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We determine: (a) the joint almost sure asymptotic behaviour of the most visited site and the

maximum local time of a one-dimensional simple random walk or Brownian motion; (b) the maximal

jump size of the most visited site. In so doing, we solve two open problems of ErdoÍs and ReÂveÂsz.
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1. Introduction

Consider a one-dimensional simple symmetric random walk fSngn>0, starting from S0 � 0.

Let

î(n, x) � #f0 < k < n : Sk � xg: (1:1)

Thus, î(n, x) records the number of times the random walk visits the site x in the ®rst n

steps. De®ne

U(n) � x 2 Z : î(n, x) � sup
y2Z

î(n, y)

( )
:

In words, U(n) is the set of the most visited sites (or favourite sites) of the random walk at

time n. Let

U (n) � max
x2U(n)

x: (1:2)

In ErdoÍs and ReÂveÂsz (1984), U (n) was called the (largest) favourite site of fSkg0<k<n. The

choice of U (n) is irrelevant in the sense that all the results for U (n) stated in this paper

remain true if `max' is replaced, for example, by `min' in (1.2).

The study of asymptotic properties of U(n) and U (n) was initiated by ErdoÍs and ReÂveÂsz

(1984) and Bass and Grif®n (1985), and followed by several groups of mathematicians.
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Nevertheless, little is known so far, due mainly to the fact that the process n 7! U (n) has

some very peculiar asymptotic behaviours. For example, a surprising theorem of Bass and

Grif®n (1985) con®rms the transience of U (n), in the sense that limn!1jU (n)j � 1 almost

surely. However, it is an open problem to determine the rate of escape of U (n). Another

interesting problem is from ErdoÍs and ReÂveÂsz (1984), who conjectured that almost surely

for all suf®ciently large n, U(n) contains at most two points.

We are interested in the lim sup asymptotics of U (n). First, we recall the law of the

iterated logarithm (LIL) for U (n) which was proved by ErdoÍs and ReÂveÂsz (1984) and Bass

and Grif®n (1985), using different methods:

lim sup
n!1

U (n)

ö(n)
� 1 a:s:, (1:3)

where

ö(n) � (2n log log n)1=2 � (2n log2 n)1=2: (1:4)

(However, the problem of characterizing the upper class functions of U (n) via an integral test

in the sense of P. LeÂvy remains open. For a list of ten other open problems concerning

favourite sites, see ReÂveÂsz 1990, pp. 130±131.)

We also recall the LIL for maximum local time: with

î�(n) � sup
x2Z

î(n, x), (1:5)

we have

lim sup
n!1

î�(n)

ö(n)
� 1 a:s: (1:6)

This was ®rst proved by Kesten (1965), and it was extended to the form of an integral test by

CsaÂki (1989).

In their proof of (1.3), ErdoÍs and ReÂveÂsz (1984) noticed that, for any å. 0, almost surely

there exist in®nitely many n such that simultaneously U (n) > (1ÿ å)ö(n) and

î�(n) > cö(n), for some positive constant c depending on å. This led them to ask what

can be said about the joint asymptotics of U (n) and î�(n). When U (n) is very close to its

maximum possible value, how large can î�(n) be? This question also appeared later in

ErdoÍs and ReÂveÂsz (1987), and it was also stated as open problem 1 in ReÂveÂsz (1990, p.

130).

If U (n) and î�(n) were asymptotically independent, then one would expect that the limit

set of f(U (n)=ö(n), î�(n)=ö(n))g should be f(x, y) : x2 � y2 < 1g. However, things do not

quite go like this. In this regard, we have the following result:

Theorem 1.1. With probability one, the random sequence

U (n)

ö(n)
,
î�(n)

ö(n)

 !( )
n>3
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is relatively compact, and its limit set is identical to the simplex

A � f(x, y) : y > 0, jxj � y < 1g:

Remark. Our Theorem 1.1 shows that favourite value and favourite site are somewhat

negatively dependent, that is, if the most visited site is small then the time spent in it is large,

and if it is large then the time spent in it is correspondingly smaller.

The second question we are interested in is also due to ErdoÍs and ReÂveÂsz (1984; 1987),

and was stated as open problem 4 in ReÂveÂsz (1990, p. 130): what is the maximal jump size

of U (n)? The jump size of U (n) is de®ned as U (n� 1)ÿ U (n) if it does not vanish.

Concerning its large values, they asked whether it is possible to determine the function f (n)

such that lim supn!1(U (n� 1)ÿ U (n))= f (n) � 1 almost surely.

In view of (1.3), one might expect U (n� 1)ÿ U (n) to be a constant multiple of ö(n)

along a random subsequence. What might be somewhat surprising is that it turns out to be

as large as (1ÿ å)ö(n), for any å. 0.

Theorem 1.2. We have

lim sup
n!1

U (n� 1)ÿ U (n)

ö(n)
� 1 a:s:

In the study of favourite sites, it is more frequent to encounter questions than answers,

and this may help explain why there are relatively few known results compared with the

huge literature on random walks. We mention the work of ToÂth and Werner (1997) who

were interested in favourite edges instead of favourite sites, and of CsaÂki and Shi (1998)

who studied how close a favourite site can be to the frontier of the range of a random walk.

It will be clear from the proofs in Sections 4 and 5 that both Theorems 1.1 and 1.2 have

their counterparts for Brownian motion, which we state as follows. Similarly to the case of

random walks, we can de®ne the set of favourite sites of Brownian motion as

V(t) � x 2 R : L(t, x) � sup
y2R

L(t, y)

( )
,

where L denotes the local time of a Brownian motion. It is known (Eisenbaum 1989; 1997;

Leuridan 1997) that, with probability one, V(t) contains at most two points for all t . 0.

Without loss of generality, let us choose

V (t) � max
x2V( t)

x:

According to Eisenbaum (1989), fV (t); t . 0g is a process with limits on the left almost

surely.

Theorem 1.3. Let L�(t) � supx2R L(t, x). The limit set of f(V (t)=ö(t), L�(t)=ö(t))g t>3 is

almost surely f(x, y) : y > 0, jxj � y < 1g.
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Theorem 1.4. We have

lim sup
t!1

V (t)ÿ V (tÿ)

ö(t)
� 1 a:s:

Let us say a few words about the organization of this paper. Looking at Theorem 1.1,

that f(U (n)=ö(n), î�(n)=ö(n))gn>3 is almost surely relatively compact follows from (1.3)

and (1.6), so we only have to show that its limit set equals A. This is done in two steps.

Namely, we prove that, almost surely,

(a) any (x, y) 2A is a limit point of f(U (n)=ö(n), î�(n)=ö(n))gn>3;

(b) all the limit points of f(U (n)=ö(n), î�(n)=ö(n))gn>3 are contained in A.

