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The paper is concerned with testing nonparametric hypotheses about the underlying support G of

independent and identically distributed observations. It is assumed that G belongs to a class G of

compact sets with smooth upper surface called boundary fragments. It is required to distinguish the

simple null hypothesis speci®ed by a known set G0 in G against nonparametric alternatives that G

belongs to a class obtained by removing a certain neighbourhood of G0 in G . Using the asymptotic

minimax approach, the problem is to determine the order of the smallest distance between the null

hypothesis H0 and the alternatives for which one is able to test the null hypothesis against the

alternatives with a given summarized error.
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1. Introduction

We observe N -dimensional independent and identically distributed random variables

X 1, . . . , X n, uniformly distributed on an unknown set G. We assume that leb(G), the

Lebesgue measure of G, is positive. We denote by ÓNÿ1(ã, L1) the class of functions on

[0, 1]Nÿ1 having continuous partial derivatives up to order k � bãc (k 2 N is the greater

integer strictly less than ã) and such that

jg(z)ÿ p g
y (z)j < L1jzÿ yjã, 8y, z 2 [0, 1]Nÿ1,

where p g
y (z) denotes the Taylor polynomial of order k for g(�) at a point y, and jzj denotes

the Euclidean norm of a vector z. We assume that the set G � [0, 1]N is of the form

G � fx � (x1, . . . , xN ) 2 [0, 1]N : 0 < xN < g(x1, . . . , xNÿ1)g, where g : [0, 1]Nÿ1 !
[0, 1] is called the edge of G (Korostelev and Tsybakov 1993a) and is a smooth function

belonging to Ó(ã, L1, b1), which is de®ned by

Ó(ã, L1, b1) � fg 2 ÓNÿ1(ã, L1) : b1 , g(y) , 1ÿ b1 8y 2 [0, 1]Nÿ1g,
where ã > 1 is real, L1 is a positive constant and b1 is a positive constant such that

0 , b1 , 1
2
. We denote by G the class of sets whose edge belongs to Ó(ã, L1, b1). Such sets

G are called boundary fragments (Korostelev and Tsybakov 1993b).

In this framework, the present paper studies the following hypothesis testing problem
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concerning the support G: the null hypothesis is speci®ed by a known ®xed set G0 in G
and the alternatives are classes of sets, obtained by removing a certain øn-neighbourhood of

G0 in G , where øn is a sequence of positive numbers decreasing to zero with n. In detail,

we ®rst let d1 be the Hausdorff distance between two closed compact sets G and G9
de®ned by d1(G, G9) � max(maxx2Gr(x, G9), maxx2G9r(x, G)), where r(x, G) is the

Euclidean distance between a point x and a closed set G. We consider the problem of

testing the simple hypothesis

H0 : G � G0,

against the composite alternative

HË1, n
: G 2 Ë1,n(øn) � fG 2 G : d1(G0, G) > øng:

Since ã > 1, the Hausdorff distance d1 between G and G0 is equivalent to the L1-distance

between the corresponding edge functions g and g0. Thus, Ë1,n(øn) can be de®ned as the

class of sets whose edge belongs to Ó(ã, L1, b1) and is separated from g0 in L1-distance by

cøn, where c is a positive constant.

Second, consider support functionals S(G) de®ned by S(G) � �
G
j(x)dx, where j is

some known bounded positive function on [0, 1]N ; also let S0 � S(G0). The test we are

interested in is

H0 : G � G0,

against the composite alternative

HË2, n
: G 2 Ë2,n(øn) � fG 2 G : jS(G)ÿ S0j > øng:

Third, let d1(G, G9) be the Lebesgue measure of the symmetric difference between two

compact closed sets G and G9. We wish to test

H0 : G � G0,

against the composite alternative

HË3, n
: G 2 Ë3,n(øn) � fG 2 G : d1(G, G0) > øng:

Since the Lebesgue measure of the symmetric difference d1 between G and G0 is equal to the

L1-distance between the corresponding edge functions g and g0, Ë3,n(øn) can be de®ned as

the class of sets in G whose edge is separated from g0 in L1-distance by øn.

Ë1,n, Ë2,n and Ë3,n are henceforth abbreviated as Ën when it is convenient, and d

represents the distance which separates the alternatives from G0. Note that Ën is de®ned by

three parameters: the class G , d and øn. However, it can be shown (Ingster 1993a; 1993b;

1993c) that, given G and d, øn cannot be chosen arbitrarily. It turns out that if øn is too

small, then it is not possible to test the hypothesis H0 against HË n
with given summarized
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errors of the ®rst and the second kind. On the other hand, if øn is very large, such a test is

possible; the problem is to ®nd the smallest øn for which such a test is still possible and to

indicate the corresponding test.

Let us give some precise de®nitions to solve these problems. Let Än be a test statistic

that is an arbitrary function with values 0, 1 and is measurable with respect to X 1, . . . , X n

and such that we accept H0 if Än � 0 and we reject H0 if Än � 1. Set R0(Än) �
PG0
fÄn � 1g for the error of the ®rst kind and R1(Än, øn) � sup G2Ë n(ø n) PGfÄn � 0g for

the error of second kind. The index G means that the measure PG is generated by

X 1, . . . , X n uniformly distributed on G. The properties of the tests Än are characterized by

the sum of the two errors

R0(Än)� R1(Än, øn):

Fix a number â in (0, 1). The sequence øn is called the minimax rate of testing (MRT) if the

following two conditions hold:

· there exists b . 0 such that

lim inf
n!1 inf

Ä n

[R0(Än)� R1(Än, bøn)] > â, (1:1)

where the in®mum is taken over all the tests Än;

· there exist a positive constant b9 and a test Än such that

lim sup
n!1

[R0(Än)� R1(Än, b9øn)] < â: (1:2)

Thus, the MRT øn is such that a meaningful test of H0 is impossible if the distance between

the null hypothesis and the alternative is smaller than bøn, and is possible if the distance is

greater than b9øn. Clearly, b9 > b.

