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We extend the well-known P. LeÂvy theorem on the distributional identity (M t ÿ Bt , M t) '
(jBtj, L(B) t), where (Bt) is a standard Brownian motion and (M t) � (sup0<s< t Bs) to the case of

Brownian motion with drift ë. Processes of the type

dX ë
t � ÿë sgn(X ë

t ) dt � dBt

appear naturally in the generalization.
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1. Introduction

A classical result of Paul LeÂvy states that if B � (Bt)0< t<1 is a standard Brownian motion

(B0 � 0, EBt � 0, EB2
t � t) then

(M ÿ B, M) �law
(jBj, L(B)), (1)

i.e. ((M t ÿ Bt, M t); 0 < t < 1) �law
(jBtj, L(B) t; 0 < t < 1), where M � (M t)0< t<1, M t �

max0<s< t Bs, and L(B) � (L(B) t)0< t<1 is the local time of B at zero:

L(B) t � lim
E#0

1

2E

� t

0

1(jBsj<E) ds (2)

(see, for example, Revuz and Yor, 1994, Chapter VI).

The main aim of this note is to give an extension of the distributional property (1) to the

case of a Brownian motion with drift Bë, where Bë � (Bë
t )0< t<1, Bë

t � Bt � ët. Let us

denote Më � (Më
t )0< t<1, Më

t � max0<s< t B
ë
s .

For our presentation the process X ë � (X ë
t )0< t<1, de®ned as the unique strong solution of

the stochastic differential equation

dX ë
t � ÿë sgn X ë

t dt � dBt, X ë
0 � 0, (3)
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plays a key role. (Here sgn x is de®ned to be 1 on R�, ÿ1 on Rÿ and 0 at 0.) In particular,

we shall see that the process jX ëj � (jX ë
t j)0< t<1 realizes an explicit construction of the

process RBM(ÿë), i.e. a re¯ecting Brownian motion with drift (ÿët).

2. Main result

Theorem 1. For any ë 2 R

(Më ÿ Bë, Më) �law
(jX ëj, L(X ë)), (4)

i.e. ((Më
t ÿ Bë

t , Më
t ); 0 < t < 1) �law

(jX ë
t j, L(X ë) t; 0 < t < 1), where

L(X ë) t � lim
E#0

1

2E

� t

0

1(jX ë
s j<E) ds:

Proof. Denote by (Ù, F , (F t)0< t<1, P) a ®ltered probability space and let B � (Bt)0< t<1 be

a standard Brownian motion on (Ù, F , (F t)0< t<1, P). De®ne on (Ù, F ) a new probability

measure Pë:

dPë � eÿëB1ÿë2=2 dP (� eÿëBë
1�ë2=2 dP): (5)

By Girsanov's theorem (Revuz and Yor 1994; Liptser and Shirayev 1977),

Law(BëjPë) � Law(BjP): (6)

Denoting by C�[0, 1] the space of non-negative continuous functions on [0, 1] we obtain,

using (5), (6) and (1), that for any non-negative measurable functional G � G(x, y),

(x, y) 2 C�[0, 1] 3 C�[0, 1]:

E[G(Më ÿ Bë, Më)] � Eë[eëBë
1ÿë2=2G(Më ÿ Bë, Më)]

� E[eëB1ÿë2=2G(M ÿ B, M)] � E[eë(L(B)1ÿjB1j)ÿë2=2G(jBj, L(B))]: (7)

From another angle, let us introduce a new measure ~Pë:

d ~Pë � e
ë
� 1

0
sgnX ë

sdBsÿë2=2
dP � e

ë
� 1

0
sgnX ë

sdX ë
s�ë2=2

dP

� �
: (8)

Again by Girsanov's theorem,

Law(X ëj ~Pë) � Law(BjP): (9)

From (8) and (9) we ®nd that (with ~Eë denoting expectation with respect to ~Pë)

E[G(jX ëj, L(X ë))] � ~Eë e
ÿë
� 1

0
sgnX ë

s dX ë
sÿë2=2

G(jX ëj, L(X ë))

h i
� E e

ÿë
� 1

0
sgnBs dBsÿë2=2

G(jBj, L)

h i
: (10)

Now we note that by Tanaka's formula (Revuz and Yor 1994, Chapter VI)
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jBtj �
�1

0

sgn Bs dBs � L(B) t:

So, from (10)

E[G(jX ëj, L(X ë))] � E[eë(L(B)1ÿjB1j)ÿë2=2G(jBj, L(B))]: (11)

Comparing (7) and (11), we obtain (4). h

3. Study of X ë

In this section we consider some properties of the processes X ë and jX ëj. If ë � 0 then

X 0 � B, jX 0j � jBj and, as is well known, Law(jBj) � Law(RBM(0)), where RBM(0) is a

Brownian motion re¯ecting at zero (Revuz and Yor 1994, Chapter III; Ikeda and Watanabe

1981, Chapter IV). In this sense the process jBj gives an explicit construction of the re¯ecting

Brownian motion. We shall see below that for re¯ecting Brownian with drift the process jX ëj
plays the corresponding role.

