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Signed Poisson approximation is a signed measure, has the structure of the Poisson distribution and

can be regarded as a special sort of asymptotic expansion when the expansion is in the exponent. For

certain lattice distributions signed Poisson approximation combines advantages of both the normal and

Poisson approximations. For the generalized binomial distribution estimates with respect to the total

variation and Wasserstein distances are obtained. The results are exempli®ed by Bernoulli

decomposable variables.
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1. Introduction

Usually the normal and Poisson approximations are regarded as opposites: the former is

associated with the common and typical, the latter with the rare and exceptional. Though the

normal approach still dominates in limit theorems, the last decade has seen rapidly growing

interest in Poisson laws; see Aldous (1989), Barbour et al. (1992) and references therein.

However, both the normal and Poisson approaches have their faults. For discrete variables it

is meaningless to use the normal approximation if the accuracy is measured in total variation

because the answer is always 1. Besides, even for the lattice variables and uniform distance

cumbersome summands must be added to the Edgeworth asymptotic expansion. On the other

hand, the Poisson approximation ensures the matching of one moment only.

For some distributions the advantages of both approaches can be combined by using the

signed Poisson or signed compound Poisson measures. Though in general such

approximations are not distributions, they have the same structures as Poisson or compound

Poisson distributions. Signed Poisson measures as approximations were introduced by

Presman (1983) and Kornya (1983). They were applied in actuarial mathematics (see Hipp

1986; De Pril and Dhaene 1992), probabilistic number theory (SÏ iaulys and CÏ ekanavicÏius

1989) and even in a such general setting as the ®rst uniform Kolmogorov theorem (see

CÏ ekanavicÏius 1996). For lattice distributions, the signed Poisson approximations were

explored by Kruopis (1986a; 1986b). For Markov chains, signed Poisson approximations

were introduced by Borovkov and Pfeifer (1996). General aspects of the signed Poisson

approach were discussed in CÏ ekanavicÏius (1997).

Our paper deals with one special signed Poisson approximation introduced in Kruopis

(1986a). We introduce a new uni®ed approach for the total variation and Wasserstein
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distances, considering the generalized binomial distribution. We use a discrete Poisson

structured measure which for some values of the parameters behaves as the Poisson law,

while for other values it is quite comparable with the normal law. Moreover, if the limiting

distribution is Poisson, then the analogue of the Simons±Johnson theorem holds.

Wasserstein distance is the main distance considered in this paper. We exemplify our

results by the so-called Bernoulli decomposable distributions. Though it is more natural to

use signed Poisson approximations for the lattice distributions we demonstrate that, even in

the general case, such approximations are comparable with the Berry±Esseen theorem.

Moreover, the signed Poisson approximation of this paper satis®es simple recursive

formulae and can be expressed in terms of Bessel functions.

We use the following notation. Denote by R the set of real numbers, and by N the set of

natural numbers. Let Ea denote the distribution concentrated at a point a, E � E0. Cm is

used to denote positive absolute constants. Products and powers of measures are understood

in the convolution sense: FG � F � G, F n � F� n, F 0 � E. For any ®nite variation

measure V we denote by V̂ (t) its Fourier±Stieltjes transform, and by expfVg �P1
k�0V k=k! its exponential measure. We also denote by jV j � supxjVf(ÿ1, x)gj the

analogue of the uniform Kolmogorov distance, by V (x) � Vf(ÿ1, x)g the analogue of

distribution function, and by kVk the total variation norm of V. Note thatbexpfVg(t) � expfV̂ (t)g and, for V concentrated on N, kVk �P1k�ÿ1jVfkgj. The total

variation norm is equivalent to the total variation distance. Moreover, if two measures of

®nite variation V1, V2 satisfy the relation V1fRg � V2fRg, then

kV1 ÿ V2k � 2dTV (V1, V2),

where dTV denotes the total variation distance. For V concentrated on integers Wasserstein

distance (also known as Kantorovich, Dudley or Fortet±Mourier distance) is de®ned by

kVkW �
X1

k�ÿ1
jV (k)j �

X1
ÿ1
jVf(ÿ1, k)gj:

For further discussion on probability distances we refer readers to Barbour et al. (1992, pp.

253±255).