The problem of nonparametric hypothesis testing is closely related to minimax non-

parametric estimation problems with in®nite-dimensional `parameter' class. For a detailed

review of this area, see Donoho et al. (1995) and the references therein. However, speci®c

features of hypothesis testing problems have been discovered which do not occur in

estimation problems. In particular, the minimax rates are different for the estimation

problem and for the testing problem. The problem of nonparametric hypothesis testing was

initiated by Ingster (1982), although some closely related ideas appeared in earlier papers

by Burnashev (1979), Ibragimov and Has'minskii (1977) and BirgeÂ(1983). Ingster (1982)

considered hypothesis testing in the problem of signal detection where a certain function f ,

treated as a signal, is observed with noise: the null hypothesis in this case is f � 0, that is,

no signal is present. The problem of testing this null hypothesis against the alternative

de®ned as the set of functions belonging to an ellipsoid in L2(0, 1) and separated from zero

in the L2-norm by a distance Køn (K is a positive constant) was studied by Ingster (1982)

and Ermakov (1990a). Another alternative de®ned as a HoÈlder class separated from zero in

the Lp-norm, in the uniform norm and in a ®xed point by a distance Køn was considered

by Ingster (1986b). In addition, Ingster (1990) and Suslina (1993) investigated the case of

an alternative de®ned as a set of functions belonging to an ellipsoid in lp, 0 , p <1, lying

outside the ball of radius Køn around zero. Lepski (1993) studied a slightly different

Minimax hypothesis testing about the density support 509



problem: that of ®nding the exact value Køn, where K is a positive constant depending on

the smoothness parameter, for which relations (1.2) and (1.1) hold with alternative sets

de®ned by the HoÈlder class separated from zero in the uniform norm and also in a ®xed

point; an extension of Lepski's (1993) result is given in Lepski and Tsybakov (1996).

Lepski and Spokoiny (1999) studied the signal detection problem, considering a Besov ball

as the alternative separated away from zero in the integral Lp-norm. Spokoiny (1996)

extended the investigations to the problem of adaptive testing. This problem of adaptive

testing is also studied in Spokoiny (1998). Another widely studied example of hypothesis

testing concerns the probability density; this can be formulated in the following way. Let

X 1, . . . , X n be independent and identically distributed random variables having an unknown

probability density f . The null hypothesis is speci®ed by a known density f0 against several

nonparametric alternatives such as ellipsoids in L2 (Ingster 1984; Ermakov 1994), HoÈlder

classes (Ingster 1986b), ellipsoids in lp, 0 , p <1 (Ingster 1994), and Sobolev balls

(Ingster 1986a). The reader is referred to Ingster (1993a; 1993b; 1993c) for a most detailed

review of nonparametric minimax hypothesis testing for both signal detection and density

problems.

Other problems of nonparametric hypothesis testing are studied using the minimax

approach: see, for instance, Ermakov (1990b; 1990c) in which the objects of interest are

respectively the spectral density and the distribution function, and recent papers (Ermakov

1996; HaÈrdle et al. 1997; Spokoiny 1997; Feldmann et al. 1998; Baraud et al. 1999;

Gayraud and Tsybakov 1999; HaÈrdle and Kneip 1999; Pouet 2000) in which the non-

parametric null hypothesis and alternatives are both composite.

Although our problem is a minimax hypothesis testing problem, it differs from those

mentioned above in that it concerns a set (the underlying support) and not a function. As in

signal detection (Ingster 1982), we show that the minimax rates are sometimes different for

the estimation problem and for the hypothesis testing problem: actually the MRT is at least

the same as the minimax rate of estimation (MRE), or else the MRT improves the MRE

obtained in the corresponding estimation problems. Our study not only is of theoretical

interest but also could be important in many applications. Indeed, the underlying support is

an object of interest in several areas such as econometrics, cluster analysis and reliability

theory. For example, the knowledge of the boundary of the density support allows the

performance of an enterprise to be evaluated in terms of technical ef®ciency, and also the

underlying support can be a useful tool in reliability theory for detecting abnormal system

behaviour.

The paper is organized as follows. In Section 2, we present the test statistics for which

relation (1.2) holds. The main results of this paper are stated in Section 3 and their proofs

are given in Section 5. We prove that the MRT is either (n=log n)ÿã=(ã�Nÿ1) for the

alternative Ë1,n(øn), or nÿ[ã�(Nÿ1)=2]=(ã�Nÿ1) when the alternative is de®ned by either

Ë2,n(øn) or Ë3,n(øn). A comparison between the MRT and the MRE obtained in the cor-

responding estimation problems shows that they are equal when both alternative and error

of estimation are de®ned by the d1-distance and also by the positive difference

jS(G)ÿ S0j. When both alternative and estimation error are de®ned with the d1 metric,

it is interesting to note that the MRT and the MRE are different and, in particular, that the

MRT improves the MRE. In this last case, the MRT corresponds to the MRE obtained in
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the estimation problem of functionals of support such as T (G) � �
[0,1] Nÿ1 jg(y)ÿ g0(y)jdy

(Gayraud 1997). Section 4 is devoted to additional remarks and simulations.

