kB � E[1,2]kB, R2

6 � E[1,2]Ø
2
B < F2

B: (4:20)

Combining (4.20) with the relations (which follow from symmetry and (4.5))

E[1,2]î
2
1 � pq(nÿ m)(í1 ÿ p)2 t2E1,2 y2

1,n � q(í1 ÿ p)2 t2 N E1,2 y2
1,n, (4:21)

E[1,2]kb � áN E[1,2]æm(A4)2 � áN (nÿ m) pqE1,2 y2
4,n � qNÿ1ã2, (4:22)

we obtain

R3 R5 � qjí1 ÿ pktjã1=2
2 ~ã1=2

2 and R3 R6 � N1=2q1=2jí1 ÿ pktj~ã1=2
2 FB: (4:23)

Here we denote ~ã2 � E1,2 y2
1,n. using the ®rst inequality of (4.23), we obtain

m2ER1 R3 R5 � m2 p2q3 t2ã1=2
2 Ejy1,2j~ã1=2

2 jz2j,
and invoking the second inequality of (4.47), we obtain

m2ER1 R3 R5 � ì2 t2 Nÿ1ã3=2
2 �R, (4:24)

Using the second inequality of (4.23), we obtain

m2ER1 R3 R6 � m2 p2q5=2 N 1=2 FB t2Ejy1,2j~ã1=2
2 jz2j,

and invoking the ®rst inequality of (4.47) and (4.10), we obtain

m2ER1 R3 R6 � ì2 Nÿ1 FB t2(jtjq1=2 � jsj)ã2 �R: (4:25)

Since, by (4.18) and (4.19), jRj � ER1 R3 R5 � ER1 R3 R6, it follows from (4.24) and (4.25)

that m2 R � 0.

In the next step we show that

f �3 � f �7 , f �7 � i3 m

2

� �
Ev4V , v4 � efw� T

(1,2)
A � î(1,2)g: (4:26)

Substitute v1 � v4efT1 � T2g in f �3 . Furthermore, using the expansion

efT1� T2g � (1� T2� T2
2efè1T2g(1ÿ è1))efT1g

� efT1g� T2(1� T1� T2
1efè2T1g(1ÿ è2))� T 2

2efè1T2g(1ÿ è1)(1� T1efè3T1g),
(4.27)

we obtain Ev1Q1,2 � Ev4V � R1 � R2, with jRij < EZ BjVTij, i � 1, 2. Therefore, in order to

prove (4.26) it remains to show m2 Ri � 0, for i � 1, 2. By symmetry, it suf®ces to show

m2 R1 � 0.

It follows from (4.9) and (4.22) that
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jR1j < EjVT1jkB � EjVT1jØB � (Nÿ1qã2 � Fb)EjVT1j: (4:28)

Combining (4.46) and the inequalities jtj < N1=2 and jsj < (Nq)1=2, we obtain

EjVT1j � p2q2jtj(jtj � jsjqÿ1=2)Nÿ2(â4 � ã4)1=2:

Therefore,

m2 Nÿ1qã2EjVT1j � ì2(t2 � s2)Nÿ1(â4 � ã4) �R:

Finally, (4.46) in combination with (4.10) yields m2 FB EjVT1j �R, and this inequality, in

view of (4.28), completes the proof of (4.26).

Now we show

f �7 � f �8 , f �8 � i3
m

2

� �
Ev5V , v5 � efW � T

(1,2)
A g, (4:29)

Expanding v4 in powers of iî(1,2), we obtain

Ev4V � Ev5V � iEv5Vî(1,2) � R, with jRj < E(î(1,2))jV j: (4:30)

Write jRj < EjV jE[1,2](î(1,2))2. By symmetry and (4.5),

E[1,2](î
(1,2))2 � p2q2(mÿ 2)(nÿ m)t2E1,2 y2

3,n � ìqt2 Nÿ1ã2:

Now invoking (4.31) ± see below ± and the bound jtj < N1=2, we obtain

m2jRj � ì3 t2(t2 � s2)Nÿ1ã2(ã2 � 1) �R:

This inequality, together with (4.30), implies f �7 � f �8 � f �9 , where

f �9 � i4
m

2

� �
Ev5Vî(1,2) � i4 m

2

� �
(mÿ 2)Ev5Vî3,

in symmetry. In order to prove (4.29) it remains to show f �9 � 0, to which we now turn.

