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Traditionally, shock models are of two kinds. The failure (of a system) is related either to the

cumulative effect of a (large) number of shocks or it is caused by a shock which is larger than some

critical level. The present paper is devoted to a mixed model, in which the system is supposed to

break down either because of one (very) large shock, or as a result of many smaller ones.
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1. Introduction

Shock models are systems that at random times are subject to shocks of random

magnitude. One distinguishes between two major types: cumulative shock models and

extreme shock models. Systems governed by the former type break down when the

cumulative shock magnitude exceeds some given level, whereas systems modelled by the

latter type break down as soon as an individual shock exceeds some given level. For some

background and examples, see Shanthikumar and Sumita (1983), Sumita and Shanthikumar

(1985), Anderson (1987; 1988), Gut (1990), Boshuizen and Gouweleeuw (1993), and Gut

and HuÈsler (1999).

In this paper we investigate a mixture of these models. We suppose that the system

breaks down because of either a cumulative effect or a single large shock, depending on

which attains its critical level ®rst. This idea is not entirely new; as pointed out by a

referee, Li and Shaked (1995; 1997) consider the same mixed kind of ®rst passage times,

but relative to certain damage processes and more general Markov processes, and with a

somewhat different focus.

The paper is organized as follows. In Section 2 we describe the cumulative and the

extreme shock models and present some basic results for later comparisons. We focus, in

particular, on asymptotics for high levels, that is, when the level t increases to the upper

end-point t! xF :� supfx : F(x) , 1g <1 of the distribution. In Section 3 we describe

the mixed shock model and state a result on distributional convergence, the proof of which

is given in Section 4. Uniform integrability and moment convergence are treated in Section

5. Section 6 is devoted to applications, and Section 7 contains some further results and

comments.
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2. Background

In this section we describe the cumulative and extreme shock models and quote some basic

results.

The general set-up in cumulative shock models (of what is called type I) is a family

f(Xk , Yk), k > 0g (with X0 � Y0 � 0), of independent and identically distributed two-

dimensional random vectors, with partial sums Tn �
Pn

k�1Yk and Sn �
Pn

k�1 X k , n > 1,

respectively. The interpretation is that Xk represents the magnitude of the kth shock, and Yk

represents the time between the (k ÿ 1)th and the kth shock. The main object of interest is

the lifetime or failure time of the system.

2.1. Cumulative shock models

Following Gut (1990), we de®ne the ®rst passage time process fí(t), t > 0g by

í(t) � minfn : Sn . tg: (2:1)

The failure time then can be described by the random variable Tí( t).

Note that í(t) is the ®rst passage time for the random walk fSn, n > 1g. Since shocks in

general are non-negative, `everything' is known for the ®rst passage times from classical

renewal theory. The essential feature, however, is that EX 1 . 0; see Gut (1988, Chapter III).

Throughout this paper, therefore, we allow for arbitrarily signed shocks with positive mean

in this model. (Some results in renewal theory remain valid when ìx � 1 with 1=1 � 0,

but this case will always be excluded in what follows.) Similarly for fYk , k > 1g ±

although the sequence represents times in the present context, we do not (need to)

presuppose any positivity in our results.

As a preliminary we recall from renewal theory for random walks ± see, for example,

Gut (1988, Theorem III.4.1) ± that

í(t)

t
!a:s: 1

ìx

as t!1: (2:2)

We now give two basic results from Gut (1990), which follow from Gut and Janson (1983);

see also Gut (1988, Section IV.2).

Theorem 2.1. (i) If ìx � EX1 . 0 and ì y � EY1 exists and is ®nite, then

Tí( t)

t
!a:s: ì y

ìx

as t!1:

(ii) If, in addition, ó 2
x � varX1 ,1, ó 2

y � varY1 ,1, and ã2 � var( ìxY1 ÿ ì y X1) . 0,

then

Tí( t) ÿ ì y

ìx

t��������������
ìÿ3

x ã2 t
p !d N (0, 1) as t!1:
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The proof of (i) uses strong laws for stopped random walks and renewal theory for random

walks (for background, see Gut 1988).