2. De®nition of the test statistics

Henceforth, let än be a positive sequence and set M � äÿ(Nÿ1)
n . Without loss of generality,

suppose that M is an integer. Introduce a partition of [0, 1]Nÿ1 into cubes Qq, q � 1, . . . , M ,

with edges of length än. For each q in f1, . . . , Mg, denote by uq � (uq,1, . . . , uq,Nÿ1)

2 [0, 1]Nÿ1 the centre of the cube Qq.

2.1. Testing for supports in the Hausdorff distance

In this section, set än � (n=log n)ÿ(1=ã�Nÿ1). The test statistic is based on Gn and g n, the

estimates of G and its edge g proposed in Korostelev and Tsybakov (1993b); there, edge

estimation is carried out separately on each cube Qq, q 2 f1, . . . , Mg, as a polynomial

function, and thus the entire process of estimating g n is based on slicing and piecewise

polynomial approximation; then, the set estimator Gn is de®ned as the set

Gn � fx � (y, xN ) 2 [0, 1]N : 0 < xN < gn(y)g: (2:1)

This leads to the test statistic

Ä1,n � 0 if d1(Gn, G0) , C1ä
ã
n,

1 if d1(Gn, G0) > C1ä
ã
n,

�
where C1 .(N ÿ 1)=(ã� N ÿ 1) is a constant.

2.2. Tests for functionals of density supports

In this section, set än � nÿ(1=ã�Nÿ1). This problem is related to the minimax estimation of

the functionals S(G) (Gayraud 1997). We ®rst de®ne an estimator Sn of S(G): divide the

whole sample X 1, . . . , X n into three subsamples J1 � fX i, i 2 I1g, J2 � fX i, i 2 I2g,
J3 � fX i, i 2 I3g such that I1 [ I2 [ I3 � f1, . . . , ng and card J1 � card J2 � card J3

� n=3. Without loss of generality, suppose that n=3 is an integer. We transform the

estimator Gn de®ned in (2.1) as follows: instead of using the original sample, we consider

another sample X 91, . . . , X 9n, obtained by a transformation � of X1, . . . , X n; this allows us to

construct an estimator Gn included in the true support G almost surely (the proof and the

transformation � are given in Gayraud 1997). Then, let J 91 and J 93 be the samples obtained by

transformation � of J1 and J3, and denote by Gn,J 9r , g n,J 9r and Gn,J 9r the estimator of G, the

estimator of g, and the complement to Gn,J 9r in [0, 1]N , respectively; all of these are based on

J 9r, for all r 2 f1, 3g. The estimator Sn of S(G) is de®ned by
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Sn �
�

[0,1] N

j(x)IfxN < g n,J 91 (x1, . . . , xNÿ1)gdx� 3

n

X
i2 I2

j(X i)IfX i 2 Gn,J 91gìn,J 93 , (2:2)

where ìn,J 93 , which is based on J 93, is the estimator of leb(G) de®ned in Korostelev and

Tsybakov (1993b, Lemma 4). We can now de®ne the test statistic

Ä2,n � 0 if (Sn ÿ S0)2 , C2ä
ã
n=n,

1 if (Sn ÿ S0)2 > C2ä
ã
n=n,

�
where C2 is a positive constant.

2.3. Tests for supports in the d1-distance

In this section, set än � nÿ(1=ã�Nÿ1). Although this problem is related to the density support

estimation, the construction of the test is based on an estimator Tn of T (G) ��
[0,1] Nÿ1 jg(y)ÿ g0(y)jdy. We ®rst divide the whole sample X1, . . . , X n into two subsamples

J1, J2 and then divide each subsample Jq into three sub-subsamples Jq,1, Jq,2, Jq,3, q � 1, 2.

Without loss of generality, we suppose that n=6 is an integer and that each sub-subsample

Jq,1, Jq,2, Jq,3, q � 1, 2, contains n=6 observations. Moreover, de®ne J 9q,r, q � 1, 2 and

r 2 f1, 3g, the sample obtained by the transformation � of Jq,r as in Section 2.2. The

functional T (G) can be written as the sum of two terms:

T (G) �
�

(g(y)ÿ g0(y))Ifg(y) > g0(y)gdy�
�

(g0(y)ÿ g(y))Ifg(y) , g0(y)gdy � t1 � t2:

Then de®ne the statistic

Tn � t̂1 � t̂2, (2:3)

where

t̂1 �
�

[0,1] N

Ifx 2 Gn,J 91,1
\ G0gdx� 6

n

X
i:Xi2J1,2

IfX i 2 Gn,J 91,1
\ G0gìn,J 91,3

,

t̂2 �
�

[0,1] N

Ifx 2 Gn,J 92,1
\ G0gdxÿ 6

n

X
i:X i2J2,2

IfX i 2 Gn,J 92,1
\ G0gìn,J 92,3

,

where Gn,J 9q,1
is the set estimator de®ned as in Section 2.2, which is based on J 9q,1 for

q � 1, 2, and ìn,J 9q,3
is the leb(G)-estimator de®ned in Korostelev and Tsybakov (1993b,

Lemma 4) and based on J 9q,3 for q � 1, 2. Then, our test statistic is

Ä3,n � 0 if jTnj, C3(äãn=n)1=2,

1 if jTnj > C3(äãn=n)1=2,

�
where C3 is a positive constant.
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3. Main results

Theorem 3.1. Let alternatives be de®ned by the set Ë1,n(øn), where øn �
(n=log n)ÿ(ã=ã�Nÿ1). There exist positive constants b2 and b3 for which the following

relations hold:

lim inf
n!1 inf

Ä n

[R0(Än)� R1(Än, b2øn)] > 1, (3:1)

lim sup
n!1

[R0(Ä1,n)� R1(Ä1,n, b3øn)] � 0, (3:2)

where infÄn
denotes the in®mum over all test statistics.