Expanding v5 in powers of iT3 we obtain jEv5Vî3j < EYBjVî3T3j. Now, using (4.9), we

obtain

j f �9 j < m3Ejv5Vî3T3j < m3 FB EjVî3T3j < m3 FB EjV jE1,2jî3T3j:
Finally, invoking (4.10) and the bounds (which follow from symmetry and (4.5))

EjV j < (EQ2
1,2)1=2(ET 2

1T2
2)1=2 < p2q2jtj(t2 � s2=q)Nÿ5=2ã1=2

2 , (4:31)

E1,2jî3T3j < (E1,2î2
3)1=2(E1,2T2

3)1=2 < pqjtj(jtj � jsj)Nÿ3=2ã1=2
2 ,

we obtain f �9 �R.

Let us show that f �8 � h3. Expanding v5 in powers of iQD, we obtain

Ev5V � Ev6V � iEv6V QD � R, v6 � efT (1,2)g, (4:32)

with jRj < EYBjV jQ2
D. Note that, by symmetry,

EYBjV jQ2
D �

nÿ m

2

� �
t2 p2q2EYBjV jy2

nÿ1,n: (4:33)
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Invoking (4.9) and then using (4.5), we obtain

EYBjV jy2
nÿ1,n < FB EjV jy2

nÿ1,n < FB Nÿ3ã2EjV j: (4:34)

Combining (4.33) and (4.34) and then invoking (4.31) and (4.10), we obtain m2 R �R. Now

it follows from (4.32) that f �8 � h3 � f �10, where

f �10 � i4 m

2

� �
Ev6VQD � i4

m

2

� �
(nÿ m)Ev6VQnÿ1,n,

by symmetry.

We complete the proof of (4.15) by showing that f �10 � 0. Expanding v6 in powers of

iTnÿ1 and iTN, we obtain jEv6VQnÿ1,nj � EjV�V jYB, where we denote V� �
T nÿ1TnQnÿ1,n. Furthermore, using (4.9) and then invoking the simple inequality

E1,2jV�j � EjV�j, we obtain

EjV�V jYB � FB EjV�V j � FB EjV�jEjV j � FB(EjV j)2:

Therefore, j f �10j < m2(nÿ m)FB(EjV j)2. Finally, an application of (4.31) and (4.10) yields

f �10 �R, thus completing the proof of (4.15).

Step 2. In order to prove (4.16) it suf®ces to show that

f �1 � f �11 � f �12, f �11 � Ev7, f �12 � iEv7î, v7 � efT � QDg, (4:35)

f �11 � h1 � f �13, f �13 �
nÿ m

2

� �
i3EefT (1,2)gV , (4:36)

f �12 � f �14, f �14 � m(nÿ M)i3Eeft(1,2)gV : (4:37)

We begin by expanding v in powers of iî, to obtain

f �1 � f �11 � f �12 � f �15, with f �15 � i2Ev7î
2efè1îg(1ÿ è1):

In order to prove (4.35), we shall show f �15 � 0. Split

Ùm � S1 [ S2 [ S3 [ S4,

with Si \ S j � Æ, i 6� j, and jS jj � m=4, 1 < j < 4. Split î � ä1 � . . . � ä4, where ä j �P
i2S j

îi. We have

f �15 �
X

1< j,k<4

r j,k , r j,k � i2Ev7ä jäkefè1îg(1ÿ è1):

We shall show r j,k � 0, for every 1 < j, k < 4. By symmetry, it suf®ces to prove r1,1 � 0 and

r1,2 � 0.