For a distribution F and h > 0 we denote Levy's concentration function by

Q(F, h) � sup
x

Ff[x, x� h]g:

Now we introduce the signed Poisson approximation which is used in this paper. Let ë1 . 0,

ë2 2 R. Set

G(ë1, ë2) � expfë1(E1 ÿ E)ÿ ë2(Eÿ1 ÿ E)g: (1:1)

By de®nition

Ĝ(ë1, ë2)(t) � expfë1(ei t ÿ 1)ÿ ë2(ei t ÿ 1)g:
For any integer k we have the inversion formula

G(ë1, ë2)fkg � 1

2ð

�ð
ÿð

eÿi tkĜ(ë1, ë2)(t) dt: (1:2)

592 V. CÏ ekanavicÏius and J. Kruopis



Furthermore, for ë2 . 0, we have

G(ë1, ë2)fkg � expfÿë1 � ë2g ë1

ë2

� �k=2

Jk(2
���������
ë1ë2

p
), (1:3)

and, for ë2 , 0,

G(ë1, ë2)fkg � expfÿë1 � ë2g ë1

jë2j
� �k=2

Ik(2
������������
ë1jë2j

p
): (1:4)

Here Jk(:), Ik(:) are the Bessel functions of the ®rst and second kind, respectively. Noting that

both of them satisfy quite simple recursive formulae we obtain, for ë2 6� 0,

ë2G(ë1, ë2)fk � 1g � kG(ë1, ë2)fkg ÿ ë1G(ë1, ë2)fk ÿ 1g: (1:5)

For practical calculations it is possible to use (1.2) and the fast Fourier transforms, recursive

formula (1.5), or the asymptotic formulae for Bessel functions. That technical problems of

calculation can be succesfully solved was clearly demonstrated by Hipp (1986), Kuon et al.

(1987) and Dhaene and De Pril (1994), who considered much more general signed Poisson

measures.

2. Main results

Let î1, î2, . . . , în be independent Bernoulli variables, P(îj � 1) � 1ÿ P(îj � 0) � pj,

Sn � î1 � . . . � în, and let Hj be the distribution of îj, i.e. Hj � (1ÿ pj)E � pj E1.

Obviously,
Q

Hj is the distribution of Sn. We shall call
Q

Hj a generalized binomial

distribution. In the literature the term `Poisson binomial distribution' is also used (Le Cam

1960).

Approximation of
Q

Hj by the Poisson distribution is one of the most popular subjects in

discrete limit theorems; see Le Cam (1960), Ser¯ing (1975), Barbour and Hall (1984),

Barbour et al. (1995), Witte (1990), Wang (1993) and references therein. Signed Poisson

approximations were applied by Kruopis (1986a) and Borovkov (1988). Here we shall recall

some of their results. Set

ë �
Xn

j�2

pj, è � max 1,
Xn

j�1

pj(1ÿ pj)

 !
, (2:1)

a � ëÿ
Xn

j�1

p2
j=2, b �

Xn

j�1

p2
j=2: (2:2)

We denote the Poisson distribution with parameter ë by expfë(E1 ÿ E)g. G(a, b) is de®ned

as in Section 1, i.e.

G(a, b) � exp
Xn

j�1

pj 1ÿ pj

2

� �
(E1 ÿ E)ÿ

Xn

j�1

p2
j

2
(Eÿ1 ÿ E)

( )
: (2:3)

Signed Poisson approximation 593



The following estimates hold:Yn

j�1

Hj ÿ expfë(E1 ÿ E)g
 < 2(1ÿ eÿë)

Xn

j�1

p2
j=ë; (2:4)

Yn

j�1

Hj ÿ expfë(E1 ÿ E)g


W

< ÿ 1

2

�����
eë
p������

2ð
p ln 1ÿ 2 expf2 max pjg 2b

ë

� �
, (2:5)

if
2b

ë
,

1

2
expfÿ2 max pjg; and

Yn

j�1

Hj ÿ G(a, b)

�����
����� < å, (2:6)

where

å � min 0:2 3
Xn

j�1

p2
j ÿ 2

Xn

j�1

p3
j

 !
èÿ3=2 � 2

Xn

j�1

p2
jè
ÿ2 � 4:2

Xn

j�1

p2
j

 !2

èÿ3,

0@

0:4 3
Xn

j�1

p2
j ÿ 2

Xn

j�1

p3
j

 !
� 2:7

Xn

j�1

p2
j � 2:3

Xn

j�1

p2
j

 !2
!
:

Expression (2.4) is due to Barbour and Hall (1984), (2.5) to Witte (1990) and (2.6) to

Kruopis (1986a).

