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In the common nonparametric regression model with high-dimensional predictor, several tests for the

hypothesis of an additive regression are investigated. The corresponding test statistics are based either

on the differences between a ®t under the assumption of additivity and a ®t in the general model, or

on residuals under the assumption of additivity. For all tests asymptotic normality is established under

the null hypothesis of additivity and under ®xed alternatives with different rates of convergence

corresponding to both cases. These results are used for a comparison of the different methods. It is

demonstrated that a statistic based on an empirical L2-distance of the Nadaraya±Watson and the

marginal integration estimator yields the (asymptotically) most ef®cient procedure, if these are

compared with respect to the asymptotic behaviour under ®xed and local alternatives. The ®nite-

sample properties of the proposed procedures are investigated by means of a simulation study, which

qualitatively con®rms the asymptotic results.
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1. Introduction

Consider the common nonparametric regression model

Y � m(X )� ó (X )å, (1:1)

where X � (X1, . . . , X d)T is a d-dimensional random variable, Y is the real-valued response,

å denotes the real-valued error (independent of X ) with mean 0 and variance 1, and m, ó are

unknown (smooth) functions. Much effort has been devoted to the problem of estimating the

regression function m. While for a one-dimensional predictor nonparametric methods such as

kernel and local polynomial estimators have become increasingly popular, the regression in

the case of a high-dimensional predictor cannot be estimated ef®ciently because of the so-

called curse of dimensionality.

For this reason many methods of dimensionality reduction have been proposed in the

literature (see, for example, Friedman and Stuetzle 1981; Li 1991). Buja et al. (1989) and

Hastie and Tibshirani (1990) promoted the additive regression model

H0 : m(x) � C �
Xd

á�1

ká(xá), (1:2)
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where k1, . . . , kd are unknown smooth functions normalized by E[ká(Xá)] � 0 and x �
(x1, . . . , xd)T. A theoretical motivation for this model is that under the assumption of

additivity the regression can be estimated with the same rate of estimation error as in the

univariate case (see Stone 1985). Buja et al. (1989) proposed back®tting, where the idea is to

project the data on the space of additive functions. Basically, this method estimates the

orthogonal projection of the regression function m(�) onto the subspace of additive functions

in the Hilbert space induced by the density of the predictor X. The asymptotic properties of a

related back®tting procedure have recently been analysed by Opsomer and Ruppert (1997)

and Mammen et al. (1999). Because of the implicit de®nition of these estimates, several

authors have proposed a direct method based on marginal integration (see, for example,

Tjùstheim and Auestad 1994; Tjùstheim 1994; Linton and Nielsen 1995). This method does

not require the iterative solution of a system of nonlinear equations and yields an alternative

projection onto the subspace of additive functions which is not necessarily orthogonal.

Several authors have proposed modi®cations of the marginal integration estimator, (see, for

example, Fan et al., 1998; Linton 1997; 2000; Hengartner 1996; Severance-Lossin and

Sperlich 1999). For a more detailed discussion of the difference between the back®tting and

the marginal integration estimator, we refer to the work of Nielsen and Linton (1998) or

Sperlich, Linton and HaÈrdle (1999). A rather different approach to estimating an additive

regression function can be obtained by Fourier series estimation and is discussed by Andrews

and Whang (1990). This method was used by Eubank et al. (1995) for the construction of a

test of additivity if the data are observable on a grid.

Because the additive structure is important in terms of interpretability and its ability to

deliver fast rates of convergence in the problem of estimating the regression, the additive

model (1.2) should be accompanied by an adequate model check. Although early work

dates back to Tukey (1949), it is only recently that the problem of testing additivity has

been of real interest (see for example, Hastie and Tibshirani 1990; Barry 1993; Eubank

et al. 1995; Sperlich, Tjùstheim and Yang 1999; Gozalo and Linton 2001). Various authors

argue that, even if the null hypothesis (1.2) is accepted with a rather large p-value, there

need not be any empirical evidence for the additive model (see Berger and Delampady

1987; Staudte and Sheather 1990). These authors point out that it is often preferable to

reformulate the hypothesis (1.2) as

Hç : M2 . ç, H1 : M2 < ç, (1:3)

where M2 is a measure of additivity and ç is a given suf®ciently small constant such that the

experimenter agrees to analyse the data under the assumption of additivity whenever M2 < ç.

From a mathematical point of view this approach requires the determination of the

distribution of an appropriate estimator for M2 not only under the classical null hypothesis

(1.2) (M2 � 0) but also at any point of the alternative (M2 . 0).

In this paper we investigate several tests for the hypothesis of additivity which are based

on kernel methods. For the sake of simplicity we will mainly concentrate on a U statistic

formed from the residuals of a marginal integration ®t ± see also Zheng (1996), who used a

similar idea for testing a parametric form of the regression. We prove asymptotic normality

of the corresponding test statistic under the null hypothesis of additivity and ®xed

alternatives with different rates of convergence corresponding to both cases. The results are
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then extended to several related concepts of testing model assumptions proposed in the

literature (see GonzaÂlez-Manteiga and Cao 1993; Dette 1999; Gozalo and Linton 2001).

The main difference between our approach and the work of the last-named authors is that

we are able to ®nd the asymptotic properties of the tests under any ®xed alternative of non-

additivity. By way of an application, we identify a most ef®cient procedure in the class of

tests based on the kernel method by looking at the asymptotic distribution under any ®xed

alternative. In Section 2 we give a motivation of the test statistic, while the main results are

given in Section 3, which includes the corresponding results for several related tests.

Section 4 contains a comprehensive comparison of the ®nite-sample performance of the

different test statistics by means of a simulation study, which essentially re¯ects our

asymptotic ®ndings for moderate sample sizes. The proofs of our results, which are in the

main rather cumbersome, are deferred to the Appendix.

2. Marginal integration revisited

Our main reason for using the marginal integration estimator for the construction of our test

procedures is its direct de®nition, which allows an asymptotic treatment using central limit

theorems for degenerate U statistics (see Zheng 1996; Hall 1984). A similar approach based

on the back®tting estimator seems to be intractable, because our method would not require

the asymptotic properties of the estimators of the additive regression function as recently

derived by Opsomer and Ruppert (1997) and Mammen et al. (1999) but an explicit

representation of the residuals from a ®t by the back®tting estimate. On the other hand, Dette

and Munk (1998) pointed out several drawbacks in the application of Fourier series

estimation for checking model assumptions (see Section 5.2 of that paper) and we did not use

series estimation for the construction of the test.

Let f denote the density of the explanatory variable X � (X1, . . . , X d)T with marginal

densities fá of Xá, á � 1, . . . , d. For a d-dimensional vector x � (x1, . . . , xd), let xá be the

(d ÿ 1)-dimensional vector obtained by removing the áth coordinate from x, that is,

xá � (x1, . . . , xáÿ1, xá�1, . . . , xd). If L2
add denotes the subspace of addititive functions in the

Hilbert space L2( f ), we consider the projection P0 from L2( f ) onto L2
add de®ned by

m0(x) � (P0 m)(x) �
Xd

á�1

má(xá)ÿ (d ÿ 1)c, (2:1)

where

má(xá) �
�

m(xá, xá) fá(xá)dxá �
�

m(x1, . . . , xáÿ1, xá, xá�1, . . . , xd) fá(xá)dxá, (2:2)

c �
�

m(t) f (t)dt: (2:3)

Here we have used the notation
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fá(tá) �
�

f (t1, . . . , táÿ1, tá, tá�1, . . . , td)dtá

and write in (2.2), with some abuse of terminology, x � (xá, xá) to highlight the particular

coordinate xá. The representation (2.1) can be rewritten as

m0(x) � C �
Xd

á�1

ká(xá),

where

C � c�
Xd

á�1

�
m(tá, tá) fá(tá) fá(tá)dtádtá ÿ c

� �
and

ká(xá) � má(xá)ÿ
�

m(tá, tá) fá(tá) fá(tá)dtádtá,

which corresponds to the normalization given in Section 1. Note that P0 is not necessarily an

orthogonal projection with respect to the Hilbert space L2( f ), where f is the joint density of

X . However, one can easily verify that it is an orthogonal projection in the case of

independent predictors.