Let us describe ®rst of all some properties of X ë and jX ëj from the point of view of the

general theory of Markov processes.

On a ®ltered probability space (Ù, F , (F t) t>0, P) for given ë 2 R and every x 2 R we

consider the stochastic process X x,ë � (X x,ë
t ) t>0 which satis®es the stochastic differential

equation

dX x,ë
t � ÿë sgn X x,ë

t dt � dBt, X x,ë
0 � x: (12)

This equation has a unique strong solution and, as a corollary (see Revuz and Yor 1994;

Chapter IX, Theorem 1.11), we also have uniqueness in law. Denote the corresponding

distribution of X x,ë on the space (C, C ) of continuous functions by Px,ë:

Law(X x,ëj P) � Px,ë: (13)

Denote also by (Të
t , t > 0) the set of operators given by

Të
t f (x) �

�
f (ct)Px,ë(dc), (14)

where f 2 B b(R) (the set of bounded Borel measurable real-valued functions de®ned on R)

and c � (ct) t>0 denotes the coordinate process, c 2 C.

If ô is a ®nite (F t) t>0-stopping time and A 2 F ô then

E[ f (X x,ë
ô� t)

. 1A] � E[Tt f (X x,ë
ô ) . 1A]: (15)

Indeed, from (12),

X x,ë
ô� t � X x,ë

ô ÿ ë

� t

0

sgn(X x,ë
ô�u) du� (Bô� t ÿ Bô): (16)

But Law(Bô� t ÿ Bô, t > 0jP) � Law(Bt, t > 0j P) and (Bô� t ÿ Bô) t>0 is independent of F ô

and so by the uniqueness in law of equation (12) we obtain (15).
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Thus the process X x,ë � (X x,ë
t ) t>0 is a time-homogeneous Markov process with transition

function (T ë
t (x, �), t > 0) de®ned above. From Karatzas and Shreve (1988), Chapter 6,

Result 6.5] it is known that T ë
t (x, dy) for all x and ë admits a density pë

t (yjx), i.e.

Të
t (x, dy) � pë

t (yjx) dy,

and, for example, for x > 0, ë > 0, the following formula holds:

pë
t (yjx) � 1��������

2ðt
p eÿ(xÿ yÿë t)2=2 t � ëeÿ2ë y

�1
x� y

eÿ(vÿë t)2=2 t dv

 !
, y > 0,

� 1��������
2ðt
p eÿ(2ëxÿ(xÿ y�ë t)2=2 t) � ëe2ë y

�1
xÿ y

eÿ(vÿë t)2=2 t dv

 !
, y , 0: (17)

This explicit form of the transition density can be used to show that X x,ë is a Feller process

± indeed this can also be deduced using Zvonkin's method (Revuz and Yor 1994, Chapter IX,

(2.11)).

Now we show that jX x,ëj is also a time-homogeneous Markov process. Indeed, sgn x is an

odd function and ftjX x,ë
t � 0g is P-a.s. a Lebesgue null set (it is clearly true for ë � 0, that

is, for (x� Bt) t>0, but the measures Px,0 and Px,ë are locally equivalent so it holds, in fact,

for any ë 2 R). Thus it follows that P-a.s.

ÿX x,ë
t � ÿxÿ ë

� t

0

sgn (ÿX x,ë
s ) dsÿ Bt, (18)

and by the uniqueness in law we then obtain

Law(ÿX x,ëjP) � Law(X ÿx,ëjP): (19)

Using the Markov property of X x,ë-processes this implies that for all s, t > 0, x 2 [0, 1) and

all bounded real-valued Borel functions f on [0, 1) we have, for any Ax 2 ó (jX x,ë
u j j u < s ),

E[ f (jX x,ë
s� tj), Ax] � E[ ~f (X x,ë

s� t), Ax] � E[Tt
~f (X x,ë

s ), Ax]

and

E[ f (jX x,ë
s� tj), Ax] � E[ f (j ÿ X x,ë

s� tj), Ax] � E[ f (jXÿx,ë
s� t j), Aÿx]

� E[ ~f (Xÿx,ë
s� t ), Aÿx] � E[Tt

~f (Xÿx,ë
s ), Aÿx]

� E[Tt
~f (ÿX x,ë

s ), Ax]: (20)

Here we have used the notation ~f (x) for f (jxj), x 2 R. We have thus shown that jX x,ëj is

indeed a Feller±Markov process.