Remark 2.1. Note that we use the total variation norm instead of the total variation distance.

Therefore the estimate from Barbour and Hall (1984) was multiplied by 2.

Remark 2.2. If pj < C1 , 1, j � 1, . . . , n, then

C2 min
Xn

j�1

p2
j ,
Xn

j�1

p2
jë
ÿ3=2

 !
< å < C3 min

Xn

j�1

p2
j ,
Xn

j�1

p2
jë
ÿ3=2

 !
: (2:7)

We shall show that, for the total variation norm, the estimate analogous to (2.6) holds

and that, for the Wasserstein distance, the rate of convergence for G(a, b) is much better

than the rate in (2.5). Moreover, we shall introduce a new special functional which depends

on the interval length and combines both distances in one. Set

P � expfè(E1 ÿ E)=4� è(Eÿ1 ÿ E)=4g: (2:8)

Note that P̂(t) � expfÿè sin2(t=2)g.
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Theorem 2.1. Let h > 0. Then the following inequality holds:

X1
k�ÿ1

Yn

j�1

Hjf[k, k � h]g ÿ G(a, b)f[k, k � h]g
�����

����� < C4è
ÿ1
Xn

j�1

p2
j 1� ë

è

� �2
 !

Q(P, h):

(2:9)

The proof of the theorem is carried out in Section 3.

By the properties of Levy's concentration function and the inversion formula,

Q(P, 0) < sup
k

jPfkgj < C5

�ð
ÿð

P̂(t) dt < C6è
ÿ1=2: (2:10)

Therefore, putting h � 0 in (2.9), we can deduce the estimate in variation.

Theorem 2.2. The following inequality holds:Yn

j�1

Hj ÿ G(a, b)

 < C7è
ÿ3=2

Xn

j�1

p2
j 1� ë

è

� �2
 !

: (2:11)

In Section 3 we shall prove that (2.9) holds also as h!1. Note that
Q

HjfRg �
G(a, b)fRg. Consequently,X1

k�ÿ1

Yn

j�1

Hjf[k, 1)g ÿ G(a, b)f[k, 1)g
�����

����� � X1
k�ÿ1

Yn

j�1

Hj(k)ÿ G(a, b)(k)

�����
�����

�
Yn

j�1

Hj ÿ G(a, b)


W

: (2:12)

Obviously, Q(P, h)! 1 as h!1. Therefore, taking into account previous remarks, we can

state the following result for the Wasserstein distance.

Theorem 2.3. The following inequality holds:Yn

j�1

Hj ÿ G(a, b)


W

< C8è
ÿ1
Xn

j�1

p2
j 1� ë

è

� �2
 !

: (2:13)

As follows from (2.7), under very mild restrictions, the estimate (2.11) is of the same

order as (2.6). In the sense of order, (2.11) and (2.13) can signi®cantly improve (2.4) and

(2.5). We shall demonstrate this by considering the case pi � p! 0, as n!1, i.e. the

case of some binomial distribution. Then the estimate in (2.4) is of order min(np2, p), while

the estimate in (2.11) is of order min(np2,
����
p
p

=
���
n
p

). Notably this estimate is not just of the

same or better order than that provided by the Poisson approximation, but is also of better

order than that provided by the normal approximation. The advantages of the signed

Poisson approximation are even more evident for Wasserstein distance. Considering the

above-mentioned binomial distribution, we see that the Poisson approximation in (2.5) is of
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order O( p
������
np
p

), i.e. for convergence to zero it should necessarily be p � o(nÿ1=3).

Meanwhile the estimate (2.13) is of order p (i.e. is vanishing under p � o(1)). Note that

(2.9) also provides estimates for other values of h, not only for h � 0 or h � 1.

The above-formulated results can be applied to the Bernoulli-decomposable variables. A

random variable ç is called Bernoulli decomposable if, for some n,

ç � ç1 � ç2 � . . . � çn, (2:14)

where ç1, ç2, . . . , çn are independent Bernoulli variables. If the generating function has only

real roots then the corresponding random variable satis®es (2.14). Decomposition (2.14) may

not have any physical interpretation. It seems that Harper (1967) was the ®rst to use (2.14) in

combinatorial setting. Probably the most recent paper on the subject (including other discrete

decompositions) is by Quine (1994). We are unaware of any result for Bernoulli-

decomposable variables obtained with respect to the Wasserstein distance though other

distances have been applied; see Vatutin and Mikhailov (1982) and Kruopis (1986a). In this

section we compare the accuracy of Poisson and signed Poisson approximation when the

Wasserstein distance is applied. We do not consider the degenerate case Eç! 0.