Unless otherwise stated, let Ki(�), i � 1, 2, denote one- and (d ÿ 1)-dimensional Lipschitz

continuous kernels of order 2 and q > d respectively, with compact support, and de®ne, for

a bandwidth hi . 0, t1 2 R, t2 2 Rdÿ1,

K1,h1
(t1) � 1

h1

K1

t1

h1

� �
, K2,h2

(t1) � 1

hdÿ1
2

K2

t2

h2

� �
: (2:4)

For an independent and identically distributed sample (Xi, Yi)
n
i�1, Xi � (X i1, . . . , X id)T, we

consider the empirical counterparts of the components of m0 in (2.1):

m̂á(xá) � 1

n2

Xn

k�1

Xn

j�1

K1,h1
(X já ÿ xá)K2,h2

(X já ÿ X ká)

f̂ (á)(xá, X ká)
� Y j, (2:5)

ĉ � 1

n

Xn

j�1

Y j, (2:6)

where

f̂ (á)(xá, xá) � 1

n

Xn

i�1

K1,h1
(X iá ÿ xá)K2,h2

(X iá ÿ xá) (2:7)

is an estimator of the joint density of X . Note that

m̂á(xá) � 1

n

Xn

j�1

~m(á)(xá, X já),
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where

~m(á)(xá, xá) �

1

n

Xn

j�1

K1,h1
(X já ÿ xá)K2,h2

(X já ÿ xá)Y j

f̂ (á)(xá, xá)
(2:8)

is the Nadaraya±Watson estimator at the point (xá, xá); see Nadaraya (1965) or Watson

(1964). The marginal integration estimator of m0 � P0 m is now de®ned by

m̂0(x) �
Xd

á�1

m̂á(xá)ÿ (d ÿ 1)ĉ, (2:9)

and the corresponding residuals are denoted by ê j � Y j ÿ m̂0(X j), j � 1, . . . , n. As a ®rst

test statistic we consider the U statistic

T0,n � 1

n(nÿ 1)

X
i6� j

Lg(Xi ÿ X j)êi ê jð(Xi)ð(X j), (2:10)

where L is a d-dimensional symmetric kernel of order 2 with compact support, Lg(�)
� (1=gd)Lg(�=g), g . 0, an additional bandwidth and ð a given continuous weight function.

We note that this type of statistic was originally introduced by Zheng (1996) in the problem

of testing linearity of the regression, and independently discussed by Gozalo and Linton

(2001) in the problem of testing additivity in a more general context. A theoretical

justi®cation for the application of this statistic to testing additivity will be given in Section 3.

For a heuristic argument at this point we replace the residuals êi by Ä(Xi) � m(Xi)ÿ m0(Xi)

in T0,n and obtain from results of Hall (1984) or Zheng (1996) that in this case the

corresponding statistic

V6n � 1

n(nÿ 1)

X
i 6� j

Lg(Xi ÿ X j)Ä(Xi)Ä(X j)ð(Xi)ð(X j) (2:11)

converges with limit

E[V6n] �
�

Lg(xÿ y)Ä(x)Ä(y) f (x) f (y)ð(x)ð(y)dx dy (2:12)

�
�

[m(x)ÿ m0(x)]2 f 2(x)ð2(x)dx� o(1):

For this reason a test of the classical hypothesis of additivity can be obtained by rejecting

(1.2) for large values of T0,n.

There are several alternative ways of de®ning an appropriate statistic for the problem of

testing additivity:

Testing additivity by kernel-based methods 673



T1,n � 1

n

Xn

i�1

[m̂(Xi)ÿ m̂0(Xi)]
2ð(Xi),

T2,n � 1

n

Xn

i�1

êi[m̂(Xi)ÿ m̂0(Xi)]ð(Xi), (2:13)

T3,n � 1

n

Xn

i�1

[ê2
i ÿ d̂2

i ]ð(Xi):

Here m̂ is the Nadaraya±Watson estimator with kernel L, and d̂ i � Yi ÿ m̂(Xi) denotes the

corresponding residual. The estimate T1,n compares a completely nonparametric ®t with the

marginal integration estimate and extends concepts of GonzaÂlez-Manteiga and Cao (1993)

and HaÈrdle and Mammen (1993) to the problem of testing additivity. T3,n is essentially a

(weighted) difference of estimators for the integrated variance function in the additive and

non-restricted model. This concept was ®rstly proposed by Dette (1999) in the context of

testing parametric structures of the regression function; see also Azzalini and Bowman (1993)

for a similar statistic based on residuals. Finally, the statistic T2,n was introduced by Gozalo

and Linton (2001), motivated by Lagrange multiplier tests of classical statistics.

In the following section we investigate the asymptotic behaviour of these statistics under the

hypothesis (1.2) and ®xed alternatives. We note that the asymptotic results under the null

hypothesis of additivity have been independently found in a slightly more general context by

Gozalo and Linton (2001) using different techniques in the proofs. It is the main purpose of the

present paper to show that the asymptotic behaviour of the statistics T j,n, j � 0, . . . , 3, under

®xed alternatives is rather different and to demonstrate potential applications of such results.

Remark 2.1. Several authors have proposed modi®cations of the marginal integration

estimator; see the discussion of variance minimization in Fan et al. (1998), the de®nition of

the ef®cient estimator in Linton (1997; 2000) or the application of local polynomials to bias

reduction in Severance-Lossin and Sperlich (1999). It is worthwhile mentioning that the

results in Theorem 3.2 and Theorem 3.5 remain valid with slight modi®cations of the

asymptotic bias and variance terms. This follows by a careful inspection of the proof in the

appendix, albeit with a substantial increase in algebraic complexity.

3. Main results and a comparison

We start with a detailed discussion of the asymptotic behaviour of the statistic T0,n and its

consequences for the problem of testing additivity. Then the corresponding results for the

statistics T1,n, T2,n, T3,n will be brie¯y stated and the different methods compared. In order to

state and prove our main results we need a few regularity assumptions.

Assumption 1. The explanatory variable X has a density f supported on Q � [0, 1]d. f is

bounded from below by a positive constant c . 0 and has continuous partial derivatives of

order q > d.
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Assumption 2. m 2 C
q
b(Q), where C

q
b(Q) denotes the class of bounded functions (de®ned on

Q) with continuous partial derivatives of order q.

Assumption 3. ó 2 Cb(Q), where Cb(Q) denotes the class of bounded continuous functions

(de®ned on Q).

Assumption 4. The distribution of the error has ®nite fourth moment, E[å4] ,1.

Assumption 5. As n!1, the bandwidths g, h1, h2 . 0 satisfy

h1 � nÿ1=5, h
q
2 � o(h2

1),
log n

nh1 hdÿ1
2

� o(h2
1), gd � o(h2

1), ngd !1:

Note that the optimal order for a twice continuously differentiable regression function

h1 � nÿ1=5 in Assumption 5 requires q . d ÿ 1 in order to satisfy

h
q
2 � o(h2

1) and
logn

nh1 hdÿ1
2

� o(h2
1)

simultaneuously. Our ®rst result speci®es the asymptotic distribution of the statistic T0,n

under the null hypothesis of additivity.