Parts (a) and (b) are proved in Sections 4 and 5 respectively; furthermore, Section 4 contains

the proof of Theorem 1.2. Before that, in Section 2 we present some probability estimates for

multidimensional Brownian motion, which may be of independent interest. These estimates

are applied to Brownian local times in Section 3, and enable us to obtain the key ingredient

in the proofs of the theorems.

We conclude this Introduction with a brief remark on notation. Throughout this paper,

a(x) � b(x) (x! x0) denotes limx!x0
a(x)=b(x) � 1 for positive a(x) and b(x).

2. Probability estimates for Brownian motion

This section contains some probability estimates for d-dimensional Brownian motion.

Although only the special case d � 2 is needed in the proof of the theorems, we present the

estimates for any dimension d > 1.

In the rest of the section, fB(t); t > 0g denotes an Rd-valued Brownian motion (d > 1)

and

R(t) � kB(t)k, t > 0,

is the Euclidean modulus of B. Note that R is a d-dimensional Bessel process. For x > 0, let

Px denote the probability measure under which R starts from x. We assume that under P,

R(0) � 0. Thus P0 � P. We also write Ex for the expectation with respect to Px.

The square integral of R plays an important role in our approach. We write, for brevity,

X (t) �
� t

0

R2(s)ds, t > 0:

We start by recalling two useful results. The ®rst is an intuitively clear comparison

criterion for R. It can easily be proved by applying the diffusion comparison theorem stated

in Revuz and Yor (1999, Theorem IX.3.7) to squared Bessel processes. The second is a

special case of de Bruijn's exponential-type Tauberian theorem (see Bingham et al. 1987, p.

254).
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Fact 2.1. Let 0 < x , y. The Bessel process fR(t); t > 0g is stochastically smaller under Px

than under P y.

Fact 2.2. Let Ë be a random variable with P(Ë > 0) � 1, and let a . 0 be a constant. The

following conditions are equivalent:

lim
r!1

1���
r
p log E(eÿrË) � ÿa, (i)

lim
å!0

å log P(Ë, å) � ÿ a2

4
: (ii)

We now prove a few preliminary estimates.

Lemma 2.3. Fix è 2 (0, 1), t . 0 and r . r1 . 0. Then

lim
å!0

å log P(èå < X (t) < å, r1 < R(t) < r) � ÿ (r2
1 � td)2

8
: (2:1)

Proof. The conditional Laplace transform of X (t) given (R(0), R(t)) is known (cf. Pitman

and Yor 1982):

Ex(eÿ(ë2=2)X ( t)jR(t) � y) � ët

sinh(ët)

I (dÿ2)=2(ëxy=sinh(ët))

I (dÿ2)=2(xy=t)
exp ÿ (x2 � y2)(ët coth(ët)ÿ 1)

2t

� �
,

(2:2)

where I (dÿ2)=2(:) denotes the modi®ed Bessel function of index (d ÿ 2)=2. For convenience,

we recall here the asymptotics of the modi®ed Bessel function (cf. Abramowitz and Stegun

1965, pp. 375 and 377, respectively):

Ip(z) � (z=2) p=Ã( p� 1), z! 0, (2:3)

Ip(z) � ez=
��������
2ðz
p

, z!1: (2:4)

In view of (2.3), we can let x go to 0 in (2.2) to see that

E(e(ë2=2)X ( t)jR(t) � y) � ët

sinh(ët)

� �d=2

exp ÿ y2(ët coth(ët)ÿ 1)

2t

� �
: (2:5)

Thus,

E(eÿ(ë2=2)X ( t)jr1 < R(t) < r)

�
� r

r1

P(R(t) 2 dy)

P(r1 < R(t) < r)

ët

sinh(ët)

� �d=2

exp ÿ y2(ët coth(ët)ÿ 1)

2t

� �
:

When ë!1, the expression on the right-hand side is exp(ÿ(1� o(1))(r2
1 � td)ë=2).

Applying de Bruijn's Tauberian theorem (Fact 2.2) gives that, as å! 0,
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P(X (t) , åjr1 < R(t) < r) � exp ÿ(1� o(1))
(r2

1 � td)2

8å

� �
:

Therefore,

P(X (t) , å, r1 < R(t) < r) � exp ÿ(1� o(1))
(r2

1 � td)2

8å

� �
: (2:6)

Similarly, using (2.5) and Fact 2.2, we have that, for any y . 0, when å! 0,

P(X (t) , åjR(t) � y) � exp ÿ(1� o(1))
(y2 � td)2

8å

� �
: (2:7)

This estimate will be of use later.

The probability expression on the left-hand side of (2.1) can be written as

P(X (t) , å, r1 < R(t) < r)ÿ P(X (t) , èå, r1 < R(t) < r):

In view of (2.6), this yields Lemma 2.3. h

Lemma 2.4. For any x . 0,

Px(X (t) , å) � exp ÿ(1� o(1))
(x2 � td)2

8å

� �
, å! 0: (2:8)

Proof. Recall the probability transition density of R (see Revuz and Yor 1999, Chapter XI):

for y . 0,

Px(R(t) 2 dy) � y

t

y

x

� �(dÿ2)=2

I (dÿ2)=2

xy

t

� �
exp ÿ x2 � y2

2t

� �
dy: (2:9)

Writing

Ex(eÿ(ë2=2)X ( t)) �
�1

0

Px(R(t) 2 dy)Ex(eÿ(ë2=2)X ( t)jR(t) � y),

and using (2.2)±(2.4) and (2.9), we easily arrive at

log Ex(eÿ(ë2=2)X ( t)) � ÿ(1� o(1))
(x2 � td)ë

2
, ë!1:

Lemma 2.4 now follows from an application of Fact 2.2. h

Lemma 2.5. Fix è 2 (0, 1), t . 0, í. 1
2

and r . r1 . 0. Assuming

(r2 � td)2è, (r2
1 � td)2, (2:10)

we have

lim
å!0

inf
x2[r1,r]

å log Px(èå < X (t) < å, R(t) , åí) � ÿ (r2 � td)2

8
:
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Proof. Recall that R(t) � kB(t)k. Under Px, B can be realized as an Rd-valued Brownian

motion with kB(0)k � x. De®ne B0(s) � B(s)ÿ (s=t)B(t) (for s 2 [0, t]), which is a

Brownian bridge on [0, t], independent of B(t). Let R0(s) � kB0(s)k. Note that

fR0(s); s 2 [0, t]g is a so-called Bessel bridge starting from x (under Px), `conditioned to

hit 0 at time t', independent of R(t).

By the triangular inequality, jR(s)ÿ R0(s)j < R(t) for all s 2 [0, t]. By Minkowski's

inequality, j ���������X (t)
p ÿ (

� t

0
R2

0(s)ds)1=2j < ��
t
p

R(t). Therefore, for any y . 0 and q . 0,

Px(X (t) < qjR(t) � y) > Px

� t

0

R2
0(s)ds

� �1=2

<
���
q
p ÿ ��

t
p

y

 !