Remark 3.1. Note that øn corresponds to the MRE obtained in Korostelev and Tsybakov

(1993b) for density support estimation with the Hausdorff distance for the class of boundary

fragments.

Remark 3.2. In Theorem 3.1, the right-hand side of each relation does not depend on â and

therefore (3.1) and (3.2) are satis®ed for any â 2 [0, 1]. This is connected with the fact that

the limiting distribution, arising here, is singular.

Theorem 3.2. Let alternatives be de®ned by the set Ë2,n(øn), where øn � (äãn=n)1=2 and

än � nÿ(1=ã�Nÿ1).

(i) Assume that j is an integrable function on [0, 1]N such that jjj is greater than a

positive constant on some closed N -interval contained in [0, 1]Nÿ1 3 [b1, 1ÿ b1]. Then,

there exist positive constants b4 and â�, 1 such that, for all â, â�, the following

inequality holds:

lim inf
n!1 inf

Ä n

[R0(Än)� R1(Än, b4øn)] > â, (3:3)

where infÄn
denotes the in®mum over all possible test statistics.

(ii) Assume that j is continuous and bounded on [0, 1]N . Then, there exists some

positive constant b5 such that

lim sup
n!1

[R0(Ä2,n)� R1(Ä2,n, b5øn)] < â: (3:4)

Remark 3.3. Note that øn is equal to the MRE obtained in Gayraud (1997) for the estimation

of the functional density support for the class of boundary fragments.

Theorem 3.3. Let alternatives be de®ned by the set Ë3,n(øn), where øn � (äãn=n)1=2 and

än � nÿ(1=ã�Nÿ1).

(i) There exist positive constants b6 and â�, 1 such that, 8â, â�, we have

lim inf
n!1 inf

Ä n

[R0(Än)� R1(Än, b6øn)] > â, (3:5)

where infÄn
denotes the in®mum over all possible test statistics.
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(ii) There exists some positive constant b7 such that

lim sup
n!1

[R0(Ä3,n)� R1(Ä3,n, b7øn)] < â: (3:6)

Remark 3.4. In this case, the MRT øn improves the MRE obtained for the estimation of the

density support when the error is de®ned with the d1-metric (Gayraud 1997).

4. Additional remarks and simulations

4.1. Remarks

4.1.1. The case of an unknown probability density

The results of this paper can be generalized to a more general class of density than the

uniform density. Let F G be the class of densities whose underlying support is G such that

F G � f f 2 ~F (a0, G) : f has continuous partial derivatives up to order

l ÿ 1 in Int(G) and j f (x)ÿ p f
v (x)j < QLjxÿ vj l, 8x 2 G, 8v 2 Int(G)g,

where p
f
v (x) is the Taylor polynomial of f of order l ÿ 1 at the point v 2 Int(G), QL is a

positive constant, Int(G) denotes the interior of G, l is a positive integer and the class
~F (a0, G) � f f de®ned on [0, 1]N : f (x) > a0 . 0, 8x 2 G, and f (x) � 0, 8x =2 Gg, where

a0 . 0 is a given constant. In this case, one de®nes a density estimator as a kernel estimator

K (for its construction, see Gayraud 1997, Section 2.3) in place of the estimator of leb(G)

used in the de®nition of both Sn (2.2) and Tn (2.3). Some assumptions on K and l (for

details, see Gayraud 1997, Section 3.1) allow one to consider the probability density as a

nuisance parameter. Then one obtains Theorems 3.2 and 3.3, since Theorem 3.1 remains

valid.

4.1.2. Lower bounds

In nonparametric estimation problems such as regression or density estimation, the minimax

lower bounds lead to proof that the rates of convergence obtained for some estimators cannot

be improved by any other estimators. In hypothesis testing problems, the relations of the

lower bound (1.1) lead to proof that relation (1.2) cannot be used with ø9n � o(øn) in place

of b9øn, that is, one cannot successfully distinguish the null hypothesis from the alternatives

that are much closer than øn from H0 in d-distance. The dif®culty in proving the relations of

lower bounds in hypothesis testing problems lies in the construction of the parametric family

which must be included in the whole class G as in nonparametric estimation problems, but

also which must be separated from the null hypothesis by øn in d-distance. This is achieved

by randomizing the alternative classes of sets.
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4.1.3. The exact separation constant

A possible extension of our results would be to provide b, the exact separation constant

(ESC), for which (1.1) holds for all b 0 , b and (1.2) holds for all b 0 . b. The ESC is known

in several problems, in particular for functional classes and distances d de®ned in a

coordinate form ± ellipsoids in lp in the density model in Ingster (1994) and in the signal

detection problem in Suslina (1993). For the classes de®ned in functional form such as

HoÈlder or Sobolev classes, with d de®ned by the Lp-norm, much less is known about the

exact asymptotics: to our knowledge, the ESC is known only in the signal detection problem

in Lepski (1993) for the HoÈlder class with smoothness parameter less than 1 and the L1-

norm as the distance d, and, in Lepski and Tsybakov (1996) and in Pouet (1999) for the

HoÈlder and Sobolev classes and for analytical alternatives, respectively; in both papers d is

de®ned by the supremum norm and by the distance in a ®xed point.