Usualy it suf®ces to establish only the existence of decomposition (2.14) (but not the

exact distributions of ç j) because the estimates depend on the moments of ç, rather than on

the individual probabilities of ç j. Thus we can rewrite Theorem 2.3 in the following

manner.

Theorem 2.4. Let the distribution H correspond to the Bernoulli-decomposable random

variable ç. ThenH ÿ G
Eç� Dç

2
,

Eçÿ Dç

2

� �
W

< C9

Eçÿ Dç

max(1, Dç)
1� Eç

Dç

� �2
 !

: (2:15)

Remark 2.3. As can be seen from (2.5) the Poisson approximation with parameter Eç can

provide (at best) an estimate of order

O
Eçÿ Dç

Eç

������
Eç

p� �
: (2:16)

Inspired by the papers of Vatutin and Mikhailov (1982) and Quine (1994) we shall

consider some classical cases of Bernoulli decomposable variables.

Example 1 Hypergeometric distribution. Let 2M < N , 2n < N and let Y have the

hypergeometric distribution, i.e., for k � 1, 2, . . . , min(n, M),

P(Y � k) � M

k

� �
N ÿ M

nÿ k

� ��
N

n

� �
, EY � nM

N
, DY � EY

(N ÿ M)(N ÿ n)

N (N ÿ 1)
:

As was shown in Vatutin and Mikhailov (1982), Y satis®es (2.14). Assuming that n,

N , M !1, M=N ! 0, n=N ! 0, we obtain that the estimate in (2.15) is of order
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O(M=N � n=N ). Meanwhile the Poisson approximation is of order O((M=N�
n=N )

��������������
nM=N

p
), which can be much slower.

Example 2 Number of permutations cycles. Any permutation of (1, 2, . . . , n) can be

expressed in terms of cycles, where a cycle is a group of elements permuted amongst

themselves. It was proved in Feller (1968, p. 258) that the number of cycles Yc is Bernoulli

decomposable. Moreover, in decomposition (2.14),

P(ç j � 1) � 1

nÿ j� 1
, j � 1, 2, . . . , n:

Consequently the estimate in (2.15) is of order O(1=ln n). Meanwhile the Poisson

approximation is of order O(1=
��������
ln n
p

).

3. Non-uniform estimates

In this section we obtain non-uniform estimates for measures de®ned in Section 2. We

employ the same approach as in CÏ ekanavicÏius (1993), considering estimates that are non-

uniform with respect to the interval's length and its beginning point. We use the same

notation as in the previous section. Set

d � min(jmÿ ëj, jmÿ ë� h� 1j), Ä �
Yn

j�1

Hj ÿ G(a, b): (3:1)

Theorem 3.1. Let m 2 N, h . 0. Then

jÄf[m, m� h]gj 1� d2

è

� �
< C10è

ÿ3=2
Xn

j�1

p2
j 1� ë

è

� �2
 !

Q(P, h): (3:2)

Proof. For the sake of brevity, set

Gj � exp pj ÿ
p2

j

2

� �
(E1 ÿ E)ÿ p2

j

2
(Eÿ1 ÿ E)

� �
, (3:3)

U (t) �
Xn

j�1

Yjÿ1

l�1

(Ĥ l(t)eÿi tpl )
Yn

l� j�1

(Ĝl(t)eÿi tp j (Ĥ j(t)ÿ Ĝ j(t))(1ÿ eÿi t)ÿ1: (3:4)

Note that
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(Ĥ j(t)ÿ Ĝ j(t))(1ÿ eÿi t)ÿ1

� ÿexp pj(e
i t ÿ 1)ÿ p2

j

2
(ei t ÿ 1)2

� �
p2

j

2
(ei t ÿ 1)2

�1

0

expfô p2
j(e

i t ÿ 1)2(1ÿ eÿi t)=2g dô

� p3
j

2
ei t(ei t ÿ 1)2 ÿ p4

j

8
ei t(ei t ÿ 1)3 ÿ p3

j

2
ei t(ei t ÿ 1)2 1ÿ pj

2
(ei t ÿ 1)