� P(
���������
X (t)

p
<

���
q
p ÿ ��

t
p

yjR(t) � x),

the last equality following from the time inversion: fR0(t ÿ s); s 2 [0, t]g is again a Bessel

bridge, starting from 0, conditioned to hit x at time t. Hence, by Fact 2.1, when å is so small

that
��
t
p

åí ,
���
å
p

,

inf
x2[r1,r]

Px(X (t) < å, R(t) , åí) � Pr(X (t) < å, R(t) , åí)

> Pr(R(t) < åí)P(X (t) < (
���
å
p ÿ ��

t
p

åí)2jR(t) � r): (2:11)

By (2.7), when å! 0, the second probability term on the right-hand side of (2.11) is

exp(ÿ(1� o(1))(r2 � td)2=8å), whereas Pr(R(t) , åí) is of polynomial order of åí (this is an

immediate consequence of (2.9) and (2.3), or can be better understood using the fact that

R2(t) under Pr has a non-centred chi-square law). Consequently,

lim inf
å!0

inf
x2[r1,r]

å log Px(X (t) < å, R(t) , åí) > ÿ (r2 � td)2

8
: (2:12)

On the other hand, by Fact 2.1,

sup
x2[r1,r]

Px(X (t) , èå, R(t) , åí) < Pr1 (X (t) , èå)

� exp ÿ(1� o(1))
(r2

1 � td)2

8èå

� �
, (2:13)

the last identity following from (2.8). Combining (2.12) with (2.13), and in view of (2.10), we

obtain the lower bound in the lemma.

The upper bound is easy. Indeed, just as for (2.13), we have

inf
x2[r1,r]

Px(èå < X (t) < å, R(t) , åí) < Pr(X (t) < å)

� exp ÿ(1� o(1))
(r2 � td)2

8å

� �
,

as desired. h
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Lemma 2.6. For r . 0 and t . 0,

lim sup
å!0

sup
x2[0,r]

å log Px X (t) , å, sup
0<s< t

R(s) > r

� �
< ÿ (r2 � td)2

8
: (2:14)

Proof. Let

H(r) � infft . 0 : R(t) . rg: (2:15)

For each x 2 [0, r], the probability term on the left-hand side of (2.14) is

< Px H(r) < t, X (t)ÿ X (H(r)) , å� � < Pr(X (t) , å),

the second inequality following from the strong Markov property. Now (2.14) follows from

Lemma 2.4. h

Lemma 2.7. Let 0 , x1 , x2 , r�1 , r�2 and r1 , r2 , r�1 be such that

r�2 ÿ r�1 . r�1 ÿ r1: (2:16)

Then

lim inf
t!0

inf
x2[x1,x2]

t log Px sup
0<s< t

R(s) 2 [r�1 , r�2 ], R(t) 2 [r1, r2]

� �
> ÿ(r�1 ÿ x1)2 ÿ (r�1 ÿ r1)2:

Proof. We ®rst recall the tail estimate of R, which follows from a well-known tail estimate

for general Gaussian processes (see, for example, Marcus and Shepp 1972): for r . 0,

P sup
0<s< t

R(s) . r

� �
� exp (ÿ(1� o(1))

r2

2t

� �
, t! 0: (2:17)

Now look at the probability

Pr�
1 (R(t) 2 [r1, r2]) �

� r2

r1

Pr�
1 (R(t) 2 dy):

From (2.9) and (2.4), it is easily seen that for y and r bounded (from above and below), and

for t 2 (0, 1],

Pr(R(t) 2 dy)

dy
>

c1��
t
p exp ÿ (r ÿ y)2

2t

� �
, (2:18)

where c1 . 0 is a constant depending only on d and on the bounds for (y, r). Thus, for

t 2 (0, 1],

Pr�
1 (R(t) 2 [r1, r2]) >

c1(r2 ÿ r1)��
t
p exp ÿ (r�1 ÿ r1)2

2t

� �
: (2:19)

On the other hand, under Pr�
1 , R is the modulus of an Rd-valued Brownian motion B

with kB(0)k � r�1 . By the triangular inequality,
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Pr�
1 sup

0<s< t

R(s) . r�2
� �

< P sup
0<s< t

R(s) . r�2 ÿ r�1
� �

,

which, according to (2.17), is exp(ÿ(1� o(1))(r�2 ÿ r�1 )2=2t), when t goes to 0. This,

together with (2.19) and (2.16), implies that

Pr�
1 sup

0<s< t

R(s) < r�2 , R(t) 2 [r1, r2]

� �
> exp ÿ(1� o(1))

(r�1 ÿ r1)2

2t

� �
, (2:20)

when t goes to 0.

Recall H(r�1 ) from (2.15). For x 2 [x1, x2], we have, by the strong Markov property,

Px sup
0<s< t

R(s) 2 [r�1 , r�2 ], R(t) 2 [r1, r2]

� �

� Px H(r�1 ) < t, sup
0<s< t

R(s) < r�2 , R(t) 2 [r1, r2]

� �

�
� t

0

Px(H(r�1 ) 2 du)Pr�
1 sup

0<s< tÿu

R(s) < r�2 , R(t ÿ u) 2 [r1, r2]

� �

>

� t=2

0

Px(H(r�1 ) 2 du)Pr�
1 sup

0<s< tÿu

R(s) < r�2 , R(t ÿ u) 2 [r1, r2]

� �

>

� t=2

0

Px(H(r�1 ) 2 du)exp ÿ(1� o(1))
(r�1 ÿ r1)2

t

� �
,

the last equality following from (2.20), where o(1) is uniform in x 2 [x1, x2]. Lemma 2.7 will

be proved if we can verify

inf
x2[x1,x2]

Px(H(r�1 ) < t=2) > exp ÿ(1� o(1))
(r�1 ÿ x1)2

t

� �
, t! 0: (2:21)

To this end, observe that, for x 2 [x1, x2],

Px(H(r�1 ) < t=2) > Px(R(t=2) . r�1 ) �
�1

r�
1

Px(R(t=2) 2 dy):

By (2.18), there exists a constant c1 depending only on (r�1 , r�2 , x1, x2, d), such that, for all

x 2 [x1, x2],
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Px(H(r�1 ) < t=2) >

� r�
2

r�
1

Px(R(t=2) 2 dy)

>
2c1

t

� r�
2

r�
1

exp ÿ (yÿ x)2

t

� �
dy

>
2c1

t

� r�
2

r�
1

exp ÿ (yÿ x1)2

t

� �
dy

� exp (1� o(1))
(r�1 ÿ x1)2

t

� �
,

which yields (2.21) and thus completes the proof of Lemma 2.7. h

Lemma 2.8. Let a 2 (0, 1), b2 . b1 . ä. 0, r. 1, í. 1
2

and 0 , c , (rÿ 1)=b2. Assume�����
b2

p
ÿ

�����
b1

p
.