Theorem 3.1. If Assumptions 1±5 and the hypothesis of additivity are satis®ed, then the

statistic T0,n de®ned in (2.10) is asymptotically normally distributed, that is,

ngd=2T0,n!D N (0, ë2
0), (3:1)

where the asymptotic variance is given by

ë2
0 � 2

�
L2(x)dx

�
ó 4(x)ð4(x) f 2(x)dx (3:2)

and L is the d-dimensional kernel used in the de®nition of T0,n.

Note that Theorem 3.1 has been found independently by Gozalo and Linton (2001) and

provides a test for the hypothesis of additivity by rejecting H0 for large values of T0,n, that

is,

ngd=2T0,n . u1ÿáë̂0,n, (3:1)

where u1ÿá denotes the 1ÿ á quantile of the standard normal distribution and ë̂0,n is an

appropriate estimator of the limiting variance (3.2). A simple estimator could be obtained by

similar arguments to those given in Zheng (1996):

ë̂2
0,n �

2

n(nÿ 1)

Xn

i�1

X
i6� j

L2
g(Xi ÿ X j)ê

2
i ê2

jð
2(Xi)ð

2(X j):
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Our next result discusses the asymptotic behaviour of the statistic T0,n under a ®xed

alternative and proves ± as a by-product ± consistency of the test (3.3). On the other hand,

it also provides the interesting possibility of an alternative formulation of the classical

hypothesis of additivity, which will be described at the end of this section.

Theorem 3.2. If Assumptions 1±5 are satis®ed and the regression is not additive, Ä �
mÿ P0 m 6� 0, then ���

n
p fT0,n ÿ E[T0,n]g!D N (0, ì2

0): (3:4)

Here

E[T0,n] � E(Ä2ð2 f (X1))ÿ 2E[Äð2 f (X1) � b(X1)] � h2
1 � o(h2

1)� O(g2), (3:5)

with b(x) �Pd
á�1bá(xá), in which

bá(xá) � c2(K1)

�
1

2

@2 m

@x2
á

� 1

f

@ f

@xá

@m

@xá

 !
(xá, tá) fá(tá)dtá, (3:6)

where c2 K1� � � � t2
1 K1(t1)dt1. The asymptotic variance is given by

ì2
0 � 4E[ó 2(X1)fP1(Äð2 f )(X1)g2] (3:7)

� 4 var (Ä2ð2 f )(X1)ÿ E Äð2 f (X2)
Xd

á�1

m(X2á, X1á)ÿ (d ÿ 1)m(X1)

( )
jX1

 !24 35,

where P1 m � mÿ P�0 m, in which the mapping P�0 is de®ned by

P�0 g(x) �
Xd

á�1

fá(xá)

f (x)

�
(g f )(xá, tá)dtá ÿ (d ÿ 1)

�
(g f )(t)dt: (3:8)

Remark 3.3. Note that the mapping P�0 de®ned in (3.8) is not a projection on the space of

additive functions. In the case of independent predictors one can easily show that P�0 � P0.

Moreover, if additionally the weight function is given by ð � 1=
����
f
p

, the asymptotic variance

in (3.7) simpli®es to

ì2
0 � 4E[ó 2(X1)Ä2(X1)]� 4 var[Ä2(X1)],

where Ä � mÿ m0.

Remark 3.4. A careful analysis of the proof of Theorem 3.2 shows that for a suf®ciently

smooth regression and kernels L and Ki, i � 1, 2, of suf®ciently high order we have

E[T0,n] � E[Ä2(X1)(ð2 f )(X1)]� o
1���
n
p
� �

,
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where the term M2 :� E[Ä2(X1)(ð2 f )(X1)] on the right-hand side serves as a measure of

additivity. In this case Theorem 3.2 provides an interesting advantage to many of the

commonly applied goodness-of-®t tests which will be explained in the following. It is well

known that for model checks the type II error of a test is more important than the type I

error, because, in the case of acceptance of the null hypothesis, the subsequent data analysis

is adapted to the assumed model. From Theorem 3.2 we obtain as an approximation for the

probability of the type II error of the test (3.3),

P(rejection) � Ö
���
n
p M2

ì0

ÿ u1ÿá��������
ngd

p ë0

ì0

 !
,

where u1ÿá is the 1ÿ á quantile of the standard normal distribution. On the other hand, the

result can also be used for testing precise hypotheses (see Berger and Delampady 1987) of

the form (1.3). Finally, we note that Theorem 3.2 could also be used for the construction of

con®dence intervals for the measure of additivity M2.

Theorem 3.5. Suppose that Assumptions 1±5 are satis®ed and that T1,n, T2,n, T3,n are as

de®ned in (2.13).

(i) Under the hypothesis of additivity we have

ngd=2fT j,n ÿ EH0
[T j,n]g!D N (0, ë2

j), j � 1, . . . , 3,

where

B1 � EH0
[T1,n] � 1

ngd

�
L2(x)dx

�
ó 2(x)ð(x)dx� o

1

ngd

� �
,

B2 � EH0
[T2,n] � 1

ngd
L(0)

�
ó 2(x)ð(x)dx� o

1

ngd

� �
,

B3 � EH0
[T1,n] � 1

ngd
2L(0)ÿ

�
L2(x)dx

� ��
ó 2(x)ð(x)dx� o

1

ngd

� �
and

ë2
1 � 2

�
ó 4(x)ð2(x)dx

�
(L � L)2(x)dx,

ë2
2 � 2

�
ó 4(x)ð2(x)dx

�
L2(x)dx,

ë2
3 � 2

�
ó 4(x)ð2(x)dx

�
(2Lÿ (L � L))2(x)dx,

in which f � g denotes the convolution of the functions f and g.

(ii) If the regression is not additive, Ä � mÿ m0 6� 0, then
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���
n
p fT j,n ÿ E H1

[T j,n]g!D N (0, ì2
j), j � 1, . . . , 3,

where

E H1
[T1,n] � B1 � í0 ÿ 2í1 � 2í2,

E H1
[T2,n] � B2 � í0 ÿ 2í1 � í2,

E H1
[T3,n] � B3 � í0 ÿ 2í1,

í0 � E[(Ä2ð)(X1)],

í1 � E[(Äð)(X1)b(X1)] � h2
1 � o(h2

1),

í2 � E[(Äð)(X1)bNW(X1)] � g2 � o(g2),

b is de®ned in Theorem 3.2, bNW is the bias of the Nadaraya±Watson estimate, the

asymptotic variances are given by

ì2
j � 4E[ó 2(X1)fP1(Äð)(X1)g2]

� var (Ä2ð)(X1)ÿ 2E Äð(X2)
Xd

á�1

m(X 2á, X 1á)ÿ (d ÿ 1)m(X1)

( )
jX1

 !24 35,

j � 1, . . . , 3 and the mapping P1 is de®ned in Theorem 3.2.