Remark 2.1. Traditionally one studies the counting process fN (t), t > 0g (that is, N (t)

� maxfn : Sn < tg) rather than the ®rst passage time process. Mathematically ®rst passage

times are more convenient because they are stopping times, whereas the counting variables

are not. However, their asymptotics are, generally, the same. h

2.2. Extreme shock models

In this model we introduce, instead of (2.1), the ®rst passage time process fô(t), t > 0g,
de®ned by

ô(t) � minfn : Xn . tg, t > 0: (2:3)

The failure time now is described by Tô( t). As remarked in Gut and HuÈsler (1999), there are

some important differences in this setting. First of all, whereas `high level' for the cumulative

shock model means `as t!1', it now is to be interpreted as `as t increases to the upper

end-point of the distribution', that is, as t! xF :� supfx : F(x) , 1g, ®nite or in®nite. We

also do not assume that the size of the shocks has a ®nite mean. That is to say, the crucial

assumption is that

pt � P(X 1 . t) � 1ÿ FX (t)! 0 as t! xF : (2:4)

Secondly, we recall the well-known, and easily established, facts that ô(t) is geometric with

mean 1=pt, and that

ptô(t)!d Exp(1) as t! xF : (2:5)

In particular, this shows that the stopping times behave very differently from the previous

ones in that there is no law of large numbers available for ô(t), and, hence, no Anscombe

theorem to exploit as before. In spite of this the failure time, Tô( t), is still a stopped random

walk.

We now give the counterpart of Theorem 2.1 related to the extreme case taken from Gut

and HuÈsler (1999) (see also Shanthikumar and Sumita 1983, Corollary 1.A.5).

Theorem 2.2. If (2.4) holds and ì y � EY1 exists and is ®nite, then

ptTô( t)!d ì y Exp(1)�d sign (ì y)Exp(jì yj) as t! xF :

The proof in Gut and HuÈsler (1999) follows immediately via (2.5) and the strong law of large

numbers for stopped random walks ± see Gut (1988, Theorem I.2.3); note that ptTô( t) �
ptô(t):Tô( t)=ô(t).

The analogue of Remark 2.1 also applies to this model.
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3. Mixed shock models

In this model the system breaks down when the cumulative shocks reach some `high' level or

when a single `large' shock appears, whichever comes ®rst. The number of shocks at the time

of failure thus equals minfí(t), ô(t)g. However, an inspection of Theorems 2.1 and 2.2 shows

that in order to obtain a non-trivial result (that is, in order to avoid one of the stopping times

dominating the other and failure only being able (almost surely) to occur for one of the

reasons), the levels to attain must be chosen in such a fashion that the normalizations in the

theorems, that is, pt and t, are of the same order of magnitude. Moreover, we must join some

of the assumptions from the two models. With respect to the cumulative model, we must

assume that EX 1 . 0, and, since `high level' in that model means `as t!1', it follows that

we must also have xF � �1.

Let í(t) � minfn : Sn . tg, t > 0 as before. In view of (2.2) and (2.5), in order for í(t)

and ô(t) to be of the same order of magnitude asymptotically, we let ë t denote the è=t

quantile of the distribution of X 1 for some è. 0; that is, for t . è. 0, we de®ne ë t via the

relation

P(X 1 . ë t) � 1ÿ FX1
(ë t) � è=t: (3:1)

Since xF � �1, it follows that (2.4) holds automatically, and that ë t ! �1 as t!1.

Moreover,

ë t � o(t) as t!1, (3:2)

since the mean shock size is ®nite. With

ôë(t) � minfn : X n . ë tg, t > 0, (3:3)

the number of shocks until failure equals

k(t) � minfí(t), ôë(t)g: (3:4)

Having noted that

k(t)!a:s:�1, as t!1, (3:5)

we are ready to state our ®rst result, the proof of which is given in the next section.