Let us show r1,1 � 0. expanding in powers of iè1ä2, we obtain

efè1îg � v8 � iä2v8~v, v8 � efè1(ä1 � ä3 � ä4)g, ~v � è1Eè2
efè1è2ä2g:

Substitution of this formula gives

r1,1 � R1 � R2, R1 � i2Ev7v8ä
2
1(1ÿ è1), R2 � i3Ev7v8~vä2

1ä2(1ÿ è1):
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Similarly, expanding v8 in powers of iè1ä3, we obtain R2 � R3 � R4, where

R3 � i3Ev7v9ä
2
1ä2~v(1ÿ è1), v9 � efè1(ä1 � ä4)g, jR4j < Eä2

1jä2ä3j:
Therefore, jr1,1j < jR1j � jR2j � jR3j. Furthermore, invoking the inequalities jEfs2gv7v8j <
YS2

and jEfS3gv7v9~vj < YS3
, we obtain

jr1,1j < r1 � r2 � r3, r1 � Eä2
1YS2

, r2 � Eä2
1jä2jYS3

, r3 � Eä2
1jä2ä3j: (4:38)

Now we show ri � 0, for i � 1, 2, 3. Denote for brevity mi � jSij, 1 < jij < 4.

Let us show r2 � 0. By symmetry,

EfS1gä
2
1 � m1 pqt2æ2

m(A1), EfS2gä
2
2 � m2 pqt2æ2

m(Ai0 ), (4:39)

with i0 2 S2. Combining (4.39) and the inequality EfS2gjä2j < (EfS2gä
2
2)1=2 and using

symmetry again, we obtain

r2 � EYS3
(EfS1gä

2
1)EfS2gjä2j < m1 m

1=2
2 ( pq)3=2jtj3Eæ2

m(A1)jæm(Ai0 )jYS3

� m3=2( pq)3=2jtj3Ejæm(A1)j3YS3
: (4:40)

In the last step we applied (4.44) and again used symmetry. Furthermore, invoking (5.4) and

using symmetry and (4.9), we obtain

Ejæm(A1)j3YS3
� N1=2 pq(nÿ m)Ejy1,nj3YS3

< Nÿ3 FS3
ã3:

this inequality, in combination with (4.40) and (4.10), implies r2 � 0.

To show r1 � 0 we use symmetry, and apply (4.9) and (4.10):

r1 � m1 t2 p2q2(nÿ m)Ey2
1,nYS2

� t2 FS2
Nÿ1ã2 �R: (4:41)

To show r3 � 0, we ®rst use (4.44) to obtain r3 < Eä2
1ä

2
2 � Eä2

1ä
2
3 and then apply (4.48).

Finally, collecting the bounds ri �R, i � 1, 2, 3 in (4.38) we get r1,1 � 0.

Let us show r1,2 � 0. Expanding in powers of iè1ä3 and iè1ä4, we obtain

efè1îg � v10 � v10v11iè1ä3, v10 � efè1(ä1 � ä2 � ä4)g, v11 � Eè2
efè1è2ä3g,

v10 � v12 � v12v13iè1ä4, v12 � efè1(ä1 � ä2)g, v13 � Eè3
efè1è3è4g:

Combining these expansions, we obtain

efè1îg � v10 � v11v12iè1ä3 � v11v12v13i2è2
1ä3ä4:

The last identity, in combination with the bounds jEfS3gv7v10j < YS3
and

jEfS4gv7v11v12j < YS4
, implies

r1,2 < Ejä1ä2jYS3
� Ejä1ä2ä3jYS4

� Ejä1ä2ä3ä4j

< Eä2
1YS3
� Eä2

2YS3
� Eä2

1jä2jYS4
� Eä2

3jä2jYS4
� Eä2

1ä
2
2 � Eä2

3ä
2
4: (4:42)