In our framework, a study of the ESC would be a non-trivial matter requiring further

investigations and requiring a paper in its own right.

4.2. Simulations

In this subsection we illustrate our theoretical results by comparing the errors of the second

kind obtained under some alternative class of sets which are separated from H0 by a, with the

distance d1 and the distance based on the functional S(�). For this comparison, we consider

the particular case of: N � 2; the null hypothesis G0 � fx � (x1, x2) 2 [0, 1]2 : 0 < x2

< g0(x1) � 1
2
g, S(G) � �

G
dx � leb(G); distances d1(G, G0), jS(G)ÿ S0j used to separate

G0 and sets G belonging to the alternative; and two forms of alternative class, de®ned by

C 1(a) � fG : G � f(x1, x2) : 0 < x2 < g0(x1)� agg,
C 2(a) � fG : G � f(x1, x2) : 0 < x2 < g0(x1)� k(a, d)a sin(x1=a)gg,

where a and k(a, d) are positive constants. The constant k(a, d) is chosen such that

d(G, G0) > a, for all G 2 C 2(a). Since the alternative hypotheses are composite, we takes a

as varying inside a set A de®ned by A � f0:03, 0:05, 0:07, 0:09, 0:1, 0:12g. Then we

calculate RG
1 (Ä1,n, a) � PG(Ä1,n � 0) and RG

1 (Ä2,n, a) � PG(Ä2,n � 0), where G belongs to

either C 1(a) or C 2(a) and a is in A (Table 1). The ®rst step of these calculations is to

compute the test statistics Ä1,n and Ä2,n; this is done following the theoretical procedure

given in Korostelev and Tsybakov (1993b) and in Gayraud (1997), respectively. The second

step consists in using the Monte Carlo method with 10 000 replications to approximate each

RG
1 (Ä1,n, a) and RG

1 (Ä2,n, a) for G in C 1(a) [ C 2(a) and a in A. Since our theoretical

results are asymptotic, our calculations are done with different values of n, that is,

n 2 f100, 250, 500, 750, 1000g. Furthermore, the value of a � 0 leads us to evaluate the

error of the ®rst kind since RG
1 (Äq,n, 0) � 1ÿ R0(Äq,n), q 2 f1, 2g. One must note that for

each distance d, the theoretical error of second kind de®ned in Section 1 is the maximal error

over the class of sets G in C 1(a) [ C 2(a) and the set A of a. The presence of two different

forms of alternative classes would demonstrate that the simulation results are independent of

the choice of one particular form.
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Table 1. Errors of ®rst and second kind for G either in C 1(a) or in C 2(a)

RG
1 (Ä1,n, a), G 2 C 1(a)

Values of a n � 100 n � 250 n � 500 n � 750 n � 1000

0 0.8598 0.8648 0.8877 0.8688 0.86

0.03 0.9581 0.9849 0.9952 0.0771 0.013

0.05 0.8798 0.0874 0 0 0

0.07 0.3652 0.0001 0 0 0

0.09 0.0112 0 0 0 0

0.1 0.0026 0 0 0 0

0.12 0.0002 0 0 0 0

RG
1 (Ä1,n, a), G 2 C 2(a)

Values of a n � 100 n � 250 n � 500 n � 750 n � 1000

0 0.8598 0.8648 0.8877 0.8688 0.86

0.03 0.9417 0.9692 0.9879 0.6488 0.083

0.05 0.9323 0.5986 0.0031 0 0

0.07 0.8064 0.0082 0 0 0

0.09 0.181 0 0 0 0

0.1 0.0867 0 0 0 0

0.12 0.0062 0 0 0 0

RG
1 (Ä2,n, a), G 2 C 1(a)

Values of a n � 100 n � 250 n � 500 n � 750 n � 1000

0 0.9228 0.8824 0.9699 0.9543 0.8085

0.03 0.9441 0.5673 0.067 0.0042 0.003

0.05 0.8593 0.2654 0 0 0

0.07 0.5849 0.0415 0 0 0

0.09 0.4318 0 0 0 0

0.1 0.3675 0 0 0 0

0.12 0.1286 0 0 0 0

RG
1 (Ä2,n, a), G 2 C 2(a)

Values of a n � 100 n � 250 n � 500 n � 750 n � 1000

0 0.9228 0.8824 0.9699 0.9543 0.8085

0.03 0.9641 0.0684 0 0 0

0.05 0.8987 0 0 0 0

0.07 0.6457 0 0 0 0

0.09 0.5214 0 0 0 0

0.1 0.2465 0 0 0 0

0.12 0.2294 0 0 0 0
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First, note that for all cases, the error of the second kind decreases as n is increases.