Theorem 3.1. If ìx � EX1 . 0, and ì y � EY1 exists and is ®nite, then:

(i)

k(t)

t
!d Z as t!1,

where

f Z(y) � èeÿè y, 0 , y , 1=ìx, and P(Z � 1=ìx) � eÿè=ìx ,

or, equivalently,
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FZ(y) � 1ÿ eÿè y, for 0 , y , 1=ìx,

1, for y > 1=ìx;

�
(ii)

Tk( t)

t
!d ì y Z as t!1;

(iii)

Sk( t)

t
!d ìx Z as t!1;

(iv)

Xk( t)

t
!p 0 and

max1<k<k( t) X k

t
!p 0 as t!1:

Remark 3.1. With respect to (iv), we remark that Xk( t) is the last shock (which may or may

not have caused failure), whereas max1<k<k( t) X k is the largest shock so far at the time of

failure. In the event that failure is caused by an extreme shock, these quantities coincide.

Remark 3.2. Since Xk( t) � Xí( t) Ifk(t) � í(t)g � X ôë( t) Ifk(t) � ôë(t)g. 0, the last shock is

always positive, irrespective of the cause of failure.

Remark 3.3. If the system fails due to an extreme shock, the level that has been surpassed is

ë t � o(t) (recall (3.2)), and if it is surpassed because of the cumulative effect, the maximal

shock at that time point is smaller than ë t, with the possible exception of the last one, that is,

in the particular case when failure is due to both causes, in which case the last shock is o(t)

almost surely; see Gut, (1988, Section I.8). Conclusion (iv), which may seem contradictory at

®rst sight, is thus in order.

4. Proof of Theorem 3.1

4.1. An auxiliary result

An essential ingredient in the proof to follow is (the ®rst half of) the following more general

result.

Proposition 4.1. Suppose that fUt, t > 0g and fVt, t > 0g are families of random variables

such that

Ut!p a and Vt!d V as t!1,

for some ®nite constant a and some random variable V. Then
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P(minfUt, Vtg. y)!
P(V . y), if y , a,

as t!1
0, if y . a,

8<: ,

and

P(maxfUt, Vtg < y)!
0, if y , a,

as t!1
P(V < y), if y . a,

8<: :

Proof. Since the proofs of the two relations are fairly routine and, furthermore, essentially the

same, we con®ne ourselves to giving an outline of the ®rst one.

Let å. 0 be given. Then

P(minfUt, Vtg. y)

� P(fminfUt, Vtg. yg \ fjUt ÿ aj < åg)� P(fminfUt, Vtg. yg \ fjUt ÿ aj. åg)
� P1 � P2,

and the conclusion follows upon observing that

P1 �
P(Ut . y), if y , aÿ å,

P(fUt . yg \ fy , Vt , a� åg), if jyÿ aj < å,

0, if y . a� å,

8><>:
and that

P2 < P(jUt ÿ aj. å)! 0 as t!1: h

Remark 4.1.The proposition implies, in particular, that the limiting random variables have

point masses at y � a.

Remark 4.2. Although the present proof is simple and immediate, we mention that an al-

ternative argument (which, however, is essentially the same) would be to invoke Billingsley

(1968, Theorem 4.4) according to which (Ut, Vt)!d (U , V ), where P(U � a) � 1, as t!1,

and then apply the continuous mapping theorem to conclude that minfUt, Vtg!d minfU , Vg,
and maxfUt, Vtg!d maxfU , Vg, respectively, as t!1, which is equivalent to the

formulation of the proposition.