In the last step we used the simple inequality ab < a2 � b2 several times. Note that the

quantities in (4.42) can be bounded in the same way as r1, r2, and r3 above in the proof of

r1,1 � 0. Hence, r1,2 � 0 and this completes the proof of (4.35).
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Let us prove (4.36). Expanding v7 in powers of iQD, we obtain

f �11 � h1 � f �16 � R, f �16 � iEefTgQD,

with jRj < EYBQ2
D. Furthermore, by symmetry,

f �16 �
nÿ m

2

� �
iEefTgQ1,2 and EYBQ2

D �
nÿ m

2

� �
p2q2 t2EYB y2

nÿ1,n:

Combining (4.9) and (4.10), we obtain R �R and, therefore, f �11 � h1 � f �16.

Let us show f �16 � f �13. Write efTg � efT (1,2)gefT1 � T2g and use (4.27) to obtain

EefTgQ1,2 � i2EefT (1,2)gV � R1 � R2, with jRij � EjV TijYB: (4:43)

By (4.9), jRij � FB EjVTij. Furthermore, invoking (4.46) and (4.10) we obtain n2 Ri �R,

i � 1, 2. These bounds, together with (4.43), imply f �16 � f �13, thus completing the proof of

(4.36).

Let us prove (4.37). By symmetry, f �12 � miEv7î1. Expanding v7 in powers of iT1, we

obtain

f �12 � f �17 � R1, f �17 � mi2EefT (1) � QDgî1T1, jR2j < mEYBjî1jT 2
1:

Furthermore, expanding the exponent in powers of iQD, we obtain

f �17 � f �18 � R2, f �18 � mi2EefT (1)gî1T1, jR2j < mEYBjî1T1QDj:
Note, that by symmetry, f �18 � m(nÿ m)i2EefT (1)gQ1,2T1. Finally, expanding the exponent

in powers of iT2, we obtain

f �18 � f �14 � R3, with jR3j < n(nÿ m)EYBjVT2j:
Therefore in order to prove (4.37) it remains to show Ri �R, for i � 1, 2, 3.

To show R1 �R use the inequality jî1jT 2
1 < î2

1 � T 4
1. We obtain jR1j < R1,1 � R1,2, with

R1,1 � mEYBT4
1 and R1,2 � mEYBî

2
1. By (4.9) and (4.10), R1,1 �R. Furthermore, the

bound R1,2 �R is obtained in the same way as (4.41).

To show R2 �R use the inequality jî1T1QDj < î2
1 � T2

1Q2
D. We get jR2j < R2,1 � R2,2,

with R2,1 � mEYBî
2
1 �R (cf. (4.41)) and with

R2,2 � mEYBT2
1Q2

D � m
nÿ m

2

� �
EYBT2

1Q2
nÿ1,n < mn2 FB ET 2

1Q2
n-1,n,

by symmetry and (4.9). Now, combining (4.10) and the inequality

ET2
1Q2

nÿ1,n � p3q3 t2Ez2
1E1 y2

nÿ1,n � p3q3 t2(t2 � s2=q)Nÿ4ã2,

(here we use (4.5)) we obtain R2,2 �R.

To show R3 �R we apply (4.9) to obtain R3 < nmFB EjVT2j. Then combining (4.46)

and (4.10) we obtain R3 �R. We arrive at (4.37), thus completing the proof of the

lemma. h

In the next lemma we gather together some auxiliary inequalities used in Lemma 4.1. We

shall frequently use the inequalities
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ab < a2 � b2, a2b < a3 � b3: (4:44)

Lemma 4.2 We have

EjQ1,2î2jî2
1 � p2q3 t4 Nÿ9=2ã4, EjQ1,2T2jî2

1 � p2q3jtj3 Nÿ7=2(1� ã4), (4:45)