In the remaining part of this section we will use Theorems 3.2 and 3.5 to compare the

tests of additivity induced by the statistics T j,n, j � 0, . . . , 3. For the sake of a transparent

presentation we assume for this comparison a suf®cient smoothness for the regression and

suf®ciently large order for the kernel, such that the asymptotic bias of T j,n under a ®xed

alternative is given by

E H1
[T j,n] � M2

j � Bj � o
1���
n
p
� �

, j � 0, . . . , 3,

where B0 � 0, B1, B2, B3 are de®ned in Theorem 3.5, and

M2
0 � E[Ä2(X1)(ð2 f )(X1)],

M2
j � E[Ä2(X1)ð(X1)], j � 1, . . . , 3:

In this case the probability of rejection is approximately given by

P(rejection) � Ö
1

ì j

���
n
p

M2
j ÿ

u1ÿáë j��������
ngd

p( ) !
, j � 0, . . . , 3, (3:9)

where ì j, ë j are as de®ned in Theorems 3.1, 3.2 and 3.5. From this representation we see

that, in general, there is no clear recommendation for one of the statistics T j,n. The

appropriate choice of a test depends sensitively on the relation between the variance function
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ó , weight function ð, regression m and alternative Ä. A fair comparison seems to be possible

by adjusting with respect to the measure of additivity. This can be done by replacing the

weight function ð in T0,n by ð=
����
f
p

(in practice, an estimator of f has to be used), which

gives

M2
j � E[Ä2(X1)ð(X1)], j � 0, . . . , 3,

and (by the de®nition of ì2
j in Theorems 3.2 and 3.5)

ì2
0 . ì2

j , j � 1, . . . , 3: (3:10)

Looking at the dominating term in (3.9), we thus obtain that (asymptotically) tests based on

the statistics T j,n, j � 1, . . . , 3, will be more powerful than the test based on the statistic

T0,n. We note, however, that for realistic sample sizes this improvement will only be

substantial if the variance function is `small' compared to the deviation Ä of the additive

approximation from the model. For a comparison of the remaining statistics, observe that for

the corresponding tests the terms with factor
���
n
p

in (3.9) are identical and, consequently, a

most ef®cient procedure is obtained by minimizing the variance ë2
j of the asymptotic

distribution under the null hypothesis of additivity. This comparison coincides with the

concept of considering local alternatives which converge to the null hypothesis at a rate

(ngd=2)ÿ1=2. The following lemma shows that the statistics T1,n and T2,n should be prefered to

T3,n with respect to this criterion. This result was also conjectured by Gozalo and Linton

(2001) without proof. A rigorous derivation will be given at the end of the Appendix.

Lemma 3.6. If K is an arbitrary density, we have�
(K � K)2(x)dx <

�
K2(x)dx <

�
(2K ÿ K � K)2(x)dx (3:11)

or, equivalently,

ë2
1 < ë2

2 < ë2
3:

We ®nally note that the arguments in favour of T1,n and T2,n are only based on the

discussion of the asymptotic variances, which is correct from an asymptotic point of view.

For realistic sample sizes, however, the bias has to be taken into account. Here we observe

exactly the opposite behaviour, namely that the statistic T0,n is preferable because its

standardized version has no bias converging to in®nity. The simulation results presented in

Section 4 indicate that the asymptotic arguments in favour of T1,n, T2,n are valid for sample

sizes N > 100 and `small' variances of the error distribution.

Remark 3.7. Note that Gozalo and Linton (2001) study the asymptotic distribution of the

statistics T j,n, j � 0, . . . , 3, under the null hypothesis of additivity in the context of

generalized nonparametric regression models including discrete covariates. The results of the

present paper can also be extended to this more general situation at the cost of some

additional notation. For the sake of a simple notation we have not formulated the results in
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full detail, but indicate the generalization of Theorems 3.1 and 3.2 in the situation of a known

link function as considered in Linton and HaÈrdle (1996). In the nonparametric regression

model

E[Y jX � x] � m(x),

we are interested in testing the hypothesis

H G
0 : G(m(x)) � C �

Xd

á�1

ká(xá),

where G is a given link function. The de®nition of the marginal integration estimator of m is

straightforward (see, for example, Linton and HaÈrdle 1996). To be precise, let

~má(xá) � 1

n

Xn

i�1

G( ~m(á)(xá, X iá))

denote the estimator of �
G(m(xá, xá)) fá(tá)dtá,

where ~m(á) is de®ned in (2.8). Furthermore, let

ĉ � 1

d

Xd

á�1

1

n

Xm

i�1

G( ~m(á)(X iá, X iá))

denote an estimator of
�

G(m(x)) f (x)dx. De®ning

m̂0(x) �
Xd

á�1

~má(xá)ÿ (d ÿ 1)ĉ,

the marginal integration estimator of the regression function m is obtained as

m̂(x) � F(m̂0(x)), (3:12)

where F � Gÿ1 is the inverse of the link function. The statistic T0,n is now exactly de®ned as

in (2.10) (with residuals obtained from (3.12)), and under the hypothesis H G
0 and certain

regularity assumptions for the link function (see, for example, Linton and HaÈrdle 1996;

Gozalo and Linton 2001) Theorem 3.1 remains valid. On the other hand, under a ®xed

alternative
���
n
p

(T0,n ÿ E[T0,n]) is asymptotically normal, with asymptotic variance given by

ì2
0 � 4E[ó 2(X1)PG

1 (Äð2)(X1)]

� 4 var (Äð)2(X1) f (X1)ÿ E (Äð2 f )(X2)
Xd

á�1

G(m(X 2á, X1á))ÿ (d ÿ 1)G(m(X1))

( )
jX1

 !" #
,

where ó 2(x) � var[Y jX � x] denotes the conditional variance of the response, Ä � m ÿ
Fm0, m0 � P0 � G � m, P0 is the projection de®ned in (2.1), PG

1 � I ÿ PG
0 and the mapping

PG
0 is de®ned by
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(PG
0 g)(x) � G9(m(x))

Xd

á�1

fá(xá)

f (x)

�
(g f )(xá, tá)F9(m0(xá, tá))dtá ÿ (d ÿ 1)

�
(g f )(t)F9(m0(t))dt

( )
:

The proof of this result follows essentially the steps given in the Appendix, observing that for

a smooth link function the residuals are given by

Yi ÿ m̂(Xi) � Yi ÿ m(Xi)� m(Xi)ÿ F(m0(Xi))ÿ fF(m̂0(Xi))ÿ F(m0(Xi))g
� Yi ÿ m(Xi)� Ä(Xi)ÿ F9(m0(Xi))fm̂0(Xi)ÿ m0(Xi)g:

Therefore in the analysis of the statistic T0,n the terms V1,n, V4n, V6n (see the proof in the

Appendix) are treated exactly in the same way as for G(x) � x. For the remaining terms one

uses a careful analysis of the proof in the appendix and a further Taylor expansion of

m̂0(Xi)ÿ m0(Xi) which yields the additional terms G9(m(X1)) in the asymptotic variance.