� �3�1

0

(1ÿ ô)2

3 exp ô( pj(e
i t ÿ 1)ÿ p2

j

2
(ei t ÿ 1)2

� �
dô: (3:5)

Using (3.5) and the trivial inequality expf2 pj(1ÿ pj)sin2(t=2)g < expf2g, after quite

standard calculation we obtain

jU (t)j < C11

Xn

j�1

p2
j sin2 t

2

� �
P̂(t) < C12

Xn

j�1

p2
jè
ÿ1, (3:6)

jU 9(t)j < C13

Xn

j�1

p2
j jsin

t

2

� �
jP̂2(t) 1� ë sin2 t

2

� �
< C14

Xn

j�1

p2
jè
ÿ1=2 1� ë

è

� �2
 !

P̂(t),

(3:7)

jU 0(t)j < C15

Xn

j�1

p2
j 1� ë2 sin4 t

2

� �
P̂2(t) < C16

Xn

j�1

p2
j 1� ë

è

� �2
 !

P̂(t):

1A0@ (3:8)

Let h 2 N. Summing the inversion formula (1.2), we obtain

Äf[m, m� h]g � 1

2ð

�ð
ÿð

U (t)(eÿi t(mÿë) ÿ eÿi t(mÿë�h�1)) dt: (3:9)

Evidently

jeÿi t(mÿë) ÿ eÿi t(mÿë�h�1)j < min 2, 2(h� 1) sin
t

2

� ����� ����� �
:

Therefore, by (3.6),

jÄf[m, m� h]gj < C17è
ÿ1
Xn

j�1

p2
j

�ð
ÿð

min 1,
h� 1���

è
p

� �
P̂(t) dt: (3:10)

Note that expfiðg � expfÿiðg. Taking into account (3.5) and integrating by parts for d . 0,

we obtain�ð
ÿð

U (t)eÿi t(mÿë) dt

���� ���� � ÿ 1

(mÿ ë)2

�ð
ÿð

U 0(t)eÿi t(mÿë) dt

���� ���� <
1

d2

�ð
ÿð
jU 0(t)j dt: (3:11)

An analogous estimate holds if to replace mÿ ë by mÿ ë� h� 1. Therefore, from (3.8) and

(3.9) we deduce, for all d,
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jÄf[m, m� h]gjd2 < C18

Xn

j�1

p2
j 1� ë

è

� �2
 !�ð

ÿð
P̂(t) dt: (3:12)

Again let d . 0. Then, integrating by parts in (3.9) and using (3.6)±(3.8), we obtain

2ðjÄf[m, m� h]gj <
�ð
ÿð

U (t)(1ÿ eÿi t(h�1))eÿi t(mÿë) dt

���� ����
<

1

jmÿ ëj
�ð
ÿð

eÿ i t(mÿë)U 9(t)(1ÿ ei t(h�1)) dt

���� ����� h� 1

jmÿ ëj
�ð
ÿð

U (t)eÿi t(mÿë�h�1) dt

���� ����
<

1

j(mÿ ë)2

�ð
ÿð
j(U 9(t)(1ÿ eÿi t(h�1)))9j dt � h� 1

(mÿ ë)(mÿ ë� h� 1)

�ð
ÿð
jU 9(t)j dt

<
C19

d2

Xn

j�1

p2
j 1� ë

è

� �2
 !�ð

ÿð

h� 1���
è
p P̂(t) dt: (3:13)

Combining (3.10), (3.12) and (3.13), we obtain, for d > 0,

jÄf[m, m� h]gj 1� d2

è

� �
< C27è

ÿ1
Xn

j�1

p2
j 1� ë

è

� �2
 !�ð

ÿð
min 1,

h� 1���
è
p

� �
P̂(t) dt: (3:14)

So far we have considered integer values of h. But by CÏ ekanavicÏius (1993) it was proved that

in this case �ð
ÿð

min 1,
h� 1���

è
p

� �
P̂(t) dt <

C21���
è
p Q(P, h): (3:15)

From (3.14) and (3.15) we obtain (3.2). Now let h . 0 be not necessarily be an integer.