EjQ1,2T2T2
1j � p2q2jtj(jtj3 � jsj3qÿ3=2)Nÿ3(â4 � ã4)1=2, (4:46)

Ejy1,2x2j~ã1=2
2 � Nÿ7=2ã2, Ejy1,2z2j~ã1=2

2 � Nÿ3ã2, ~ã2 � E1,2 y2
1,n, (4:47)

Eä2
Kä

2
M � p2q2 t2 m2 Nÿ3ã4, for any K, M � Ùm, K \ M � Æ, (4:48)

with jKj, jM j. 0. Here äK �
P

i2Kîi.

Proof. Let us prove (4.45). We have

EjQ1,2î2ä
2
1j � p2q2 t4Ejy1,2æm(A2)jæ2

m(A1) < 2 p2q2 t4Ejy1,2æ
3
m(A1)j,

where in the last step we apply (4.44) and use symmetry. Furthermore, writing

Ejy1,2æ
3
m(A1)j � Ejy1,2jE1,2jæ3

m(A1)j and invoking (5.4), we obtain the ®rst inequality in

(4.45). To prove the second inequality we apply (4.21),

EjQ1,2T2jî2
1 � EjQ1,2T2jE[1,2]î

2
1 < p2q3 N jtj3Ey2

1,njy1,2z2j,
and use the inequality Ey2

1,njy1,2z2j < Nÿ9=2(1� ã4). To prove this inequality combine (4.5),

HoÈlder's inequality and the bounds

jy1,2z2j <
�����
N
p
jy1,2x2j � jy1,2j, jy1,2x2j < N y2

1,2 � Nÿ1x2
2:

Let us prove (4.46). We have EjQ1,2T2jT2
1 < p2q2jtjEjy1,2z2jz2

1. Now (4.46) follows from

the bound

Ejy1,2z2jz2
1 < (jtj3 � t2jsjqÿ1=2 � jtjs2=q� jsj3qÿ3=2)Nÿ3(â4 � ã4)1=2

which is a consequence of the following inequalities:

z2
1jz2j < (t2x2

1 � s2=ô2)jz2j, Ejy1,2x2j < (Ey2
1,2)1=2(Ex2

2)1=2 < Nÿ2ã1=2
2 ,

Ejy1,2x2jx2
1 < (Ey2

1,2x2
1)1=2(Ex2

1x2
2)1=2 < Nÿ1(Ey4

1,2Ex4
1)1=4 < Nÿ3(â4 � ã4)1=2,

Ejy1,2jx2
1 < (Ey2

1,2x2
1)1=2(Ex2

1)1=2 < Nÿ1=2(Ey4
1,2Ex4

1)1=2 < Nÿ5=2(â4 � ã4)1=2:

Let us prove (4.47). By (4.44), jy1,2x2j~ã1=2
2 < Nÿ1=2 y2

1,2 � N 1=2x2
2~ã2. Now invoking (4.5),

we obtain the ®rst inequality of (4.47). To prove the second one, write

Ejy1,2z1j~ã1=2
2 < N1=2Ejy1,2x2j~ã1=2

2 � Ejy1,2j~ã1=2
2

(where we have used the bounds jtj < N 1=2 and jsj < ô) and apply HoÈlder's inequality to the

second summand.

Let us prove (4.48). By symmetry,
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Eä2
Kä

2
M � jKkM j p2q2 t4Eæ2

m(A1)æ2
m(A2): (4:49)

A simple calculation yields

Eæ2
m(A1)æ2

m(A2) < pq(nÿ m)Nÿ6ã4 � p2q2(nÿ m)(nÿ mÿ 1)Nÿ6ã2
2 � Nÿ4ã4:

Substituting this bound in (4.49) and using the inequalities jKj, jM j, m and t2 < N, we

obtain (4.48). h

5. Auxiliary results

Lemma 5.1. For the random variables vi and Èi, i � 1, 2, 3, de®ned in (3.6) and (3.25)

above, the following inequalities hold:

EÈ2
i < Nÿ2ã2, i � 1, 2, 3, (5:1)

E�jvi(A�0 )j < qÿ1Èi, i � 1, 2: (5:2)

For Ëm �
P

1<i , j<m g2(Ai, A j), with 3 < m < n, we have

EË2
m �

m(mÿ 1)

2N3
(1ÿ cË)ã2, cË � 2(mÿ 2)

nÿ 2
ÿ (mÿ 2)(mÿ 3)

(nÿ 2)(nÿ 3)
: (5:3)

For the random variable æm(Ak) de®ned in (4.6), the inequality

Efm�1,:::,ngjæm(Ak)j3 � pq(npq)1=2
Xn

j�m�1

jg2(Ak , A j)j3, K < m < n, (5:4)

holds; recall the de®nition of Efm�1,:::,ng just before (4.6).

Proof. We shall prove (5.1) for case i � 1 only. For i � 2, 3 the proof is similar. By HoÈlder's

inequality,

È2
1 < E�v2

1(A�1 ) �
X

k�1<i, j<N

E� g2(A�1 , Ai)g2(A�1 , A j):

By symmetry,

EE� g2(A�1 , Ai)g2(A�1 , A j) � Eg2(A1, Ai)g2(A1, A j),

and therefore,

EÈ2
1 < (N ÿ k)Eg2

2(A1, A2)� (N ÿ k)(N ÿ k ÿ 1)Eg2(A1, A2)g2(A1, A3):

Now, invoking the identity

Eg2(A1, A2)g2(A1, A3) � ÿ(nÿ 2)ÿ1Eg2
2(A1, A2), (5:5)

(use (1.2)) we complete the proof of EÈ2
1 < Nÿ2ã2.

To prove (5.2) we combine the obvious inequality jJ ij=jJ 0j < qÿ1 and the inequalities
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E�jvi(A�0 )j � jJ 0jÿ1
X
k2J 0

jvi(Ak)j < jJ 0jÿ1
X
k2J i

jvi(Ak)j < Èi

jJ ij
jJ 0j , i � 1, 2:

Let us prove (5.3). By symmetry, EË2
m � 2ÿ1(mÿ 1)mEg2(A1, A2)Ëm. Furthermore,

Eg2(A1, A2)Ëm � Eg2
2(A1, A2)� 2(mÿ 2)Eg2(A1, A2)g2(A1, A3)

� 2ÿ1(mÿ 2)(mÿ 3)Eg2(A1, A2)g2(A3, A4):

Now, invoking (5.5) and the identity

Eg2(A1, A2)g2(A3, A4) � 2(nÿ 2)ÿ1(nÿ 3)ÿ1Eg2
2(A1, A2),

(use (1.2)) we obtain (5.3).

In order to prove (5.4) we apply Rosenthal's inequality,

EjZ1 � . . . � Z jjr < c(r)
Xj

l�1

EjZ ljr � c(r)
Xj

l�1

EZ2
l

 !r=2

, r > 2,

where Z1 . . . , Z j are independent and centred ransom variables. We apply this inequality to

the sum æm(Ak) ± cf. (4.15) ± conditionally given �A,

Efm�1,:::,ngjæm(Ak)j3 � pq
Xn

l�m�1

jg2(Ak , Al)j3 � pq
Xn

l�m�1

g2
2(Ak , Al)

 !3=2

:

Finally, using HoÈlder's inequality, we bound the second sum above by

Xn

l�m�1

g2
2(a, Al)

 !3=2

< (nÿ m)1=2
Xn

l�m�1

jg2(a, Al)j3, a 2A,

thus arriving at (5.4). h

Lemma 5.2. For each 0 , d ,ð and x, y 2 R, and â(x) de®ned in Section 3.1, we have

jâ(x� y)j2 < u[d](x)v[d](y), where v[d](y) � 1� pq
2ð

d

4

È(d)
� 1

� �
y2,

and where the function u[d] id de®ned in (4.8).