�����
b1

p
ÿ

�������������
b1 ÿ ä

p
:

Let

E1(å) � å < X (1� cå) < rå, R(1� cå) , åí, b1 < sup
s2[a,a�cå]

R2(s) < b2,

(

sup
s2[a,a�cå]

R2(s) > ä� sup
s2[0,1�cå]n[a,a�cå]

R2(s)

)
:

Then

lim inf
å!0

å log P(E1(å)) > ÿ (2(b1 ÿ ä)� d)2

8
ÿ 5(

�����
b1

p ÿ �������������
b1 ÿ ä
p

)2

c
:

Proof. Fix r 2 (0,
�������������
b1 ÿ ä
p

) such that
�����
b2

p ÿ �����
b1

p
.

�����
b1

p ÿ r. De®ne

â � r2 � (1ÿ a)d

2r2 � d
: (2:22)

Since â 2 (0, 1) and c ,(rÿ 1)=b2, it is possible to choose 0 , â�, â, â�, 1 such that

1ÿ â� � b2c� â� < r: (2:23)

Let r� 2 (r,
�������������
b1 ÿ ä
p

). We also choose r� 2 (0, r) so that�����
b1

p
ÿ r� < 2(

�����
b1

p
ÿ r), (2:24)�����

b1

p
ÿ r�,

�����
b2

p
ÿ

�����
b1

p
, (2:25)

(r2 � (1ÿ a)d)2 â

â�, (r2� � (1ÿ a)d)2: (2:26)
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Consider the measurable events

E2(å) � (1ÿ â)å < X (a) < (1ÿ â�)å, sup
0<s<a

R(s) ,
�������������
b1 ÿ ä

p
, r < R(a) < r�

� �
,

E3(å) �
�����
b1

p
< sup

a<s<a�cå
R(s) <

�����
b2

p
, r� < R(a� cå) < r

� �
,

E4(å) � âå < X (1� cå)ÿ X (a� cå) < â�å, sup
a�cå<s<1�cå

R(s) <
�������������
b1 ÿ ä

p
, R(1� cå) , åí

� �
:

Observe that on E3(å) we have X (a� cå)ÿ X (a) 2 [0, b2cå]. In view of (2.23), on

E2(å) \ E3(å) \ E4(å), we have X (1� cå) 2 [å, rå]. Thus

E1(å) � E2(å) \ E3(å) \ E4(å),

By the Markov property,

P(E1(å)) > P(E2(å) \ E3(å) \ E4(å))

> P(E2(å)) inf
x2[r,r�]

p1(x, å) inf
y2[r� ,r]

p2(y, å), (2:27)

where, for x 2 [r, r�] and y 2 [r�, r],

p1(x, å) � Px
�����
b1

p
< sup

0<s<cå
R(s) <

�����
b2

p
, r� < R(cå) < r

� �
,

p2(y, å) � P y âå < X (1ÿ a) < â�å, sup
0<s<1ÿa

R(s) <
�������������
b1 ÿ ä

p
, R(1ÿ a) , åí

� �
:

We now estimate P(E2(å)), p1(x, å) and p2(y, å), respectively. First, since

P(E2(å)) > P((1ÿ â)å < X (a) < (1ÿ â�)å, r < R(a) < r�)

ÿ P X (a) < (1ÿ â�)å, sup
0<s<a

R(s) >
�������������
b1 ÿ ä

p� �
,

it follows from Lemmas 2.3 and 2.6 that (noting that b1 ÿ ä. r2)

P(E2(å)) > exp ÿ(1� o(1))
(r2 � ad)2

8(1ÿ â�)å
� �

, å! 0: (2:28)

It is easy to treat p1(x, å). Indeed, in view of (2.25), we can apply Lemma 2.7 to see

that, when å! 0,

inf
x2[r,r�]

p1(x, å) > exp ÿ(1� o(1))
(
�����
b1

p ÿ r)2 � (
�����
b1

p ÿ r�)2

cå

� �
: (2:29)

Finally, we observe that, for all y 2 [r�, r],
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p2(y, å) > inf
y2[r�,r]

P y(âå < X (1ÿ a) < â�å, R(1ÿ a) , åí)

ÿ sup

y2[0,
��������
b1ÿä
p

]

P y(X (1ÿ a) < â�å, sup
0<s<1ÿa

R(s) .
�������������
b1 ÿ ä

p
):

Recall (2.26). Applying Lemmas 2.5 and 2.6 yields (recalling b1 ÿ ä. r2) that, when å! 0,

inf
y2[r� ,r]

p2(y, å) > exp ÿ(1� o(1))
(r2 � (1ÿ a)d)2

8â�å
� �

: (2:30)

Assembling (2.27)±(2.30) gives

lim inf
å!0

å log P(E1(å)) > ÿ (r2 � ad)2

8(1ÿ â�) ÿ
(
�����
b1

p ÿ r)2 � (
�����
b1

p ÿ r�)2

c
ÿ (r2 � (1ÿ a)d)2

8â�

> ÿ (r2 � ad)2

8(1ÿ â)
ÿ 5(

�����
b1

p ÿ r)2

c
ÿ (r2 � (1ÿ a)d)2

8â
,

where in the last inequality we have used â�. â. â� and the relation (2.24). In view of

(2.22), we obtain:

lim inf
å!0

å log P(E1(å)) > ÿ (2r2 � d)2

8
ÿ 5(

�����
b1

p ÿ r)2

c
:

Since r can be as close to
�������������
b1 ÿ ä
p

as possible, this completes the proof of Lemma 2.8.

h

Here is the main estimate which will be used in the proof of Theorem 1.1.

Lemma 2.9. Let a 2 (0, 1), b2 . b1 . 0, r. 1, í. 1
2

and 0 , c ,(rÿ 1)=b2. Let ä 2 (0, b1)

be such that �����
b2

p
ÿ

�����
b1

p
.

�����
b1

p
ÿ

�������������
b1 ÿ ä

p
:

Then

lim inf
å!0

å log P(E5(å)) > ÿ (2(b1 ÿ ä)� d)2

8
ÿ 5(

�����
b1

p ÿ �������������
b1 ÿ ä
p

)2

c
, (2:31)

where

E5(å) � å < X (1) < rå, R(1) , åí, b1 < sup
s2[0,1]

R2(s) < b2,

(

sup
s2[a,a�cå]

R2(s) > ä� sup
s2[0,1]n[a,a�cå]

R2(s)

)
:
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Proof. Let E1(å) be the measurable event de®ned in Lemma 2.8. Note that on E1(å) we have

sups2[a,a�cå] R2(s) � sups2[0,1�cå] R2(s). By the scaling property,

P(E1(å)) � P
å

(1� cå)2
< X (1) <

rå
(1� cå)2

, R(1) ,
åí

(1� cå)1=2
,

�
b1

1� cå
< sup

0<s<1

R2(s) <
b2

1� cå
, sup

s2 I(å)

R2(s) >
ä

1� cå
� sup

s2[0,1]n I(å)

R2(s)

�
,

where I(å) � [a=(1� cå), (a� cå)=(1� cå)]. Applying Lemma 2.8 gives (2.31). h

The proof of Theorem 1.2 requires a few more probability estimates.