4.2. Proof of the theorem

4.2.1. Proof of (i)

We ®rst recall from (2.2) that í(t)=t!a:s: 1=ìx as t!1. As for ôë(t), the nonlinearity of the

boundary is no complication: ôë(t) is geometric with mean è=t, and, hence, in analogy with

Gut and HuÈsler (1999) (cf. also (2.5)),
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ôë(t)

t
!d Exp(1=è) as t!1: (4:1)

An application of Proposition 4.1 ®nishes the proof; the limiting random variable Z is

exponential with mean 1=è in [0, 1=ìx), and has point mass expfÿè=ìxg at 1=ìx.

4.2.2. Proof of (ii)

Since

Tk( t)

t
� Tk( t)

k(t)
: k(t)

t
,

the conclusion is immediate from the strong law of large numbers for stopped random walks

(recall (3.5)), (i), and Proposition 4.1 ± see also Gut and HuÈsler (1999) and/or Theorem 2.2.

4.2.3. Proof of (iii)

The proof is the same as that of (ii), with Tk( t) replaced by Sk( t) (and ì y by ìx).

4.2.4. Proof of (iv)

Since the mean shock size is ®nite, we know that Xn=n!a:s: 0 as n!1. The ®rst conclusion

then follows from Gut (1988, Theorem I.2.3(i)), (3.5), (i) and Proposition 4.1.

As for the second one, we invoke the fact that max1<k<n X k=n!a:s: 0 as n!1, which, by

(3.5) and Gut (1988, Theorem I.2.1), implies that max1<k<k( t) X k=k(t)!a:s: 0 as t!1. An

application of Proposition 4.1, together with (i), ®nishes the proof.

5. Uniform integrability and moment convergence

For cumulative shock models, E(í(t))r ,1 if and only if Ejminf0, X1gjr ,1, and

E(Sí( t))
r ,1 if and only if E(maxf0, X 1g)r ,1; see Gut (1988, Theorem III.3.1). Also, by

Gut (1988, Theorem IV.2.1), EjTí( t)jr ,1 provided EjX 1jr ,1 and EjY1jr ,1. The family

of ®rst passage times and the family of stopped sums, suitably normalized, are uniformly

integrable under their respective conditions (Gut 1988, Section III.7). As for extreme shock

models, ô(t) being geometric obviously possesses moments of all orders. Moreover,

f( ptô(t))r, t > 1g is uniformly integrable for all r . 0; see Gut and HuÈsler (1999, formula

(2.8)). In this section we establish analogous results for the mixed shock model.

Theorem 5.1. (i) For all r . 0,

k(t)

t

� �r

, t > 1

� �
is uniformly integrable,

and E(k(t)=t)r ! EZr as t!1.
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(ii) If EjY1jr ,1 for some r > 1, then���� Tk( t)

t

����r, t > 1

� �
is uniformly integrable,

and EjTk( t)=tjr ! jì yjr EZr as t!1.

(iii) If EjX 1jr ,1 for some r > 1, then���� Sk( t)

t

����r, t > 1

� �
is uniformly integrable,

and EjSk( t)=tjr ! ìr
x EZ r as t!1.

(iv) If E(maxf0, X 1g)r ,1 for some r > 1, then

(Xk( t))
r

t
, t > 1

� �
is uniformly integrable,

and E(Xk( t))
r=t! 0 as t!1.

(v) If E(maxf0, X1g)r ,1 for some r > 1, then

max1<k<k( t) X k

t

� �r

, t > 1

� �
is uniformly integrable,

and E(max1<k<k( t) X k=t)r ! 0 as t!1.

Proof. We mimic Gut and HuÈsler (1999). Since ôë(t) is geometric with mean è=t, it follows,

for any k > 1, that E[(ôë(t)ÿ 1)(ôë(t)ÿ 2) . . . (ôë(t)ÿ k)] � k!((t ÿ è)=è)k and, hence, that

E
ôë(t)

t

� �k

! k!èÿk � E(Exp(1=è))k as t!1, (5:1)

which, together with (4.1) and Billingsley (1968, Theorem 5.4), proves that

ôë(t)

t

� �r

, t > 1

� �
is uniformly integrable for all r . 0: (5:2)

Since (obviously) 0 , k(t) < ôë(t), uniform integrability as claimed has been veri®ed, from

which moment convergence follows via an application of Theorem 3.1(i).