Denote the integer part of h by [h]. Then Äf[m, m� h]g � Äf[m, m� [h]]g and

jÄf[m, m� h]gj 1� d2

è

� �
< jÄf[m, m� [h]]gj2 1� (min(jfmÿ ëj, jmÿ ë� [h]� 1j))2

è

� �
:

(3:16)

Now we can apply (3.2) which has already been proved for [h], and notice that

Q(P, [h]) < Q(P, h). h

Remark 3.1. It is impossible to deduce (3.2) from the results of CÏ ekanavicÏius (1993).

Proof of Theorem 2.1. Let h . 0. We have

X1
m�ÿ1

1� d2

è

� �ÿ1

<
X1

m�ÿ1
1� (mÿ ë)2

è

� �ÿ1

� 1� (mÿ ë� h� 1)2

è

� �ÿ1
 !

< 2(1� ð
���
è
p

) < C29

���
è
p

: (3:17)
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Now (2.9) follows from (3.17) and (3.2). If h � 0 then we note that, for integer k,

Pf[k, k � 1
2
]g � Pfkg and similar relations hold for

Q
Hj and G(a, b). Therefore, this case

coincides with the case h � 1
2
, for which (3.2) is already proved. h

Remark 3.2. From (3.3), taking h � 1
2

or h!1, we can obtain non-uniform estimates for

Äfmg and Ä(m). From these estimates the proof of (2.13) imediately follows.

4. Remarks on the accuracy of approximation

One question still unanswered is how bad the accuracy of approximation G can become if the

assumptions of Section 2 are violated. Roughly speaking, we shall show in this section that in

comparison with the normal and Poisson laws the signed Poisson approximation is always on

the safe side. By this we mean that in the sense of order one cannot get much worse by using

the signed Poisson approximation instead of the normal or Poisson laws even under very

general assumptions. It was mentioned above that the total variation is meaningless for the

Gaussian approximation of the lattice distributions. Therefore we shall consider the uniform

distance.

Let X j, j � 1, 2, . . . , n, be independent random variables with

EXj � ì j, DXj � ó 2
j , EjXj ÿ ì jj3 � â3 j ,1: (4:1)

Set Zn � X1 � X 2 � . . . � X n, Fj(x) � P(Xj , x), ì(Zn) �Pn
1 ì j, ó2(Zn) �Pn

1ó
2
j ,

â3(Zn) � Pn
1â3 j.

Let Öì,ó 2 be the normal distribution with mean ì(Zn) and variance ó2(Zn). The well-

known Berry±Esseen theorem states thatYn

j�1

Fj ÿÖì,ó2

�����
����� < C23

â3(Zn)

ó3(Zn)
: (4:2)

Theorem 4.1. The following inequality holds:Yn

j�1

Fj ÿ G
ì(Zn)� ó2(Zn)

2
,
ì(Zn)ÿ ó2(Zn)

2

� ������
����� < C24

â3(Zn)

ó 3(Zn)
�max(jì(Zn)j, ó2(Zn))

ó 3(Zn)

 !
:

(4:3)

The proof of the theorem is deferred until the end of the section.

Of course, there are many distributions that have the same rate of accuracy as the normal

± see, for example, the so-called scaled Poisson distributions in Rachev and RuÈschendorf

(1990). The main advantage of the signed Poisson approximation is its latticeness, i.e., the

fact that it is concentrated on integers. It seems reasonable to approximate lattice

distributions by measures having the same support. Comparing (4.3) with (4.2), we see that

there is an additional summand in (4.3). It appeared because we have not used any centring.

For the lattice distributions we can get rid of it. Indeed, let us assume that all Xi are
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concentrated on integers. Integer centring involves centring Zn while retaining the lattice

structure and ensuring that

jì jj � min
a
jEX j ÿ aj: (4:4)

Here the minimum is taken over all integers a. From (4.4) we see that jì jj < 1
2
. From the fact

that all Fj are concentrated on integers and from (4.4) we obtain

X1
k�ÿ1

jkjFjfkg <
X1

k�ÿ1
k2 Fjfkg <

X1
k�ÿ1

jkj3 Fjfkg,

jkj3 < 8(jk ÿ ì jj3 � jì jj3) < 8(jk ÿ ì jj3 � 2ÿ3) < 16jk ÿ ì jj3: (4:5)

Therefore

max(jì(Zn)j, ó2(Zn)) <
Xn

j�1

EjX jj3 < 16â3(Zn): (4:6)

Thus we obtain the following corollary.