Lemma 2.10. For r . 0, í. 1
2

and t . 0,

lim inf
å!0

inf
x2[0,r]

å log Px sup
0<s< t

R(s) . r, X (t) , å, R(t) , åí
� �

> ÿ (3r2 � td)2

8
:

Proof. Let

p3(x, å) � Px sup
0<s< t

R(s) . r, X (t) , å, R(t) , åí
� �

:

Recall the hitting time H(:) from (2.15). For any x 2 [0, r] and any u 2 [0, t],

p3(x, å) > Px(H(r) < u, X (t) , å, R(t) , åí)

> Px H(r) < u,

� t

H(r)

R2(v)dv , åÿ r2u, R(t) , åí
� �

:

By the strong Markov property, this leads to:

p3(x, å) >

�u

0

Px(H(r) 2 ds)Pr(X (t ÿ s) , åÿ r2u, R(t ÿ s) , åí)

�
�u

0

Px(H(r) 2 ds)Pr=
������
tÿs
p

X (1) ,
åÿ r2u

(t ÿ s)2
, R(1) ,

åí����������
t ÿ s
p

� �

> Px(H(r) < u) inf
s2[0,u]

Pr=
������
tÿs
p

X (1) ,
åÿ r2u

(t ÿ s)2
, R(1) ,

åí����������
t ÿ s
p

� �

> Px(H(r) < u) inf
y2[r=

��
t
p

,r=
������
tÿu
p

]
P y X (1) ,

åÿ r2u

t2
, R(1) ,

åí��
t
p

� �
: (2:32)

This holds for all u 2 [0, t]. We now choose u � ÷å, for some constant ÷ 2 (0, rÿ2) whose

value will be determined later. In view of Fact 2.1, we have
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inf
x2[0,r]

Px(H(r) < u) � P(H(r) < u)

� P sup
0<v<u

R(v) . r

� �

� exp ÿ(1� o(1))
r2

2÷å

� �
, å! 0, (2:33)

the last equality following from (2.17). On the other hand, Lemma 2.5 readily yields that, for

our choice of u,

inf
y2[r=

��
t
p

,r=
������
tÿu
p

]
P y X (1) ,

åÿ r2u

t2
, R(1) ,

åí��
t
p

� �
� exp ÿ(1� o(1))

(r2 � td)2

8(1ÿ r2÷)å

� �
: (2:34)

Assembling (2.32)±(2.34) gives

lim inf
å!0

inf
x2[0,r]

å log p3(x, å) > ÿ r2

2÷
ÿ (r2 � td)2

8(1ÿ r2÷)
,

for any ÷ 2 (0, rÿ2). Picking up ÷ � 2=(3r2 � td) completes the proof of Lemma 2.10. h

Now we are ready to establish the main probability estimate which will be of use in the

proof of Theorem 1.2.

Lemma 2.11. Fix a 2 (0, 1), r . 0, ä 2 (0, r2=3) and í. 1
2
. Let

E6(å) �
�

sup
0<v<1

R(v) , r, X (1) , å, R(1) , åí, : sup
s2[a,1]

R2(s) . sup
s2[0,a]

R2(s)� ä

�
:

Then

lim inf
å!0

å log P(E6(å)) > ÿ (3ä� d)2

8
:

Proof. Let b 2 (0, r2=3ÿ ä) and c 2 (0, 1). Note that

P(E6(å)) > P sup
s2[0,a]

R2(s) , b, X (a) , cå, b� ä, sup
s2[a,1]

R2(s) , r2,

 

X (1)ÿ X (a) , (1ÿ c)å, R(1) , åí
!
:

By the Markov property, this leads to:

P(E6(å)) > p4(å) inf
x2[0,

��
b
p

]

p5(x, å), (2:35)

where
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p4(å) � P sup
s2[0,a]

R2(s) , b, X (a) , cå

 !
,

p5(x, å) � Px b� ä, sup
s2[0,1ÿa]

R2(s) , r2, X (1ÿ a) ,(1ÿ c)å, R(1ÿ a) , åí
 !

:

By Lemmas 2.3 and 2.6, for any b1 2 (0, b),

p4(å) > P b1 < sup
s2[0,a]

R2(s) < b, X (a) , cå

 !
> exp ÿ (1� o(1))

(b1 � ad)2

8cå

 !
,

as å goes to 0. Therefore

p4(å) > exp ÿ(1� o(1))
(b� ad)2

8cå

� �
, å! 0: (2:36)

On the other hand, observe that

inf
x2[0,

��
b
p

]

p5(x, å) > inf
x2[0,

�������
b�äp

]
Px sup

s2[0,1ÿa]

R2(s) . b� ä, X (1ÿ a) , (1ÿ c)å, R(1ÿ a) , åí
 !

ÿ sup
x2(0,r]

Px sup
s2[0,1ÿa]

R2(s) > r2, X (1ÿ a) , (1ÿ c)å

 !
:

Applying Lemmas 2.10 and 2.6 respectively to the two probability terms on the right-hand

side yields

inf
x2[0,

��
b
p

]

p5(x, å) > exp ÿ(1� o(1))
(3(b� ä)� (1ÿ a)d)2

8(1ÿ c)å

� �

ÿ exp ÿ(1� o(1))
(r2 � (1ÿ a)d)2

8(1ÿ c)å

� �
:

Since 3(b� ä) , r2, this leads to

inf
x2[0,

��
b
p

]

p5(x, å) > exp ÿ(1� o(1))
(3(b� ä)� (1ÿ a)d)2

8(1ÿ c)å

� �
: (2:37)

Combining (2.35)±(2.37) yields that

lim inf
å!0

å log P(E6(å)) > ÿ (b� ad)2

8c
ÿ (3(b� ä)� (1ÿ a)d)2

8(1ÿ c)
,

for any c 2 (0, 1) and b 2 (0, r2=3ÿ ä). Take c � (b� ad)=(4b� 3ä� d) and then send b

to 0� to complete the proof of Lemma 2.11. h
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3. Brownian local time

Let fW (t); t > 0g be a one-dimensional Brownian motion starting from 0. Let fL(t, x);

t > 0, x 2 Rg denote its jointly continuous local time process, in the sense that, for any Borel

function f > 0 and t > 0, � t

0

f (W (s))ds �
�1
ÿ1

f (x)L(t, x)dx: (3:1)

For brevity, we write

L�(t) � sup
x2R

L(t, x), t > 0:

For each r . 0, de®ne

Tr � infft . 0 : W (t) . rg, (3:2)

the hitting time associated with W. Here is the key probability estimate in the proof of

Theorem 1.1.