Proof. In the case where jxj > ð� d, we have u[d](x) � 1 and the desired inequality follows

from the simple bound jâ(x� y)j < 1.

In the case where jxj,ð� d, we apply the mean value theorem to obtain

jcos(x� y)ÿ cos(x)j < jE sin(x� è1 y)yj

< (jxj � jyj)jyj < cx2 � (cÿ1 � 1)y2: (5:6)

In the last step we applied the inequality jxyj < cx2 � cÿ1 y2, with c . 0. Combining (5.6)

and the indentity jâ(x� y)j2 � 1ÿ 2 pq(1ÿ cos(x� y)), we obtain
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jâ(x� y)j2 < 1ÿ 2 pq(1ÿ cos(x)ÿ cx2 ÿ (cÿ1 � 1)y2):

Now invoking (5.15), we obtain

jâ(x� y)j2 < w1 � w2, w1 � 1ÿ pq(È(d)ÿ 2c)x2, w2 � (cÿ1 � 1)2 pqy2:

But 1ÿ pqx2È(d) > d=ð, for jxj < ð� d. Hence, w1 . d=ð and therefore w1 � w2 <
w1(1� ðdÿ1w2). Choosing c � È(d)=4 completes the proof of the lemma. h

Lemma 5.3. Assume that â2 � 1. For every s, t 2 R and 0 , d ,ð, we have

EZ2(A1)I [d](A1) >
t2

N
� s2

� �
(1ÿ 2c[d]), c[d] � max

b1

d
;

b2
1

d2

� �
:

Here Z(a) � tg1(a)� s and I [d](a) � IfH1jg1(a)j, dg, for a 2A.

Remark. A similar inequality was used by HoÈglund (1978), where the constatnt

(corresponding to c[d]) was not speci®ed. For our purposes the dependence of cd on the

parameters b1 and d is important and thus we include the proof.

Proof. Denote K [d] � fk : I [d](ak) � 0g. Clearly, for r . 0,

jK [d]j �
X

k2K [d]

1 <
X

k2K [d]

jg1(ak)H1=djr < nârâ
ÿr
3 br

1dÿr: (5:7)

Furthermore, since EZ2(A1) � t2 Nÿ1 � s2, we have

EZ2(A1)2 I [d](A1) � t2

N
� s2 ÿ W nÿ1, W �

X
k2K [d]

Z2(ak): (5:8)

The inequality (a� b)2 < 2a2 � 2b2 implies W < 2W1 � 2W2, where

W1 � s2jK[d]j, W2 � t2
X

k2K [d]

g2
1(ak) <

t2

N
n2=3â2=3

3 jK [d]j1=3:

In the last step we applied HoÈlder's inequality to obtain

X
k2K [d]

g2
1(ak) <

X
k2K [d]

jg3
1(ak)j

0@ 1A2=3

jK [d]j1=3:

Now, (5.7) (with r � 2) implies W1 < s2 ncd . Furthermore, (5.7) (with r � 3) implies

W2 < t2 Nÿ1 ncd . These inequalities, combined with (5.8), complete the proof. h

Lemma 5.4. Assume that â2 � 1 and that (3.3) holds. For jtj < H1 and jsj < ðô, the

inequalities (4.9) hold true.