Corollary 4.1. Let X j , j � 1, . . . , n, be concentrated on integers and let the assumptions

(4.1) and (4.4) hold. Then (4.3) holds with the estimate C25â3(Zn)=ó 3(Zn) , i.e. the rate of

accuracy is as in (4.2).

It should be noted that Corollary 4.1 is the generalization of the result of Kruopis

(1986b) where identical distributed lattice variables were considered.

There is no such general result as (4.2) for the Poisson approximation. However, we can

compare the signed Poisson approximation with the Poisson law. Let ì(Zn) . 0. Then under

(4.1) we have

expfì(Zn)(E1 ÿ E)g ÿ G
ì(Zn)� ó2(Zn)

2
,
ì(Zn)ÿ ó2(Zn)

2

� ����� ����
< C26jó2(Zn)ÿ ì(Zn)jmin(1, 1=min(ó2(Zn), ì(Zn))): (4:7)

Note that in (4.7) we do not assume that Xj are lattice variables. From (4.7) we see that G is

always close to the corresponding Poisson law whenever ì(Zn) and ó2(Zn) are close. But

those are exactly the conditions that ensure applicability of the Poisson approximation. Thus

we can expect that G will be as good as the Poisson approximation. If ì(Zn) , 0 then we

should compare G with expfjì(Zn)j(Eÿ1 ÿ E)g.
The proof of (4.7) is based on the following estimates. Let ó2(Zn)ÿ ì(Zn) . 0. Then
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jexpfì(Zn)(ei t ÿ 1)g ÿ expf(ó2(Zn)� ì(Zn))(ei t ÿ 1)=2� (ó2(Zn)ÿ ì(Zn))(eÿi t ÿ 1)=2gj

< jexpfì(Zn)(ei t ÿ 1)gj 1ÿ exp ÿ2(ó2(Zn)ÿ ì(Zn))sin2 t

2

� �� ����� ����
< exp ÿ2ì(Zn)sin2 t

2

� �� �
C27jó2(Zn)ÿ ì(Zn)jsin2 t

2

� �
: (4:8)

Analogously, for ó2(Zn)ÿ ì(Zn) < 0, we obtain that the left-hand side of (4.8) is less

than or equal to expfÿ2ó2(Zn)sin2(t=2)gCjó2(Zn)ÿ ì(Zn)jsin2(t=2). By the Tsaregradskii

(1958) inequality (see also Kruopis 1986a), for any lattice measure V:

jV j < 1

4

�ð
ÿð

jV̂ (t)j
jtj dt:

Therefore, (4.7) follows from (4.8).

Proof of Theorem 4.1. For the sake of brevity we shall write G omitting its parameters. By

the triangle inequality and (4.2) it is suf®cient to estimate

J � Öì,ó2 ÿ G:

(It is impossible to use (4.2) twice because, in general, G is not a distribution.) By a variant

of Esseen's smoothing inequality (see, for example, Petrov 1975, Chapter 5), we have

jJ j < C28

�ð
0

jĴ (t)j
t

dt � C29 sup
x

�
j yj<C5

jG(x� y)ÿ G(x)j dy: (4:9)

It is easy to check that, for jtj < ð,

sin
t

2

� ����� ���� >
t

ð

���� ����: (4:10)

By the inversion formula (1.2), we obtain

sup
x

jG(x� y)ÿ G(x)j < (jyj � 1)sup
x

jG(x)j

< (jyj � 1)

�ð
ÿð

exp ÿ2ó2(Zn)sin2 t

2

� �
dt <

C30

ó (Zn)
(jyj � 1): (4:11)

Let

A(t) � itì(Zn)ÿ ó2(Zn)t2

2
ÿ ì(Z ÿ n)� ó2(Zn)

2
(ei t ÿ 1)� ì(Zn)ÿ ó2(Zn)

2
(eÿi t ÿ 1):

It is easy to check that the real part of A(t) is always non-positive and

jA(t)j < C31(jì(Zn)j � ó2(Zn))jtj3: (4:12)

Hence, from (4.11) and (4.12), we obtain
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jĴ (t)j � jĜ(t)j jexpfA(t)g ÿ 1j � jĜ(t)j
�1