4. A ®nite-sample comparison

In order to investigate qualitatively the ®nite-sample performance of the different procedures

we have conducted a small simulation study. Consider the bivariate regression model

Yi � m(X i1, X i2)� óåi, i � 1, . . . , n,

where the (X i1, X i2), i � 1, . . . , n, are assumed to be independent and uniformly distributed

on the unit square [0, 1]2; the åi, i � 1, . . . , n, are independent, standard normally

distributed, and independent of the (X i1, X i2), i � 1, . . . , n; and ó � 0:1. For the kernel

in all estimators we use the Epanechnikov kernel

K(t) � 3
4
(1ÿ t2) I [ÿ1,1](t),

and a product of two kernels of this type as a two-dimensional kernel. In similar problems it

has been observed by several authors (for example, Azzalini and Bowman 1993; Hjellvik and

Tjùstheim 1995; AlcalaÂ et al. 1999) that the asymptotic normal distribution under the null

hypothesis does not provide a satisfactory approximation for the distribution of the statistics

T j,n, j � 0, . . . , 3. For these reasons most authors propose the application of the wild

bootstrap in this context (see, for example, HaÈrdle and Mammen 1993; Hjellvik and

Tjùstheim 1995). It is worthwhile mentioning that the approximation by the limiting

distribution under a ®xed alternative is comparable with the classical central limit theorem

(see the proof of Theorem 3.2 in the Appendix) and is therefore more accurate compared to

the approximation under the null hypothesis. Nevertheless, the asymptotic distribution in this

case depends on certain features of the data-generating process, which are dif®cult to

estimate except in rare circumstances. For this reason we also recommend the application of

the wild bootstrap for testing precise hypotheses of the form (1.3). Note that the calculation

of the test statistics T j,n, j � 1, . . . , 3, requires the speci®cation of the bandwidths h1 and h2

for estimation the regression function under the null hypothesis (the marginal integration

estimate m̂0 de®ned in (2.9)) and the bandwidth h appearing in the Nadaraya±Watson
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estimator m̂. This choice is based on a cross-validation procedure in a preliminary simulation

under the null hypothesis of an addititve model m(x1, x2) � x1 � x2 using the bandwidths

h1 � h2 � ã1 nÿ1=5, h � ãnÿ1=6:

This minimization yields ã1 � 0:4, ã � 0:44, which was used throughout this study. The

statistic T0,n requires the speci®cation of a further bandwidth g, which was chosen as

0:2 nÿ2=5. The weight function ð is used to exclude boundary effects and is given by

ð(x1, x2) � (1ÿ 2ä)ÿ2 I [ä,1ÿä]2 (x1, x2),

where ä � 0:05. For the resampling we used the wild bootstrap (see Wu 1986; HaÈrdle and

Mammen 1993), where

Y�i � m̂0(X i1, X i2)� å�i ,

å�i � (ui(1ÿ
���
5
p

)=2� (1ÿ ui)(1ÿ
���
5
p

)=2)êi,

êi is de®ned in Section 2 and the ui, i � 1, . . . , n, are independent and identically distributed

random variables with Bernoulli( p) distribution independent of the original sample with

p � (5� ���
5
p

)=10. The hypothesis of additivity is rejected if Tk,n > t�k,n,1ÿá, where t�k,n,1ÿá
denotes the critical value obtained from the bootstrap distribution,

P�(T�k,n > t�k,n,1ÿá) � 1ÿ á, k � 0, 1, 2, 3,

where P� denotes the conditional distribution given the sample (Yi, Xi), i � 1, . . . , n. The

number of bootstrap replications for the estimation of t�k,n,1ÿá was chosen as B � 500. We

have simulated the rejection probabilities of these tests for different models on the basis of

500 replications of each experiment. We considered the models

m(x1, x2) � x1 � x2 � ax1x2, (4:1a)

m(x1, x2) � (x1 � x2)b, (4:1b)

m(x1, x2) � sin(cð(x1 � x2)), (4:1c)

where the parameters a, b and c specify the deviation from the null hypothesis of additivity.

The corresponding results are depicted in Tables 4.1±4.3 for sample sizes n � 100 and

n � 200.

We observe a reasonable approximation of the level by all test procedures, with only

slight advantages for the statistic T3,n. A comparison of the power shows larger differences

and a similar picture in all considered cases. The test based on T0,n ± Zheng's (1996)

approach ± yields substantial smaller rejection probabilities in all cases considered in our

simulation study, which con®rms our asymptotic ®ndings of Section 3 (note that the

variance is small and that we used a uniform distribution corresponding to the case

considered in the comparison (3.10)). A comparison of the remaining statistics shows that

the test based on T3,n has lower power than the procedures based on T1,n and T2,n, in

accordance with our asymptotic ®ndings in Lemma 3.6. Finally, we note that the power

behaviour of the tests based on T1,n and T2,n is very similar, which is also in agreement
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Table 4.1. Simulated rejection probabilities of the wild bootstrap tests based on the statistics

Ti,n(i � 0, 1, 2, 3) in model (4.1a) for the 5% and 10% level and various alternatives. The variance is

constant and given by ó 2 � 0:01, and the choice a � 0 corresponds to the additive model

T0,n T1,n T2,n T3,n

n a 5% 10% 5% 10% 5% 10% 5% 10%

0 0.046 0.166 0.064 0.128 0.052 0.110 0.054 0.118

100 1 0.278 0.494 0.866 0.920 0.816 0.904 0.698 0.788

2 0.494 0.780 0.976 0.984 0.976 0.990 0.948 0.974

0 0.046 0.122 0.040 0.070 0.042 0.094 0.054 0.104

200 1 0.438 0.658 0.998 0.998 0.996 0.998 0.986 0.990

2 0.896 0.986 1.000 1.000 1.000 1.000 1.000 1.000

Table 4.2. Simulated rejection probabilities of the wild bootstrap tests based on the statistics

Ti,n (i � 0, 1, 2, 3) in model (4.1b) for the 5% and 10% level and various alternatives. The variance is

constant and given by ó 2 � 0:01

T0,n T1,n T2,n T3,n

n b 5% 10% 5% 10% 5% 10% 5% 10%

1=2 0.072 0.168 0.238 0.324 0.168 0.266 0.144 0.210

100 1=3 0.074 0.170 0.238 0.334 0.182 0.282 0.146 0.228

1=4 0.058 0.168 0.196 0.300 0.166 0.250 0.132 0.226

1=2 0.100 0.180 0.494 0.618 0.374 0.522 0.304 0.394

200 1=3 0.068 0.152 0.440 0.556 0.324 0.448 0.236 0.356

1=4 0.060 0.160 0.362 0.484 0.250 0.398 0.188 0.292

Table 4.3. Simulated rejection probabilities of the wild bootstrap tests based on the statistics

Ti,n (i � 0, 1, 2, 3) in the model (4.1c) for the 5% and 10% level and various alternatives. The

variance is constant and given by ó 2 � 0:01

T0,n T1,n T2,n T3,n

n c 5% 10% 5% 10% 5% 10% 5% 10%

1=2 0.680 0.876 1.000 1.000 0.996 1.000 0.990 0.996

100 1 0.920 0.988 0.994 0.998 0.996 0.998 0.996 0.998

2 0.982 1.000 1.000 1.000 1.000 1.000 1.000 1.000

1=2 0.972 0.990 1.000 1.000 1.000 1.000 1.000 1.000

200 1 0.994 1.000 1.000 1.000 1.000 1.000 1.000 1.000

2 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
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with Lemma 3.6. Observing the more precise approximation of the level by the test based

on T2,n, we recommend the use of this approach for the problem of testing additivity.

Appendix A. Proofs

For the sake of a transparent notation we consider the case d � 2. In addition, we use

ð(x) � 1 as our weight function; the general case is treated exactly in the same way. Because

all results are essentially proved similarly, we restrict ourselves to a proof of the asymptotic

behaviour of the statistic T0,n (that is, Theorem 3.1 and 3.2).

A.1. Proof of Theorem 3.1

Observing that under the hypothesis of additivity m0 � P0 m � m, we obtain from (1.1) the

decomposition ê j � ó (X j)å j ÿ ä(X j), ä(x) � m̂0(x)ÿ m0(x) and

T0,n � V1n ÿ 2V2n � V3n, (A:1)

where

V1n � 1

n(nÿ 1)

X
i6� j

Lg(Xi ÿ X j)ó (Xi)ó (X j)åiå j, (A:2)

V2n � 1

n(nÿ 1)

X
i6� j

Lg(Xi ÿ X j)ó (Xi)åiä(X j), (A:3)

V3n � 1

n(nÿ 1)

X
i6� j

Lg(Xi ÿ X j)ä(Xi)ä(X j): (A:4)

The ®rst term can be treated as in Zheng (1996) using the results of Hall (1984), and we

obtain

ngV1n ! N (0, ë2
0), (A:5)

where the variance ë2
0 is de®ned in (3.2). The estimation of the remaining terms is more

delicate.