Proof. Throughout this proof we use the notation introduced in Section 4. Fix B � Ùm. By

Lemma 5.2,
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Z B �
Y
k2B

jâ(zk � tæm(Ak))j < ç1ç2, ç2
1 �

Y
k2B

u[1](zk), ç2
2 �

Y
k2B

v[1](tæm(Ak)):

Using the inequality 1� x < expfxg, we obtain ç2
2 < expfpqt2kBjBj=Ng and therefore,

(1ÿ I B)ç2 < gB(t). Finally, combining the inequalities Z B < 1 and Z B < ç1ç2, we obtain

Z B � I B Z B � (1ÿ I B)Z B < I B � (1ÿ I B)ç1ç2 < I B �ØB,

thus proving the ®rst inequality in (4.9). Here the random variables ØB � ç1 g B(t), kB and I B

are de®ned in (4.7) and the function g B(t) is given by (4.8).

Clearly, Lemma 5.2 (with x � zk and y � 0) implies the second inequality of (4.9).

To prove the third and last one, observe that by HoÈlder's inequality we have

E i1,:::,i4ØB � (E i1,:::,i4Ø2
B)1=2 and thus, it suf®ces to show

E i1,:::,i4Ø2
B < F2

B, for every i1, . . . , i4 2 ÙnnB: (5:9)

To prove (5.9) note that the inequalities jtj < H1 and jsj < ðô imply

u[1](zk) < w(Ak), w(Ak) � 1ÿ pq

2
È(1)z2

k I [1](Ak), k 2 Ùn,

where we denote I [1](a) � IfH1jg1(a)j, 1g. Therefore,

Ø2
B � g2

B(t)ç2
1 < g2

B(t)ç, where ç �
Y
k2B

w(Ak): (5:10)

Denote D1 � fi1, . . . , i4g and D2 � ÙnnD1. By Theorem 4 of Hoeffding (1963),

E i1,:::,i4ç < w
jBj� , where w� � 1ÿ pq

2
È(1)Ã�, Ã� � 1

jD2j
X
k2D2

z2
k I [1](Ak): (5:11)

Below we construct the following lower bound for Ã�,

Ã� >
9

10
t2 � s2

q

 !
1

N
: (5:12)

Combining (5.11), (5.12) and the inequality 1� x < expfxg we obtain ç <
expfÿ0:45 pqÈ(1)(t2 � s2=q)jBjNÿ1g. Now (5.9) follows from (5.10).

Let us prove (5.12). We have

Ã� � n

nÿ 4
Ez2

1 I [1](A1)ÿ 1

nÿ 4
M , M �

X
k2D1

z2
k I [1](Ak): (5:13)

The simple inequality (a� b)2 < 2a2 � 2b2 gives

M < 8s2=ô2 � 2t2 M1, M1 �
X
k2D1

g2
1(Ak): (5:14)

By HoÈlder's inequality and (3.3),
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M1 < 41=3
X
k2D1

jg1(Ak)j3
 !2=3

< 41=3â2=3
3 n2=3 Nÿ1 < (4c0)1=3 n

N
:

Here we have estimated â2
3=n < â4=n < c0; see (3.3). This inequality, in combination with

(5.14) implies M < 100ÿ1 n(t2 � s2=q)Nÿ1, provided that c0 in (3.3) is suf®ciently small.

Substituting this bound in (5.13) and invoking Lemma 5.3, we obtain (5.12) thus completing

the proof of the lemma. h

We have used, but not so far stated Hoeffding's (1963) Theorem 4. Consider a population

P of n numbers p1, . . . , pn. Let X 1, . . . , X N denote a random sample without

replacement from P and let Y 1, . . . , Y N denote a random sample with replacement from

P . In particular, Y 1, . . . , Y N are independent random variables.

Theorem (Hoeffding 1963). If the function f (x) is continuous and convex then

E f
XN

k�1

X k

 !
< E f

XN

k�1

Y k

 !
:

We conclude this paper by stating two inequalities proved by HoÈglund (1978):

1ÿ cos v >
1

2
v2È(u), for jvj < ð� u and 0 < u < ð, (5:15)

ð1=2

2
<

n

N

� �
s N (1ÿ s)nÿN (2ðs(1ÿ s)n)1=2 < 1, with s � N

n
, (5:16)

where 1 < N < n.
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