Second, if we ®x a real number ã in (0, 1) which is an upper bound for the error of the

second kind, the calculation of the error of the second kind in both tests gives the smallest

value of a for which one can distinguish the alternatives from H0; for example, for n � 500

and if we ®x ã � 0:1, the corresponding a for the ®rst test is 0.05 and that for the second

test is 0.03. Furthermore, without ®xing an upper bound ã and for large values of n, say

n > 500, one must note that the errors of the second kind are always smaller when the

distance d is based on the functional S(G) than for the d1-distance: this would give the

same conclusion as the theoretical results.

5. Proofs

5.1. Proof of Theorem 3.1

Let än � (n=log n)ÿ1=(ã�Nÿ1).

5.1.1. Proof of (3.1)

Introduce a partition of [0, 1]Nÿ1 into M cubes Qq, q � 1, . . . , M � (b
1=ã
2 än)ÿ(Nÿ1), with

edges of length b
1=ã
2 än. Assume without loss of generality that M is an integer. Let ç be

a function such that ç is C 1, ç(t) � 0 if t =2 [ÿ1
2
, 1

2
]Nÿ1, ç(t) > 1 if t 2 [ÿ1

2
, 1

2
]Nÿ1,

sup t jç(k�1)(t)j < L1 where k � bãc, and write ç� � sup t2[ÿ1
2
,1
2
]Nÿ1 ç(t) <1 and ç ��

[ÿ1
2
,1
2
]Nÿ1 ç(t)dt. For q � 1, . . . , M, de®ne the sets

G0 � fx � (xN , y) 2 [0, 1]N : 0 < xN < g0(y)g,

Gq � fx � (xN , y) 2 [0, 1]N : 0 < xN < gq(y)g,

G�q � fx � (xN , y) 2 [0, 1]N : gq(y) < xN < g0(y)g,
where gq(y) � g0(y)ÿ b2ä

ã
nç((yÿ uq)=b

1=ã
2 än). Denote by G M

1 the class of sets Gq for all

q � 1, . . . , M : it is clear that G M
1 is included in Ë1,n(b2ä

ã
n).

Set æ(n)
q � (dPq=dP0)(X1, . . . , X n). Then, for any decision rule Än,

PG0
[Än � 1]� sup

G2Ë1, n(b2ä
ã
n)

PG[Än � 0] > P0[Än � 1]� 1

M

XM

q�1

Pq[Än � 0]

> (1ÿ å)P0

1

M

XM

q�1

æ(n)
q > (1ÿ å)

24 35,

where PG, P0 and Pq respectively denote the probability distribution of the data when they

are uniformly distributed on G, G0 and Gq. The last inequality holds for any positive real

å, 1. Under H0, and since leb Gq � leb Gq9 for all q, q9 � 1, . . . , M , we have
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æ(n)
q �

Yn

i�1

leb G0 IfX i 2 Gqg
leb Gq IfX i 2 G0g �

leb G0

leb G�

� �nYn

i�1

IfX i 2 Gqg,

where leb G� � leb Gq for all q � 1, . . . , M . Set Z M � (1=M)
PM

q�1æ
(n)
q . If, for all å, 1,

P0[jZ M ÿ 1j > å]! 0 as n!1, then P0[Z M > (1ÿ å)]! 1 as n!1.

Note that E0[Z M ] � 1 and that

E0[Z2
M ] � 1

M2

leb G0

leb G�

� �2n

E0

XM

q�1

IfXi 2 Gq, 8i � 1, . . . , ng
0@ 1A2
264

375

� 1

M2

leb G0

leb G�

� �2n

E0

XM

q�1

IfXi 2 Gq, 8i � 1, . . . , ng
24 350@

� E0

X
q 6�q9

IfXi 2 Gq \ G9q, 8i � 1, . . . , ng
" #1A:

Set

T1 � 1

M2

leb G0

leb G�

� �2n

E0

XM

q�1

IfX i 2 Gq, 8i � 1, . . . , ng
24 35

and note that

T1 � 1

M

leb G0

leb G�

� �n

:

Also set

T2 � 1

M2

leb G0

leb G�

� �2n

E0

X
q6�q9

IfX i 2 Gq \ G9q, 8i � 1, . . . , ng
" #

and note that

T2 � 1

M2

leb G0

leb G�

� �2nX
q6�q9

(E0[IfX 1 2 Gq \ Gq9g])n

� 1

M2

leb G0

leb G�

� �2nX
q6�q9

leb G0 ÿ leb G�q9 leb G�q
leb G0

 !n

, (5:1)

where (5.1) is due to the independence of the variables X i. Write leb G� � leb G�q for any

q 2 f1, . . . , Mg since leb G�q � leb G�p for all p, q 2 f1, . . . , Mg. Then
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E0[Z2
M ] � 1

M

leb G0

leb G�

� �n

� 1

M2

leb G0

leb G�

� �2nX
q 6�q9

leb G0 ÿ leb G�q9 ÿ leb G�q
leb G0

 !n

: (5:2)

Write g0 � leb G0; for b2 small enough, note that

leb G0

leb G�

� �n

� (1ÿ b
1�(Nÿ1)=ã
2 äã�Nÿ1

n (ç=g0))ÿn � n(b
1�( Nÿ1)=ã
2

(ç= g0))(1� o(1)):

If b2 is small enough and satis®es as n!1, b
1�(Nÿ1)=ã
2 (ç=g0) ,(N ÿ 1=ã� N ÿ 1), we

obtain

1

M

leb G0

leb G�

� �n

! 0: (5:3)

In the same way, for b2 small enough, we obtain the following approximation for the second

part of (5.2):

1

M2

leb G0

leb G�

� �2nX
q6�q9

leb G0 ÿ leb G�q9 ÿ leb G�q
leb G0

 !n

� M2 ÿ M

M2
(1ÿ b

1�(Nÿ1)=ã
2 äã�Nÿ1

n (ç=g0))ÿ2n(1ÿ 2b
1�(Nÿ1)=ã
2 äã�Nÿ1

n (ç=g0))n

� M2 ÿ M

M2
(1� o(1))! 1, n!1: (5:4)

From (5.2), (5.3), (5.4) and by Chebyshev's inequality, (3.1) holds.