Parts (ii) and (iii) follow from Gut (1988, Theorem I.6.1) and Theorem 3.1(ii) and

3.1(iii), respectively; part (iv) from Gut (1988, Theorem I.8.1) (see also Gut 1988, Theorem

III.7.2), and Theorem 3.1(iv) (recall Remark 3.2); and part (v), ®nally, via the fact that 0 <
max1<k<k( t) X k <

Pk( t)
k�1 maxf0, X kg, and (iii). h

Remark 5.1. Note that it may, in fact, happen that Sk( t) is negative.

Remark 5.2. Since the distribution of Z is explicitly de®ned, it is possible to compute

moments of any order. In particular,
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EZ � 1

è
(1ÿ eÿè=ìx ) and varZ � 1

è2
1ÿ 2è

ìx

eÿè=ìx ÿ eÿ2è=ìx

� �
:

A case of particular interest is è � ìx, because then Efí(t)g=t and Efôë(t)g=t both converge

to 1=ìx as t!1. In this case the above relations become

EZ � 1

ìx

(1ÿ eÿ1) � 0:632

ìx

and varZ � 1

ì2
x

(1ÿ 2 eÿ1 ÿ eÿ2) � 0:129

ì2
x

:

6. Applications

Example 6.1. A somewhat drastic, but rather illuminating, example that comes to mind is

boxing. In a ®ght a knockout may be caused by either a series of small (moderate) punches or

by a single very big one.

Example 6.2. Rainfall.

On 17 August 1997, the city of Uppsala experienced extremely heavy rain for about an hour,

and the basement in my home was ¯ooded. A year later it rained fairly heavily on and off for

a few days, which led to the basement being ¯ooded again. The ®rst instance obviously

corresponds to an extreme shock causing failure, the second one to the cumulative situation.

A more general example of the same kind is ¯ooding in rivers or dams.

Example 6.3. Fatigue.

A material, for example a rope or a wire, can break either because of the cumulative effect of

`normal' loads after a certain time period or because of a sudden very big load.

Example 6.4. Environmental damage.

A factory may leak poisonous waste products into a river. After some time the vegetation and

the ®sh in the river may die as a result of the cumulative effect. Or they may die because of

some catastrophy in the factory that instantaneously pours a huge amount of waste into the

river.

Example 6.5. Radioactivity.

A variation on the previous example is the radioactivity emitted by an atomic power station.

At `normal' levels this may, after some (long?) time, cause a higher rate of cancer in the

nearby population. The same result may also be brought about somewhat more rapidly in the

case of a sudden meltdown.

For some similar and further examples, see Li and Shaked (1997).
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7. Further results and remarks

7.1. Comparing stopping times

Once failure has occurred it is of interest to ®nd out whether it was caused by a single large

shock or by the cumulative effect. Mathematically this means that we would like to ®nd out

how í(t), ôë(t), and k(t) relate to each other.

7.1.1. Mean and variance

A ®rst, simple, indication is provided by checking the expected value and variance of the

respective stopping times. In Remark 5.2 we computed the mean and variance of the limiting

random variable Z. A comparison between the three models shows the following:

Eí(t)

t
! 1

ìx

as t!1,

Eôë(t)

t
! 1

è
as t!1,

Ek(t)

t
! 1

è
(1ÿ eÿè=ìx ) as t!1:

Since eÿx > 1ÿ x for x . 0, it follows that the limiting expected value for the mixed model

is always the smallest of the three (which, of course, is no surprise).

7.1.2. k( t) and í( t)

Another approach is to compare the stopping times themselves. We con®ne ourselves to

comparing k(t) and í(t) in the special case when è � ìx, since then, as we have just found,

Eí(t) and Eôë(t) both are asymptotically equal to t=ìx as t!1.