Lemma 3.1. Let a 2 (0, 1), b2 . b1 . 0, r. 1 and 0 , c ,(rÿ 1)=b2. Let ä 2 (0, b1) be

such that �����
b2

p
ÿ

�����
b1

p
.

�����
b1

p
ÿ

�������������
b1 ÿ ä

p
:

We have

lim inf
å!0

å log P(F1(å)) > ÿ (b1 ÿ ä� 1)2

2
ÿ 5(

�����
b1

p ÿ �������������
b1 ÿ ä
p

)2

c
,

where

F1(å) � å < T1 < rå, b1 < L�(T1) < b2, sup
x2[aÿcå,a]

L(T1, x) . ä� sup
x=2[aÿcå,a]

L(T1, x)

( )
:

Proof. The Ray±Knight theorem (Ray 1963; Knight 1963) says that fL(T1, 1ÿ x); x > 0g is

a continuous inhomogeneous Markov process. More precisely, when x 2 [0, 1] it is a two-

dimensional squared Bessel process, starting from 0, and when x > 1 it becomes a squared

Bessel process of `dimension 0'.

Let fR(t); t > 0g be a two-dimensional Bessel process with R(0) � 0, and fZ(t); t > 0g
a Bessel process of dimension 0, with Z(0) � 1. We assume that R and Z are independent.

As before, we write

X (t) �
� t

0

R2(s)ds, t > 0:

Observe that T1 �
�1

0
L(T1, 1ÿ x)dx. By the Ray±Knight theorem and the scaling

property for the Bessel process (writing x _ y for max(x, y)),
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P(F1(å)) � P å < X (1)� R4(1)

�1
0

Z2(s)ds < rå, b1 < sup
0<s<1

R2(s) _ R2(1)sup
s>0

Z2(s) < b2,

�

sup
s2J (å)

R2(s) . ä� sup
s2[0,1]nJ (å)

R2(s) _ R2(1)sup
s>0

Z2(s)

�
,

where J (å) � [1ÿ a, 1ÿ a� cå]. Let r1 2 (1, r) be such that c ,(r1 ÿ 1)=b2. For all

suf®ciently small å. 0,

P(F1(å)) > P

�1
0

Z2(s)ds < 1, sup
s>0

Z2(s) < 2

� �

3 P R(1) , åí, å < X (1) < r1å, b1 < sup
0<s<1

R2(s) < b2,

�

sup
s2J (å)

R2(s) . ä� sup
s2[0,1]nJ (å)

R2(s)

!
:

The ®rst probability term on the right-hand side is a positive constant. Lemma 3.1 now

follows from Lemma 2.9. h

In the proof of Theorem 1.2, we need two other probability estimates for Brownian local

time. Their proofs are in the same spirit as the proof of Lemma 3.1, based on the Ray±

Knight theorem and using Lemmas 2.11 and 2.10 respectively in lieu of Lemma 2.9. The

details are omitted.

Lemma 3.2. Let u 2 (0, 1), b . 0 and ä 2 (0, b=3). Then

lim inf
å!0

å log P L�(T1) , b, T1 , å, sup
x2[0,u]

L(T1, x) . sup
x.u

L(T1, x)� ä

 !
> ÿ (3ä� 2)2

8
:

Lemma 3.3. For b . 0,

lim inf
å!0

å log P L�(T1) . b, T1 , å, inf
t2[0,T1]

W (t) .ÿ1

 !
> ÿ (3b� 2)2

8
:

4. Theorem 1.2 and part (a) of Theorem 1.1

In this section, we prove Theorem 1.2 and part (a) of Theorem 1.1. Let us ®rst recall the

following strong approximation theorem which holds simultaneously for local time and

random walks.
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Fact 4.1. (ReÂveÂsz 1990, pp. 105±107). After possible rede®nitions of variables and

processes, there exists a coupling for the simple random walk fSkgk>0 and the Wiener

process fW (t); t > 0g, such that, for all å. 0, as n goes to in®nity,

sup
x2Z

max
0<k<n

jî(k, x)ÿ L(k, x)j � o(n1=4�å) a:s:, (4:1)

max
0<k<n

jSk ÿ W (k)j � O (log n) a:s:, (4:2)

where î(n, x) and L(n, x) are de®ned in (1.1) and (3.1), respectively.

In the proof of Theorem 1.2 and of part (a) of Theorem 1.1, we shall be working in the

probability space such that the coupling for fSngn>0 and W in Fact 4.1 holds.

Proof of Theorem 1.2. Fix k 2 (0, 1), and de®ne rn � rn(k) � exp(n1�k). Let T be the ®rst

hitting time process for W (see (3.2)).

Let u 2 (0, 0:01) be such that

(u2 � 2(1ÿ u))2

4
� 49u ,

1� 2k
1� k

: (4:3)

De®ne

W (n)(t) � W (t � Trn
)ÿ rn, t 2 [0, Trn�1

ÿ Trn
]:

By the strong Markov property, these are independent Brownian pieces. We can de®ne

T (n)
r � infft . 0 : W (n)(t) . rg, 0 , r < rn�1 ÿ rn, the ®rst hitting time process for W (n), and

also fL(n)(t, x); 0 < t < T (n)
rn�1ÿrn

, x 2 Rg, the local time of W (n).

Consider the following measurable events:

A1,n � sup
x2R

L(n) T
(n)
(1ÿu)rn�1

, x
� �

, urn�1, T
(n)
(1ÿu)rn�1

,
(1� 2k)r2

n�1

2 log2 rn�1

,

(

sup
x2[0,urn�1]

L(n) T
(n)
(1ÿu)rn�1

, x
� �

. sup
x.urn�1

L(n) T
(n)
(1ÿu)rn�1

, x
� �

� u2 rn�1

3

)
,

A2,n � sup
x2R

(L(n) T (n)
rn�1ÿrn

, x
� �

ÿ L(n) T
(n)
(1ÿu)rn�1

, x)
� �

> 2urn�1,

�

T (n)
rn�1ÿrn

ÿ T
(n)
(1ÿu)rn�1

,
(1� 2k)ur2

n�1

2 log2 rn�1

, inf
T

( n)

(1ÿu) rn�1
< t<T

( n)
rn�1ÿ rn

W (n)(t) .(1ÿ 2u)rn�1

�
:

By the strong Markov property, fA1,n, A2,ngn>3 are mutually independent events. In

particular,
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P(A1,n \ A2,n) � P(A1,n)P(A2,n): (4:4)