Theorem 2. For each x 2 R� and ë 2 R,

Law(jX x,ëj) � Law(RBMx(ÿë)): (21)
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Proof. In Markov theory, as is well known (see, for example, Ikeda and Watanabe 1981,

Chapter IV, }5), the process RBMx(ÿë), called a Brownian motion with drift (ÿët) started at

x > 0 and re¯ected at zero, is a diffusion Markov process with in®nitesimal operator Aë

acting on functions

D (Aë) � f 2 C2
b([0, 1)),

d f

dx

����
x#0
� 0

( )

by the formula

Aë f (x) � 1
2
f 0(x)ÿ ë f 9(x): (22)

(It is well known that the operator Aë generates a unique (diffusion) family of measures

Qx,ë, x > 0, and the corresponding Markov process is by de®nition the process RBMx(ÿë)

(Ikeda and Watanabe 1981).)

Now let us consider our process X x,ë. By the ItoÃ ±Tanaka formula (Revuz and Yor 1994,

Chapter VI),

djX x,ë
t j � sgn x,ë

t dX x,ë
t � dL(X x,ë) t

� ÿë dt � sgn X x,ë
t dBt � dL(X x,ë) t, (23)

where L(X x,ë) t is a local time at zero on the time interval [0, t] for the process X x,ë. Suppose

that f 2 C2
b([0, 1)) with f 9(0�) � d f =dxjx#0 � 0. Then by ItoÃ's formula,

f (jX x,ë
t j)ÿ f (jX x,ë

0 ) �
� t

0

f 9(jX x,ë
s j) djX x,ë

s j �
1

2

� t

0

f 0(jX x,ë
s j) ds

�
� t

0

f 9(jX x,ë
s j)(ÿë ds� sgn X x,ë

s dBs � dL(X x,ë)s)� 1

2

� t

0

f 0(jX x,ë
s j) ds

�
� t

0

(ÿë f 9(jX x,ë
s j)�

1

2
f 0(jX x,ë

s j)) ds� M t �
� t

0

f 9(jX x,ë
s j) dL(X x,ë)s, (24)

where M t �
� t

0
f 9(jX x,ë

s j)sgn X x,ë
s dBs is a local martingale and� t

0

f 9(jX x,ë
s j) dL(X x,ë)s � 0

because f 9(0�) � 0 and L(X x,ë) increases only on the time set ft j X x,ë
t � 0g. From (24) we

see that

f (jX x,ë
t j)ÿ f (jX x,ë

0 j)ÿ
� t

0

Aë f (jX x,ë
s j) ds (25)

is a local martingale and thus the in®nitesimal operators for the two processes jX x,ëj and

RBMx(ÿë) are the same (acting on D (Aë)). Therefore (21) is proved. h
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4. Some remarks

The theorem of P. LeÂvy (1) and its extension (4) given above both have `two-dimensional'

character in the sense that they are statements for pairs of processes ((Më ÿ Bë), Më) and

(jX ëj, L(X ë)).

M. Yor has pointed out the connection between Theorem 1 and 2 above and the results in

Kinkladze (1982) and Fitzsimmons (1987). From Kinkladze (1982) one may obtain easily the

corresponding `one-dimensional' result saying that Më ÿ Bë �law
RBM(ÿë). (For the notion of

RBM(ÿë) see De®nition 1 in Kinkladze (1982).) Indeed by Theorem 1 and 2 in Kinkladze

(1982) the process Y ë � RBM(ÿë) can be realized with some Brownian motion B in the form

Y ë
t � sup

0<s< t

(ÿë(t ÿ s)ÿ (Bt ÿ Bs)), t > 0:

So Y ë
t � sup0<s< t((ës� Bs)ÿ (ët � Bt)) and as a corollary Y ë � Më ÿ Bë with Bë

t � ët � Bt.

Together with formula (21) of Theorem 2 we obtain that Më ÿ Bë �law jX ëj. In connection with

this formula it is useful to remark that the process X ë has appeared in many different problems;

however, the very natural property RBM(ÿë) �law jX ëj apparently has not been noted before.

It is very reasonable to ask about possible extensions of the result Më ÿ Bë �law jX ëj for

the more general class of processes Z � (Z t) t>0 besides the processes Bë � (Bë
t ) t>0, ë 2 R.

According to Fitzsimmons (1987), if Z � (Z t) t>0 is a conservative real-valued diffusion

process and the process max Z ÿ Z is a time-homogeneous strong Markov process then

necessarily Z � Bë,ó , where Bë,ó
t � ët � ó Bt with ë 2 R, ó . 0. So, this result shows that

in some sense a direct extension of the P. LeÂvy's result is possible only for Brownian

motion with drift. This is exactly the framework of Theorem 1 above.
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