5.1.2. Proof of (3.2)

First, consider the error of the second kind. For all G in Ë1,n(b3ä
ã
n),

PG[Ä1,n � 0] < PG[d1(G, G0)ÿ d1(Gn, G) , C1ä
ã
n]

< PG[d1(Gn, G) .(b3 ÿ C1)äãn]: (5:5)

As soon as there exists a constant b3 such that b3 ÿ C1 is large enough, and using relation

(2.15) in Korostelev and Tsybakov (1993b), we obtain

PG[Ä1,n � 0] < nÿ p(b3ÿC1), (5:6)

where p is an arbitrary ®xed positive number. It follows that R1(Ä1,n, b3ä
ã
n) is asymptotically

equal to zero.

Under PG0
, providing some upper bound for R0(Ä1,n) reduces to provide some bound for

PG[d1(Gn, G) > C1ä
ã
n], for all G 2 G . Relation (3.2) follows since the last inequality is

similar to the right-hand side of relation (5.5).
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5.2. Proof of Theorem 3.2

Let øn � nÿ[ã�(Nÿ1)=2]=(ã�Nÿ1) and än � nÿ1=(ã�Nÿ1).

5.2.1. Proof of (3.3)

Consider the partition de®ned in the proof of (3.1) with b4 in place of b2 and

än � nÿ(1=ã�Nÿ1), and consider also the function ç de®ned in the proof of Theorem 3.1.

Let ù � (ù1, . . . , ùM ) be a binary vector such that ù1, . . . , ùM are independent and

identically distributed Bernoulli random variables and set Ù � fù :
PM

q�1wq � M1=2g;
assume without loss of generality that M1=2 is an integer. Write jÙj � cardÙ and de®ne the

sets

G0 � fx � (xN , y) 2 [0, 1]N : 0 < xN < g0(y)g,
Gù � fx � (xN , y) 2 [0, 1]N : 0 < xN < gù(y)g,

where

gù(y) � g0(y)ÿ b4ä
ã
n

X
ù2Ù

ùqç
yÿ uq

b
1=ã
4 än

� �
:

Set G M � fGù : ù 2 Ùg, the parametric class of Gù. It is clear that G M is included in

Ë2,n(b4øn), with øn � nÿ[ã�(Nÿ1)=2]=(ã�Nÿ1).

Set P � (1=jÙj)Pù2ÙPGù . Thus, for any decision rule Än, we obtain

PG0
[Än � 1] � sup

G2Ë2, n(b4ø n)

PG[Än � 0]

> P0[Än � 1]� P[Än � 0]

>
1

jÙj
X
ù2Ù

Pù
1

jÙj
X
ù92Ù

dPù9

dP0

<
1

å

" #
, (5:7)

where Pù and P0 denote the probability distribution of the data when their underlying support

is Gù, ù 2 Ù, and G0 respectively, and å is an arbitrary positive real. For simplicity's sake,

denote g0 � leb(G0). We ®rst ®x ù 2 Ù, and by Chebyshev's inequality we obtain

Pù
1

jÙj
X
ù92Ù

dPù9

dP0

<
1

å

" #
> 1ÿ å

jÙj
X
ù92Ù

Eù
dPù9

dP0

� �

� 1ÿ å

jÙj
X

ù9 6�ù:ù,ù92Ù
Eù

dPù9

dP0

� �
ÿ å

jÙj Eù
dPù

dP0

� �
: (5:8)

Since b4 is chosen small enough, the ®nal term on the right in (5.8) becomes

Eù
dPù

dP0

� �
� leb G0

leb Gù

� �n

� exp(M1=2b4(ç=g0))(1� o(1)): (5:9)
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Furthermore, jÙj is equal to the number of ways of choosing M1=2 elements from a set

of M elements, that is, jÙj � C M
M1=2 . Note that there exist two positive constants ~c and c9

such that

~cnn�(1=2) exp(ÿn) < n! < c9nn�(1=2) exp(ÿn) 8n: (5:10)

Then, as n goes to in®nity,

C M
M1=2 � exp[M log M ÿ 1

2
M1=2 log M ÿ (M ÿ M1=2)log(M ÿ M1=2)](1� o(1))

� exp [1
2

M1=2 log M](1� o(1)):

This entails

å

jÙj Eù
dPù

dP0

� �
! 0, as n!1: (5:11)

Now consider the case ù9 6� ù, ù, ù9 2 Ù. Since leb Gù � leb Gù9, for all ù, ù9 2 Ù,

Eù
dPù9

dP0

� �
� leb(Gù9 \ Gù)leb G0

(leb Gù)2

� �n

: (5:12)

De®ne

l � ]fq � 1, . . . , M : gù(y) � gù9(y) 6� g0(y)8y 2 Qqg:

Since ù and ù9 belong to Ù, l cannot exceed M1=2 ÿ 1. Note that leb (Gù9 \ Gù)

� g0(y)ÿ 2M1=2(b4 ç=n)� l(b4 ç=n). Then, as n goes to in®nity, (5.12) can be written as

leb(Gù9 \ Gù)leb G0

(leb Gù)2

� �n

� 1ÿ 2M1=2(b94=n)� l(b94=n)

(1ÿ M1=2b94=n)2

 !n

� (1� (l=n)b94)n(1� o(1))

� exp(lb94)(1� o(1)), (5:13)

where b94 � (b4 ç)=g0 is a positive constant. From (5.12) and (5.13), we obtain

X
ù9 6�ù:ù,ù92Ù

Eù
dPù9

dP0

� �
�
XM1=2ÿ1

l�1

X
ù92Ù l

exp(lb94)(1� o(1)),

where Ù l � fù9 2 Ù : leb(Gù \ Gù9) � lg. Note that cardÙ l � C M1=2

l C MÿM1=2

M1=2ÿ l
. For n large

enough and from (5.10), we have
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C M1=2

l C MÿM1=2

M1=2ÿ l
� exp[1

2
M1=2 log M ÿ l log l ÿ 2(M1=2 ÿ l )log(M1=2 ÿ l )

� (M ÿ M1=2)log(M ÿ M1=2)

ÿ (M ÿ 2M1=2 � l )log(M ÿ 2M1=2 � l )](1� o(1))

< exp[1
2
M1=2 log M ÿ l log l](1� o(1)): (5:14)

Thus, for n large enough

å

jÙj
X

ù9 6�ù:ù,ù92Ù
Eù

dPù9

dP0

� �
� å

XM1=2ÿ1

l�1

exp(ÿl log l )(1� o(1)) ,1: (5:15)

There exists å� such that for all å, å�, 1ÿ å
P1

l�1 exp(ÿl log l )) . 0: Set â� �
å�(1ÿP1l�1 exp(ÿl log l )å�). From (5.8), (5.11), (5.15) and for all â, â�, (3.3) holds.

5.2.2. Proof of (3.4)

Choose â1 . 0 and â2 . 0 such that â � â1 � â2. First consider the risk of the second kind.

Choose b5 . C2; 8G 2 Ë2,n(b5øn), we have

PG[Ä2,n � 0] < PG[(Sn ÿ S(G))2 .(b5 ÿ C2)2 nÿ(2ã�Nÿ1)=(ã�Nÿ1)]: (5:16)

By Chebyshev's inequality, we obtain

PG[Ä2,n � 0] <
EG[(Sn ÿ S(G))2]

(b5 ÿ C2)2 nÿ(2ã�Nÿ1)=(ã�Nÿ1)
: (5:17)

For n large enough, adapting the results on support estimation in Gayraud (1997), there exists

a constant b5 . C2 such that R1(Ä2,n, b5 nÿ(2ã�Nÿ1)=[2(ã�Nÿ1)]) is bounded from above by â1.

Under PG0
, the proof of R0(Ä2,n) < â2 is reduced to proving that PG[(Sn ÿ S(G))2

> C2 nÿ(2ã�Nÿ1)=(ã�Nÿ1)] < â2, 8G 2 G . Noting that the last inequality is similar to

inequality (5.16), relation (3.4) is then satis®ed.

5.3. Proof of Theorem 3.3

Let än � nÿ1=(ã�Nÿ1) and øn � nÿ[ã�(Nÿ1)=2]=(ã�Nÿ1).

5.3.1. Proof of (3.5)

As in the proof of Theorem 3.2, consider the set ù � fù :
PM

q�1wq � M1=2g, where M is

the number of cubes of the partition of [0, 1]Nÿ1, and

G0 � fx � (xN , y) 2 [0, 1]N : 0 < xN < g0(y)g,
Gù � fx � (xN , y) 2 [0, 1]N : 0 < xN < gù(y)g,
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where

gù(y) � g0(y)ÿ b6ä
ã
n

X
ù2Ù

ùqç
yÿ uq

b
1=ã
6 än

� �
:

Note that the parametric family of sets fGù : ù 2 Ùg is included in Ë3,n(b6øn). Thus, (3.5)

follows from the proof of (3.3).

5.3.2. Proof of (3.6)

Choose â1 . 0 and â2 . 0 such that â � â1 � â2. Consider ®rst the error of the second kind.

Choose b7 . C3; then for all G 2 Ë3,n(b7øn),

PG[Ä3,n � 0] < PG[jT (G)ÿ Tnj.(b7 ÿ C3)øn],

< EG[(T (G)ÿ Tn)2øÿ2
n (b7 ÿ C3)ÿ2]:

Since b7 . C3 and from Theorem 2 in Gayraud (1997), the relation EG[(T (G)ÿ Tn)2

3 øÿ2
n (b7 ÿ C3)ÿ2] < â1, as n!1 is satis®ed.

Under PG0
, G is G0 and then T (G0) � �

[0,1] Nÿ1 jg0(y)ÿ g0(y)jdy is equal to zero.

Then to prove that R0(Ä3,1) < â2, as n!1, reduces to proving that PG[jTn ÿ T (G)j
> C3 nÿ[ã�(Nÿ1)=2]=(ã�Nÿ1)] < â2 as n!1, for G 2 G . Then (3.6) holds.
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