0

expfA(t)ôgA(t) dô

����� �����
< jĜ(t)j jA(t)j

�1

0

jexpfA(t)ôgjdô < jĜ(t)j jA(t)j

< C32(jì(Zn)j � ó2(Zn))jtj3 expfÿ2ó2(Zn)t2=ðg: (4:13)

Combining (4.11) and (4.13) with (4.9), we obtain the statement of the theorem. h

5. Concluding remarks

The theory of signed Poisson approximations is far from complete. Especially serious

problems arise in the case of signed compound approximations. However, for situations as

considered in this paper the signed Poisson approximation is a vigorous competitor to the

Poisson and normal laws. We have emphasized the rate of accuracy, choosing the form of the

estimates that was most convenient for comparisons. As a consequence our absolute constants

are quite large.

Simons and Johnson (1971) proved that for the binomial distribution convergence to

Poisson law is stronger than convergence in total variation. Their result was extended to the

generalized binomial, negative binomial and compound Poisson cases (and sometimes to

more general spaces) by Chen (1974; 1975), Dasgupta (1992) and Wang (1991; 1993).

Many further generalizations can be found in the recent paper by Barbour et al. (1995).

However, for our purposes the generalized binomial law will be suf®cient. Let Sn be

de®ned as in Section 2. Assume that Xn

j�1

pj � ë (5:1)

where ë does not depend on n, and

max
1< j<n

pj ! 0, as n!1: (5:2)

Then

lim
n!1

X1
k�0

v(k) P(Sn � k)ÿ ëk

k!
eÿë

���� ���� � 0 (5:3)

for all non-negative functions v(k), withX1
k�0

v(k)
ëk

k!
eÿë ,1: (5:4)

(see Chen 1974). One of the most striking examples is
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lim
n!1

X1
k�0

evk P(Sn � k)ÿ ëk

k!
eÿë

���� ���� � 0, (5:5)

valid for any constant v . 0.

We shall prove that if (5.2) holds then the signed Poisson approximation considered in

this paper is so close to Poisson distribution that the analogue of (5.3) holds. Let a, b be

de®ned as in Section 3, i.e.,

a � ëÿ
Xn

j�1

p2
j=2, b �

Xn

j�1

p2
j=2: (5:6)

Proposition. Let (5.1) and (5.2) be satis®ed, v(x) be a non-negative even function satisfying

(5.4). Then

lim
n!1

X1
k�ÿ1

v(k)jP(Sn � k)ÿ G(a, b)fkgj � 0: (5:7)

Proof. From (1.5), we obtain

G(a, b)fkg � eÿa�b
X1
m�0

ak�m(ÿb)m

m!(m� k)!
if k > 0, (5:8)

G(a, b)fkg � eÿa�b
X1
m�0

am(ÿb)m�jkj

m!(m� jkj)! if k , 0: (5:9)

From (5.6), we see that X1
k�0

v(k)
ak

k!
<
X1
k�0

v(k)
ëk

k!
,1, (5:10)

X1
k�1

v(k)
bk

k!
<

1

2
max pj

X1
k�1

v(k)
ëk

k!
! 0, as n!1: (5:11)

Hence Xÿ1

k�ÿ1
v(k)jP(Sn � k)ÿ G(a, b)fkgj <

X1
k�1

v(k)eÿa�b�ab bk

k!
� o(1): (5:12)

On the other hand, for k > 0,

G(a, b)fkg ÿ eÿa�b ak

k!

���� ���� < eÿa�b
X1
m�1

ak�mbm

m!(m� k)!
< eÿa�b ak

k!
(eab ÿ 1), (5:13)

eÿa�b ak

k!
ÿ eÿë

ak

k!

���� ���� � eÿë
ak

k!
(e2b ÿ 1): (5:14)

Note that a � ëÿ b=2! ë, b! 0 as n!1. From (5.13) and (5.14), we obtain
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X1
k�0

v(k)jP(Sn � k)ÿ G(a, b)fkgj �
X1
k�1

v(k)
(ëk ÿ ak)

k!
eÿë � o(1): (5:15)

But the ®rst summand on the right-hand side of (5.15) vanishes due to the dominant

convergence theorem. From (5.12) and (5.15), we obtain (5.7). h

Example. Let v . 0 be any ®xed constant and let (5.6) be satis®ed. Then

lim
n!1

X1
k�ÿ1

evk jP(Sn � k)ÿ G(a, b)fkgj � 0:
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