By (2.2) and Theorem 3.1(i),

k(t)

í(t)
!d ìx Z as t!1: (7:1)

Since, moreover k(t)=í(t) < 1 (note also that 0 < ìx Z < 1), it also follows that

k(t)

í(t)

� �r

, t > 1

� �
is uniformly integrable for all r . 0, (7:2)

and that E(k(t)=í(t))r ! ìr
x E(Z)r as t!1; for the last statement we rely on Billingsley

(1968, Theorem 5.4). In particular,

E
k(t)

í(t)
! ìx EZ � 1ÿ eÿ1 � 0:632:
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7.1.3. k( t) and ôë( t)

It seems harder to ®nd an analogue of (7.1) for the ratio k(t)=ôë(t), since numerator and

denominator, divided by t, both converge in distribution only. However, the analogue of (7.2),

k(t)

ôë(t)

� �r

, t > 1

� �
is uniformly integrable for all r . 0, (7:3)

is trivial (since k(t)=ôë(t) < 1).

7.1.4. í( t) and ôë( t)

By combining (2.2) and (2.5) we ®nd that

ôë(t)

í(t)
!d Exp(ìx=è) as t!1, (7:4)

which, in particular, shows that

P(ôë(t) < í(t))! 1ÿ eÿè=ìx as t!1, (7:5)

and, in the special case that è � ìx again, that

P(ôë(t) < í(t))! 1ÿ eÿ1 as t!1: (7:6)

Remark 7.1. The result gives the impression that the only quantities that matter here are ìx

and è. At ®rst sight this seems strange, since one would imagine different conclusions

depending on the heaviness of the tails of the shock size distribution. However, since ë t is

de®ned via quantiles of that distribution, the rate of decrease of the tails is implicitly there.

For example, for the standard exponential distribution we have ë t � log t, and for the Pareto

distribution with ®nite mean, ë t � ct1=á, á. 1. h

7.2. The last/largest shock(s)

In Theorem 3.1(iv) we proved that the last shock and the largest shock, respectively (they

sometimes coincide), were oP(t) as t!1 at the time of failure. This may be compared with

the relations

X ôë( t)

ë t

. 1 for all t,

X ôë( t)

t
!p 0 as t!1,

X í( t)

t
!a:s: 0 as t!1:

The ®rst relation holds by de®nition, the second one follows analogously to Theorem 3.1(iv),

and the third one is immediate from Gut (1988, Theorem I.2.3(i)). This illustrates the
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different asymptotics of the `last shock', relative to the different stopping times. As for the

®rst two we refer, once again, back to formula (3.2).

Remark 7.2. The different modes of convergence are a consequence of the different

convergence modes for ôë(t) and í(t) (properly normalized).

7.3. Some stopped sums

By completely analogous arguments it is also possible to obtain results for Sôë( t), X í( t), Sk( t),

and so on, that is, for the status of various quantities at the moment of stopping for either

reason. We just mention without any comment that, for the cumulative shock sizes, we have

Sí( t)

t
. 1 for all t,

Sôë( t)

t
!d Exp(ìx=è) as t!1,

Sk( t)

t
!d ìx Z as t!1,

and for the different failure times,

Tí( t)

t
!a:s: ì y

ìx

as t!1,

Tôë( t)

t
!d ì yExp(1=è) � sign(ì y) Exp(jì yj=è) as t!1,

Tk( t)

t
!d ì y Z as t!1,

where, of course, the last conclusions in both cases are nothing but Theorem 3.1(iii) and

3.1(ii), respectively.