Since fW (n)(t), t 2 [0, Trn�1
ÿ Trn

]g is again a Brownian motion,

P(A1,n) � P sup
x2R

L(T(1ÿu)rn�1
, x) , urn�1, T(1ÿu)rn�1

,
(1� 2k)r2

n�1

2 log2 rn�1

,

�

sup
x2[0,urn�1]

L(T(1ÿu)rn�1
, x) . sup

x.urn�1

L(T(1ÿu)rn�1
, x)� u2 rn�1

3

�

� P sup
x2R

L(T1, x) ,
u

1ÿ u
, T1 ,

1� 2k
2(1ÿ u)2 log2 rn�1

,

�

sup
x2[0,u=(1ÿu)]

L(T1, x) . sup
x.u=(1ÿu)

L(T1, x)� u2

3(1ÿ u)

�
,

the second equality following from the scaling property. Applying Lemma 3.2 gives that,

when n goes to in®nity,

P(A1,n) > exp ÿ(1� o(1))
(u2 � 2(1ÿ u))2

4(1� 2k)
log2 rn�1

� �
: (4:5)

Similarly,

P(A2,n)

� P sup
x2R

L(Turn�1ÿrn
, x) > 2urn�1, Turn�1ÿrn

,
(1� 2k)ur2

n�1

2 log2 rn�1

,

�
inf

0< t<Turn�1ÿ rn

W (t) .ÿurn�1:

�

� P sup
x2R

L(T1, x) >
2urn�1

urn�1 ÿ rn

, T1 ,
(1� 2k)ur2

n�1

2(urn�1 ÿ rn)2 log2 rn�1

,

�

inf
0< t<T1

W (t) .ÿ urn�1

urn�1 ÿ rn

�

> P sup
x2R

L(T1, x) > 4, T1 ,
1� 2k

2u log2 rn�1

, inf
0< t<T1

W (t) .ÿ1

� �
,

the last inequality following from the fact that urn�1 ÿ rn 2 [urn�1=2, urn�1] for all

suf®ciently large n. In the light of Lemma 3.3, this implies

P(A2,n) > exp ÿ(1� o(1))
49u

1� 2k
log2 rn�1

� �
: (4:6)

In view of (4.3)±(4.6), we have
P

nP(A1,n \ A2,n) � 1. By the Borel±Cantelli lemma,

P(A1,n \ A2,n, infinitely often (i:o:)) � 1.

Now let us see what happens on A1,n \ A2,n. First, we have, on A1,n \ A2,n,
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T (n)
rn�1ÿrn

,
(1� 2k)(1� u)r2

n�1

2 log2 rn�1

: (4:7)

By de®nition, for r 2 (0, rn�1 ÿ rn] and x 2 R,

T (n)
r � Tr�rn

ÿ Trn
, (4:8)

L(n)(T (n)
r , x) � L(Tr�rn

, x� rn)ÿ L(Trn
, x� rn): (4:9)

Writing

sn � (1ÿ u)rn�1 � rn 2 (rn, rn�1),

pn � urn�1 � rn 2 (rn, sn),

we obtain, on A1,n \ A2,n,

sup
y2R

(L(Tsn
, y)ÿ L(Trn

, y)) , urn�1, (4:10)

sup
y2[rn, pn]

(L(Tsn
, y)ÿ L(Trn

, y)) . sup
y. pn

(L(Tsn
, y)ÿ L(Trn

, y))� u2 rn�1

3
, (4:11)

sup
y2R

(L(Trn�1
, y)ÿ L(Tsn

, y)) > 2urn�1, (4:12)

inf
Tsn < t<Trn�1

W (t) . (1ÿ 2u)rn�1 � rn: (4:13)

On the other hand, by (4.7) and (4.8), we have, on A1,n \ A2,n,

Trn�1
ÿ Trn

,
(1� 2k)(1� u)r2

n�1

2 log2 rn�1

: (4:14)

Since P(A1,n \ A2,n i:o:) � 1, we know that there are almost surely in®nitely many n

satisfying (4.10)±(4.14). We shall now only be considering these in®nitely many n.

Since r 7! Tr is a subordinator of index 1
2
, we have (Fristedt 1974): for any å 2 (0, 0:01),

almost surely for large r,

Tr , r2�å: (4:15)

Let î be the local time of the random walk fSkgk>0 satisfying (4.1) and (4.2). In view of

(4.1), almost surely for large n, (4.10) implies (recalling î�(n) from (1.5))

î�(bTsn
c) < urn�1 � T1=4�å

sn
� î�(bTrn

c)� T1=4�å
rn

,

which, in light of (4.15) and (1.6), yields

î�(bTsn
c) < (1� å)urn�1,

whereas (4.12) implies

î�(bT rn�1
c) > (2ÿ å)urn�1:
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By the de®nition of favourite sites, these two estimates imply that, U (bTrn�1
c), the favourite

site at time bTrn�1
c, must be visited by the random walk during (bTsn

c, bTrn�1
c], i.e.,

U (bTrn�1
c) � Sj, for some j � jn(ù) 2 (bTsn

c, bTrn�1
c]: (4:16)

On the other hand, (4.13) and (4.2) together con®rm that

Si . (1ÿ 2u)rn�1, for all i 2 [bTsn
c, bTrn�1

c]: (4:17)

Now consider (4.11). Again, by means of (4.1), (4.15) and (1.6), it follows from (4.11)

that

max
y2[rn, pn]

î(bTsn
c, y) . max

y. pn

î(bTsn
c, y)� (1

3
ÿ å)u2 rn�1,

which, by de®nition, implies U (bTsn
c) < pn. Since pn , (1ÿ 2u)rn�1, comparing this with

(4.16) and (4.17), we conclude that there exists a random integer m � mn(ù) 2 [bTsn
c,

bTrn�1
c] such that U (m) � U (bTsn

c) and that U (m� 1) . (1ÿ 2u)rn�1. For this m,

U (m� 1)ÿ U (m) . (1ÿ 2u)rn�1 ÿ pn > (1ÿ 4u)rn�1, (4:18)

and, of course, m 2 [Trn
ÿ 1, Trn�1

].

To complete the proof of Theorem 1.2, it suf®ces to note that, by (4.14) and (4.15),

Trn�1
, (1� 3k)(1� u)r2

n�1=2 log2 rn�1, which implies

rn�1 .

��������������������������������
2Trn�1

log2 Trn�1

(1� 4k)(1� u)

s
>

�������������������������������
2m log2 m

(1� 4k)(1� u)

s
:

Going back to (4.18), we see that

U (m� 1)ÿ U (m) . (1ÿ 4u)

�������������������������������
2m log2 m

(1� 4k)(1� u)

s
:

We have therefore proved that

lim sup
n!1

U (n� 1)ÿ U (n)������������������
2n log2 n
p >

1ÿ 4u�������������������������������
(1� 4k)(1� u)
p a:s:

Since both u and k can be as close to 0 as possible, this yields the lower bound in Theorem

1.2.