With the notation ä(x) � ä1(x1)� ä2(x2)ÿ ä0, where

är(xr) � m̂r(xr)ÿ mr(xr), r � 1, 2,

ä0 � 1

n

Xn

k�1

Yk ÿ c, (A:6)
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we derive the decomposition

V2n � V
(1)
2n � V

(2)
2n ÿ V

(0)
2n ,

where

V
(r)
2n �

1

n(nÿ 1)

Xn

i�1

X
j 6�i

Lg(Xi ÿ X j)ó (Xi)åi � är(X jr), r � 1, 2,

and

V
(0)
2n �

1

n(nÿ 1)

Xn

i�1

X
j 6�i

Lg(Xi ÿ X j)ó (Xi)åi � ä0:

First, we will show that

V
(r)
2n � OP

1

nh1

� �
, r � 1, 2:

Obviously it suf®ces just to treat the case r � 1. Recalling de®nition (2.5), we rewrite m̂1(x1)

as

m̂1(x1) � 1

n2

Xn

k�1

Xn

l�1

w
(1)
kl (x1) � Yl,

where

w
(1)
kl (x1) � K1,h1

(Xl1 ÿ x1)K2,h2
(Xl2 ÿ Xk2)

f̂ (1)(x1, Xk2)
(A:7)

and f̂ (1) is de®ned in (2.7). Observing that

m1(x1) � 1

n

Xn

k�1

m(x1, X k2)� O

�����������������
log log n

n

r !
P-a:s:

(by the law of the iterated logarithm) we obtain

ä1(x1) � 1

n2

Xn

k�1

Xn

l�1

w
(1)
kl (x1) � ó (Xl)å l

� 1

n2

Xn

k�1

Xn

l�1

w
(1)
kl (x1) � (m(X l1, Xl2)ÿ m(x1, X k2))� O

�����������������
log log n

n

r !
(A:8)

(noting that (1=n)
Pn

l�1w
(1)
kl (x1) � 1) and

V
(1)
2n � (V

(1:1)
2n � V

(1:2)
2n )(1� oP(1)),

where
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V
(1:1)
2n �

1

n3(nÿ 1)

Xn

i,k, l�1

X
j6�i

Lg(Xi ÿ X j)ó (Xi)åiw
(1)
kl (X j1) � ó (Xl)å l,

V
(1:2)
2n �

1

n3(nÿ 1)

Xn

i,k, l�1

X
j6�i

Lg(Xi ÿ X j)ó (Xi)åiw
(1)
kl (X j1) � (m(X l1, Xl2)ÿ m(X j1, X k2)):

Computing the expectation of the ®rst term, we obtain

E(V
(1:1)
2n ) � 1

n3(nÿ 1)

Xn

i�1

X
j 6�i

Xn

k�1

E[Lg(Xi ÿ X j)ó
2(Xi)w

(1)
ki (X j1)]:

Now, by de®nition (A.7),

E(w
(1)
ki (X j1)jXi, X j) � K1,h1

(X i1 ÿ X j1)E
K2,h2

(X i2 ÿ X k2)

f̂ (1)(X j1, X k2)
jXi, X j

 !

� K1,h1
(X i1 ÿ X j1)E

K2,h2
(X i2 ÿ X k2)

f (X j1, X k2)
jXi, X j

� �
(1� o(1)),

where the second equality is obtained by the strong uniform consistency of the kernel density

estimate f̂ (1); see, for example, Silverman (1978). For k 6� i, j, Taylor expansion gives

E
K2,h2

(X i2 ÿ X k2)

f (X j1, X k2)
jXi, X j

� �
� f 2(X i2)

f (X j1, X i2)
� O(h

q
2),

and the boundedness of the density and the kernels K1 and K2 yields

E(V
(1:1)
2n ) � O

1

nh1

� �
� O

1

n2 h1 h2

� �
,

where the O terms correspond to the cases k 6� i, j and k � i (or k � j), respectively.

Next we compute the variance of V
(1:1)
2n by discussing the individual terms in the sum

(V
(1:1)
2n )2 � 1

n6(nÿ 1)2

Xn

i,i9�1

X
j 6�i, j9 6�i9

Xn

k,k9�1

Xn

l, l9�1

Lg(Xi ÿ X j)ó (Xi)åiw
(1)
kl (X j1)ó (Xl)å l

3 Lg(X i9 ÿ X j9)ó (X i9)åi9w
(1)
k9 l9(X j91)ó (X l9)å l9:

The terms in this sum have expectation zero exept for the case when i9 � i and l9 � l; i9 � l

and i � l9; i � l and i9 � l9; or i9 � i � l9 � l.

Consider the ®rst case, i9 � i and l9 � l. Conditioning on Xi, Xl and taking the

expectation of the corresponding terms yields

1

n6(nÿ 1)2

Xn

i, l�1

X
j 6�i, j9 6�i9

Xn

k,k9�1

E[E(Lg(Xi ÿ X j)w
(1)
kl (X j1)jXi, Xl)

2ó 2(Xi)ó
2(Xl)](1� o(1)),

which is of order O(1=n2 h2
1) by the same reasoning as above. The other cases are treated
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in the same way, showing that var(V
(1:1)
2n ) � O(1=n2 h2

1). It follows by Chebyshev's inequality

that

V
(1:1)
2n � OP

1

nh1

� �
: (A:9)

For the second term in the decomposition of V
(1)
2n we obviously have

E(V
(1:2)
2n ) � 0:

In order to ®nd the corresponding variance we note that

(V
(1:2)
2n )2 � 1

n6(nÿ 1)2

Xn

i,i9�1

X
j 6�i, j96�i9

Xn

k,k9�1

Xn

l, l9�1

Lg(Xi ÿ X j)ó (Xi)åi Lg(X i9 ÿ X j9)ó (X i9)åi9

3 w
(1)
kl (X j1)(m(X l1, Xl2)ÿ m(X j1, X k2))w

(1)
k9 l9(X j91)(m(X l91, X l92)ÿ m(X j91, X k92)):

(A:10)

If i9 � i, and all other indices are pairwise different, we have, for the expectation of the

corresponding terms in the sum (A.10),

1

n
E[ó 2(Xi)E(Lg(Xi ÿ X j)E(w

(1)
kl (X j1)(m(X l1, Xl2)ÿ m(X j1, X k2))jXi, X j)jXi)

2]: (A:11)

Using the strong uniform consistency of f̂ again and the assumption (logn)=nh1 h2 � o(h2
1),

we obtain, by a lengthy argument,

E(w
(1)
kl (X j1)(m(X l1, Xl2)ÿ m(X j1, X k2))jXi, X j)

� E
K1,h1

(X l1 ÿ X j1)K2,h2
(Xl2 ÿ X k2)

f (X j1, X k2)
(m(X l1, Xl2)ÿ m(X j1, X k2))jX j

� �
(1� o(1)),

which is asymptotically equal to

E
K1,h1

(X l1 ÿ X j1) f 2(Xl2)

f (X j1, Xl2)
(m(X l1, Xl2)ÿ m(X j1, Xl2))jX j

� �
� O(h

q
2)

� �
(1� o(1))