As for the means, a comparison shows that

ETí( t)

t
! ì y

ìx

as t!1,

ETôë( t)

t
! ì y

è
as t!1,

ETk( t)

t
! ì y

è
(1ÿ eÿè=ìx ) as t!1:

In particular, if è � ìx, the ®rst two limits are equal to ì y=ìx, and the last one equals

(1ÿ eÿ1)ì y=ìx � 0:632ì y=ìx.
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7.4. Stopping at a given time

By switching the roles of the components, that is, by stopping time and checking the stopped

sum or maximum, together with the same kind of arguments as before, we can ®nd the size

of the largest shock so far or the cumulative shock size at some speci®c time point.

Technically, our starting point is to let

ç(s) � minfn: Tn . sg, s > 0: (7:7)

Note that, just as we needed ìx to be positive before, whereas only existence was needed for

ì y, now it is the other way around. In the present subsection we assume, for simplicity, that

both means are positive. We may thus deduce that, for example,

ç(s)

s
!a:s: 1

ì y

as s!1,

Sç(s)

s
!a:s: ìx

ì y

as s!1,

max1<k<ç(s) X k

s
!a:s: 0 as s!1:

7.5. Further extensions

In the context of reliability one has the concept of `replacement based on age', which means

that a component is replaced at failure or at some given prespeci®ed time, whichever comes

®rst. An analogous shock model would be to consider the state of the system either at failure

for one of the two reasons or at some given time. In order to model that situation we suppose

that 0 , ìx, ì y ,1, and consider the simplest case, namely

ã(t) � minfn: Sn . t or X n . ë t or Tn . tg
� minfí(t), ôë(t), ç(t)g � minfk(t), ç(t)g, t . 0:

Then

minfí(t), ç(t)g!a:s: min
1

ìx

,
1

ì y

� �
� 1

maxfìx, ì yg as t!1,

which, together with Proposition 4.1 and the arguments from Section 4, proves the following

result.

Theorem 7.1. Let ã(t) be de®ned as above, set ì � maxfìx, ì yg, where ìx � EX 1 . 0 and

ì y � EY1 . 0. Then:

(i)

ã(t)

t
!d W as t!1,
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where

fW (y) � èeÿè y, 0 , y , 1=ì, and P(W � 1=ì) � eÿè=ì,

or, equivalently,

FW (y) � 1ÿ eÿè y, for 0 , y , =ì,

1, for y > 1=ì;

�
(ii)

Tã( t)

t
!d ì yW as t!1;

(iii)

Sã( t)

t
!d ìxW as t!1;

(iv)

Xã( t)

t
!p 0 and

max1<k<ã( t) X k

t
!p 0 as t!1:

Remark 7.3. It is also possible to formulate a result on uniform integrability and moment

convergence aÁ la Theorem 5.1. We omit the details.

Another alternative is the following more natural stopping time, which, in addition,

leaves room for choosing certain parameters according to some given rule or need, namely,

ã(t, s) � minfn : Sn . at or X n . bë t or Tn . csg
� minfí(at), ôë(bt), ç(cs)g, t, s > 0,

for a, b, c . 0, with s typically being some function of t, and so on.

We close by mentioning a sample of possible generalizations of the model. For example,

the cumulative component could be Sn �
Pn

i�1á
k Xk , n > 1, where 0 ,á, 1, that is, in the

accumulation of the shocks there is a kind of `discount' as past shocks become more distant

in time. Another possibility would be a moving average type of sum, Sn �
Pn

k�nÿmak X k ,

n . m, where fak , k > 1g are constants, and m some given integer. One might also con-

sider the case when failure occurs as soon as the cumulative sum exceeds some given level

or, the sum of, say, the last three shocks exceed a(nother) level:

minfn : Sn . t or fX nÿ2 � X nÿ1 � X n . ë tgg, t > 0:

A ®nal variation is when failure occurs as soon as the cumulative sum exceeds some given

level, or not one but some given ®xed number of consecutive `large' shocks all exceed some

other level. One simple example of such a stopping time would be

minfn : Sn . t or fX nÿ1 . ë t and Xn . ë tgg, t > 0:
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