The upper bound is trivial. Indeed, U (n� 1)ÿ U (n) < max0<k<n Sk ÿmin0<k<n Sk , and

the upper bound immediately follows from the usual LIL for the range of random walk (see

ReÂveÂsz 1990, p. 44). h

Proof of part (a) of Theorem 1.1. Again, let us ®x k 2 (0, 1), and de®ne rn � exp(n1�k).

Recall T from (3.2). Let a 2 (0, 1) and b . 0.

Let r. 1, b�. b and 0 , c , (rÿ 1)=b�. We can choose ä 2 (0, b) such that������
b�
p

ÿ ���
b
p

.
���
b
p ÿ ������������

bÿ ä
p

and such that
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(bÿ ä� 1)2

2
� 5(

���
b
p ÿ ������������

bÿ ä
p

)2

c
, (1� k)

(b� 1)2

2
: (4:19)

Fix ã. 0 and let

In � arn ÿ cãrn

log2 rn

, arn

� �
,

An � ãr2
n

log2 rn

< Trn
<

rãr2
n

log2 rn

, brn < L�(Trn
) < b� rn, sup

x2 In

L(Trn
, x) . ärn � sup

x=2 In

L(Trn
, x)

( )
:

By scaling, Lemma 3.1 and (4.19), for all suf®ciently large n,

P(An) > exp ÿ(1� k)
(b� 1)2 log2 rn

2ã

 !
:

Therefore, as long as ã > (1� k)2(b� 1)2=2, we have
P

nP(An) � 1. Rigorously speaking,

we cannot directly apply the Borel±Cantelli lemma here, since the events (An) are not

independent. However, as in the proof of Theorem 1.2, we can consider the independent

Brownian pieces W (n) and construct events which are based on W (n), and use the same

argument to get rid of the dependence dif®culty. We choose to omit tedious discussions which

are much like those in the proof of Theorem 1.2, and claim that P(An i:o:) � 1. Therefore,

almost surely there exist in®nitely many n such that simultaneously

ãr2
n

log2 rn

< Trn
<

rãr2
n

log2 rn

, brn < L�(Trn
) < b� rn, sup

x2 In

L(Trn
, x) . ärn � sup

x=2 In

L(Trn
, x):

Applying Fact 4.1 implies that, in®nitely often,

ãr2
n

log2 rn

< Trn
<

rãr2
n

log2 rn

, (1ÿ k)brn < î�(bTrn
c) < (1� k)b� rn, U (bTrn

c) 2 In:

When ãr2
n=log2 rn < Trn

< rãr2
n=log2 rn, we have (recalling ö from (1.4))

brn >
(1� o(1))b��������

2rã
p ö(T rn

),

b� rn <
(1� o(1))b�������

2ã
p ö(Trn

),

In � (1� o(1))a��������
2rã
p ö(Trn

),
(1� o(1))a������

2ã
p ö(Trn

)

� �
:

Thus, for any k 2 (0, 1), b�. b . 0, r. 1 and ã > (1� k)2(b� 1)2=2, with probability one,

the random sequence f(U (n)=ö(n), î�(n)=ö(n))gn>3 visits

(1ÿ k)a��������
2rã
p ,

(1� k)a������
2ã
p

� �
3

(1ÿ k)2b��������
2rã
p ,

(1� k)2b�������
2ã
p

" #
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in®nitely often. Take ã � (1� k)2(b� 1)2=2. Since (k, b�, r) can be as close to (0, b, 1) as

possible, we conclude that (a=(b� 1), b=(b� 1)) is almost surely a limit point of

f(U (n)=ö(n), î�(n)=ö(n))gn>3. For any x . 0 and y . 0 with x� y , 1, we can choose

a 2 (0, 1) and b . 0 such that (x, y) � (a=(b� 1), b=(b� 1)). Thus (x, y) is a limit point of

f(U (n)=ö(n), î�(n)=ö(n))gn>3. Of course, the positivity of x is irrelevant, since when x , 0,

we can consider fÿSngn>0 instead of fSngn>0.

As a consequence, any (x, y) 2A is almost surely a limit point of f(U (n)=ö(n),

î�(n)=ö(n))gn>3. We can interchange the order of `any (x, y) 2A' and `almost surely' by

considering the points in A whose coordinates are rationals. h

5. Proof of part (b) of Theorem 1.1

Part (b) of Theorem 1.1 is a consequence of the following:

Theorem 5.1. For any a 2 (0, 1),

lim sup
n!1

sup
x>aö(n)

î(n, x)

ö(n)
� 1ÿ a a:s:

More precisely, part (b) of Theorem 1.1 follows from the upper bound in Theorem 5.1.

In view of (4.1), we can equivalently state Theorem 5.1 as follows.

Theorem 5.2. Let fL(t, x); t > 0, x 2 Rg be a Brownian local time process, and let

a 2 (0, 1). Then

lim sup
t!1

sup
x>aö( t)

L(t, x)

ö(t)
� 1ÿ a a:s:

The main ingredient in the proof of Theorem 5.2 is the following tail estimate:

Lemma 5.3. For a . 0 and b . 0,

lim
t!1

1

log2 t
log P sup

x>aö( t)

L(t, x) . bö(t)

 !
� ÿ(a� b)2:

The proof of Theorem 5.2 relies on Lemma 5.3 and the Borel±Cantelli lemma, along the

same lines as in Section 4. No new ingredient is needed. So we feel free to omit the details.

The rest of the section is devoted to the proof of Lemma 5.3.

Proof of Lemma 5.3. Let T be the ®rst hitting time process of the Brownian motion whose

local time is L; see (3.2). By the strong Markov property, for any u . 0 and v . 0,
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P sup
x>u

L(t, x) . v
� � � � t

0

P(Tu 2 ds)P sup
x>0

L(t ÿ s, x) . v
� �

�
� t

0

u ds����������
2ðs3
p exp ÿ u2

2s

� �
P sup

x>0

L(1, x) .
v����������

t ÿ s
p

� �
:

It is known (see Kesten 1965; CsaÂki 1989) that

P sup
x>0

L(1, x) . ë
� � � exp ÿ(1� o(1))

ë2

2

� �
, ë!1:

Therefore,

P sup
x>aö( t)

L(t, x) . bö(t)
� �

�
� t

0

aö(t)ds����������
2ðs3
p exp ÿ (aö(t))2

2s
ÿ (1� o(1))

(bö(t))2

2(t ÿ s)

 !
:

This completes the proof of Lemma 5.3 by means of an elementary argument in the spirit of

Laplace's method (see, for example, Widder 1941). h
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