� O(h2
1)� O(h

q
2),

the O terms being independent of X j. So the term (A.11) is of order

O
h4

1 � h
2q
2

n

� �
� O

1

n2 h1

� �
,

this equality being a consequence of Assumption 5. The terms in the sum (A.10) with i9 � i

and l9 � l (all other indices pairwise different) have expectation
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1

n2
E[ó 2(Xi)E(Lg(Xi ÿ X j)

3 E(w
(1)
kl (X j1)(m(X l1, Xl2)ÿ m(X j1, X k2))jXi, X j, Xl)jXi, Xl)

2]

� 1

n2
E ó 2(Xi)E Lg(Xi ÿ X j)

��

3 K1,h1
(X l1 ÿ X j1)

f 2(Xl2)

f (X j1, Xl2)
(m(X l1, Xl2)ÿ m(X j1, Xl2))� o(1)

� �
jXi, Xl

�
2
�

� O
1

n2 h2
1

 !
,

again by boundedness. By a similar argument for the remaining terms in the sum (A.10) we

obtain the result

V
(1:2)
2n � OP

1

nh1

� �
(A:12)

Combining (A.9) and (A.12), we obtain

V
(1)
2n � OP

1

nh1

� �
Clearly, the same holds for V

(2)
2n. Finally, it is not hard to show that V

(0)
2n � OP(1=n), and a

combination of these results gives

V2n � OP

1

nh1

� �
:

It follows from Assumption 5 that

V2n � oP

1

ng

� �
: (A:13)

Since calculations for the statistic

V3n � 1

n(nÿ 1)

Xn

i�1

X
j 6�i

Lg(Xi ÿ X j)ä(Xi)ä(X j)

are similar to those we have already done, we only state the estimates for its expectation and

variance, which are

E(V3n) � O h4
1 � h

2q
2 �

1

nh1

� �
, (A:14)

var(V3n) � O
h4

1 � h
2q
2

nh1

� 1

n2 h2
1

 !
: (A:15)
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From (A.14) and (A.15) and Assumption 5 we obtain

V3n � oP

1

ng

� �
, (A:16)

and the assertion of Theorem 3.1 follows from (A.1), (A.5), (A.13) and (A.16).

A.2. Proof of Theorem 3.2

If the regression is not additive we obtain a different decomposition of the residuals, that is,

ê j � Y j ÿ m̂0(X j) � ó (X j)å j � Ä(X j)ÿ ä(X j),

where ä � m̂0 ÿ m0, Ä � mÿ P0 m � mÿ m0. Therefore the corresponding decomposition

of T0,n in (A.1) involves three additional terms,

T0,n � V1n ÿ 2V2n � V3n � 2V4n ÿ 2V5n � V6n, (A:17)

where V1n, V2n, V3n are as de®ned in (A.2), (A.3), (A.4), respectively, and the remaining

terms are given by

V4n � 1

n(nÿ 1)

X
i6� j

Lg(Xi ÿ X j)Ä(X j)ó (Xi)åi, (A:18)

V5n � 1

n(nÿ 1)

X
i6� j

Lg(Xi ÿ X j)Ä(X j)ä(Xi), (A:19)

V6n � 1

n(nÿ 1)

X
i6� j

Lg(Xi ÿ X j)Ä(Xi)Ä(X j): (A:20)

From the proof of Theorem 3.1 and Assumption 5 (in the case d � 2) we have

V1n � OP

1

ng

� �
� oP

1���
n
p
� �

,

V2n � oP

1

ng

� �
� oP

1���
n
p
� �

, (A:21)

V3n � oP

1

ng

� �
� oP

1���
n
p
� �

,

and it remains to discuss the asymptotic behaviour of the terms V4n, V5n, V6n.

For the latter random variable we apply Lemma 3.1 in Zheng (1996) to the kernel

H(x, y) � Lg(xÿ y)Ä(x)Ä(y). A straightforward calculation and Assumption 5 (in the case

d � 2) give

E[H2(X1, X2)] � O
1

g2

� �
� o(n),
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which implies that

V6n � E[H(X1, X2)� 2

n

Xn

i�1

fE(H(Xi, X j)jXi)ÿ E[H(Xi, X j)]g � oP

1���
n
p
� �

: (A:22)

Note that by Taylor expansion the ®rst term in this expansion is given by

E[H(X1, X2)] � E[(Ä2 f )(X1)]� (g2): (A:23)

In order to treat V4n we introduce the notation

Zi � 1

n(nÿ 1)

Xn

j�1
j6�i

Lg(Xi ÿ X j)Ä(X j),

and obtain by straightforward algebra

E[(Zi ÿ E[ZijXi])
2] � o

1

n2

� �
uniformly with respect to i. This shows that

V4n �
Xn

i�1

ó (Xi)åiE[ZijXi]�
Xn

i�1

ó (Xi)åi(Zi ÿ E[ZijXi])

�
Xn

i�1

ó (Xi)åiE[ZijXi]� oP

1���
n
p
� �

� 1

n

Xn

i�1

ó (Xi)(Ä f )(Xi)åi � oP

1���
n
p
� �

, (A:24)

where the third estimate follows from a standard calculation of the conditional expectation

E[ZijXi].

The estimation of the remaining term V5n is more delicate. As we did in the analysis of

the term V2n in the proof of Theorem 3.1, we ®rst decompose V5n into

V5n � V
(1)
5n � V

(2)
5n ÿ V

(0)
5n ,

where

V
(0)
5n �

1

n(nÿ 1)

Xn

i�1

X
j 6�i

Lg(Xi ÿ X j)Ä(X j)ä0,

V
(r)
5n �

1

n(nÿ 1)

Xn

i�1

X
j 6�i

Lg(Xi ÿ X j)Ä(X j)är(X ir), r � 1, 2,

and the functions ä0, ä1, ä2 are de®ned in (A.6).

With this notation we obtain for V
(1)
5n,
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V
(1)
5n � V

(1:1)
5n � V

(1:2)
5n � V

(1:3)
5n ,

where

V
(1:1)
5n �

1

n3(nÿ 1)

Xn

i, l,k�1

X
j6�i

Lg(Xi ÿ X j)Ä(X j)w
(1)
kl (X i1)ó (Xl)å l,

V
(1:2)
5n �

1

n3(nÿ 1)

Xn

i,k, l�1

X
j6�i

Lg(Xi ÿ X j)Ä(X j)w
(1)
kl (X i1)(m(X l1, Xl2)ÿ m(X i1, X k2)),

V
(1:3)
5n �

1

n(nÿ 1)

Xn

i�1

X
j 6�i

Lg(Xi ÿ X j)Ä(X j)
1

n

Xn

k�1

m(X i1, X k2)ÿ m1(X i1)

 !
and w

(1)
kl is de®ned in (A.7).

The term V
(1:1)
5n can be rewritten as

V
(1:1)
5n �

1

n

Xn

l�1

ó (Xl)å lW l,

where

W l � 1

n2(nÿ 1)

Xn

i�1

X
j 6�i

Xn

k�1

Lg(Xi ÿ X j)Ä(X j)w
(1)
kl (X i1):

Now a Taylor expansion and (A.7) give, for i, j, k 6� l,

E(W ljXl) � E(Lg(Xi ÿ X j)Ä(X j)w
(1)
kl (X i1)jXl)(1� oP(1))

� E Lg(Xi ÿ X j)Ä(X j)
K1,h1

(X l1 ÿ X i1)K2,h2
(Xl2 ÿ X k2)

f (X i1, X k2)
jXl

� �
(1� oP(1))

� f 2(Xl2)

f (X l1, Xl2)

�
(Ä f 2)(X l1, t2)dt2 � (1� oP(1)): (A:25)

Moreover, a tedious calculation shows that

E[(W l ÿ E(W ljXl))
2] � o(1),

which implies that

V
(1:1)
5n �

1

n

Xn

l�1

ó (Xl)å lE(W ljXl)� oP

1���
n
p
� �

: (A:26)

For the term V
(1:2)
5n we have

V
(1:2)
5n �

1

n3(nÿ 1)

Xn

i,k, l�1

X
j 6�i

H(Xi, X j, X k , Xl),

with the notation
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H(Xi, X j, X k , Xl)

� Lg(Xi ÿ X j)Ä(X j)
K1,h1

(X l1 ÿ X i1)K2,h2
(Xl2 ÿ X k2)

f̂ (1)(X i1, X k2)
(m(X l1, Xl2)ÿ m(X i1, X k2)):

Computing the expectation of V
(1:2)
5n , we obtain, for pairwise different i, j, k, l,

E(V
(1:2)
5n ) � E[H(Xi, X j, X k , Xl)] � (1� o(1))

� E (Ä f )(Xi)E
K1,h1

(X l1 ÿ X i1)K2,h2
(Xl2 ÿ X k2)

f (X i1, X k2)

��

3 (m(X l1, Xl2)ÿ m(X i1, X k2))jXi

��
� (1� o(1))

� E[(Ä f )(Xi) � b1(X i1)] � h2
1 � o(h2

1)� O(h
q
2), (A:27)

where b1(x1) is de®ned in (3.6). For the squared statistic we have

V
(1:2)
5n

� �2

� 1

n6(nÿ 1)2

Xn

i,i9,k,k9, l, l9�1

X
j6�i, j9 6�i9

H(Xi, X j, X k , Xl)H(X i9, X j9, X k9, X l9),

and observe that only terms with fi, j, k, lg \ fi9, j9, k9, l9g 6� Æ contribute to the variance.

All terms with more than one index in common give a contribution of order o 1=n� �. The

terms with exactly one index in common are all treated similary and we discuss by way of

example the case k9 � k. For this case we obtain

E[H(Xi, X j, X k , Xl)H(X i9, X j9, X k , X l9)] � E[E(H(Xi, X j, X k , Xl)jX k)2],

where the conditional expectation can be estimated as follows:

E[H(Xi, X j, X k , Xl)jX k]

� E (Ä f )(Xi)
K1,h1

(X k1 ÿ X i1)K2,h2
(X k2 ÿ Xl2)

f (X i1, Xl2)
(m(X k1, X k2)ÿ m(X i1, Xl2))jX k

� �
� o(1)

� E (Ä f )(Xi)
K1,h1

(X k1 ÿ X i1) f 2(X k2)

f (X i1, X k2)
(m(X k1, X k2)ÿ m(X i1, X k2))jX k

� �
� o(1)

� o(1):

Here the ®rst equality follows by conditioning on Xi, X k , Xl, the second by conditioning on

X k , Xi and the third by a direct integration. This implies that���
n
p

(V
(1:2)
5n ÿ E(V

(1:2)
5n )) � oP(1): (A:28)

Finally,
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V
(1:3)
5n �

1

n

Xn

k�1

E[Ä f (Xi)(m(X i1, X k2)ÿ m1(X i1))jX k]� oP

1���
n
p
� �

� 1

n

Xn

k�1

E[Ä f (Xi)(m(X i1, X k2))jX k]ÿ E[Ä f (Xi)(m(X i1, X k2))]� oP

1���
n
p
� �

(A:29)

which gives, by a combination of (A.25)±(A.29), and noting that E(V
(1:3)
5n ) � O(1=n),

V
(1)
5n ÿ E(V

(1)
5n) � 1

n

Xn

l�1

ó (Xl)å l

f 2(Xl2)

f (X l1, Xl2)

�
(Ä f 2)(X l1, t2) dt2

� �

� 1

n

Xn

k�1

fE[Ä f (Xi)m(X i1, X k2)jX k]

ÿ E[Ä f (Xi)m(X i1, X k2)]g � oP

1���
n
p
� �

(A:30)

and

E(V
(1)
5n) � E[(Ä f )(Xi) � b1(X i1)] � h2

1 � o(h2
1)� O(h

q
2), (A:31)

where b1 is de®ned in (3.6).

The term V
(2)
5n is treated exactly in the same way, showing that

V
(2)
5n ÿ E(V

(2)
5n) � 1

n

Xn

l�1

ó (Xl)å l

f 1(X l1)

f (X l1, Xl2)

�
Ä f 2(t1, Xl2) dt1

� �

� 1

n

Xn

k�1

fE[Ä f (Xi)m(X k1, X i2)jX k]

ÿ E[Ä f (Xi)m(X k1, X i2)]g � oP

1���
n
p
� �

, (A:32)

where

E(V
(2)
5n) � E[Ä f (Xi) � b2(X i2)] � h2

1 � o(h2
1)� O(h

q
2) (A:33)

and b2(x2) is given by in (3.6).

For the remaining term V
(0)
5n , we have
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V
(0)
5n �

1

n

Xn

k�1

(Yk ÿ c) � 1

n(nÿ 1)

X
i6�k

X
j 6�i,k

Lg(Xi ÿ X j)Ä(X j)

( )
� OP

1

n

� �

� 1

n

Xn

k�1

(ó (X k)åk � (m(X k)ÿ c)) � E(Ä f (X1))� oP

1���
n
p
� �

� 1

n

Xn

k�1

fó (X k)åk � E(Ä f (Xi))� E(Ä f (Xi) m(X k)jX k)ÿ E(Ä f (Xi) m(X k))g � oP

1���
n
p
� �

:

(A:34)

A combination of the above results (A.22)±(A.24) and (A.30)±(A.34) gives���
n
p

(T0,n ÿ E(T0,n)) � An � Bn � Cn � oP(1),

where E(T0,n) is de®ned in (3.5),

An � 2���
n
p

Xn

i�1

fE(H(Xi, X j)jXi)ÿ E[H(Xi, X j)]g � 2���
n
p

Xn

i�1

fÄ2 f (Xi)ÿ E(Ä2 f (Xi))g � oP(1),

Bn � 2���
n
p

Xn

i�1

ó (Xi)åif(Ä f )(Xi)ÿ P�0 (Ä f )(Xi)g,

Cn � 2���
n
p

Xn

i�1

E(Ä f (X j)[m(X i1, X i2)ÿ m(X j1, X i2)ÿ m(X i1, X j2)]jXi)

ÿ E(Ä f (X j)[m(X i1, X i2)ÿ m(X j1, X i2)ÿ m(X i1, X j2)])

and the mapping P�0 is given by (3.8). The asymptotic normality now follows by a standard

application of Lyapunov's theorem. The asymptotic variance is obtained by a routine

calculation. We obtain

var(An � Cn) � 4 var[Ä2 f (X1)� E(Ä f (X2)[m(X 11, X12)ÿ m(X 21, X 12)ÿ m(X11, X22)]jX1)],

var(Bn) � 4E(ó 2(X1)f(I ÿ P�0 )(Ä f )(X1)g2)

and cov(An � Cn, Bn) � 0, which yields the asymptotic variance in (3.7) for ð � 1 and

completes the proof of Theorem 3.2.

A.3. Proof of Lemma 3.6

From Jensen's inequality and Fubini's theorem we have
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�
(K � K)2(x) dx �

� �
K(xÿ u)K(u) du

� �2

dx

<

��
K2(xÿ u)K(u) du dx �

�
K2(x) dx,

which proves the left-hand side of (3.11). The remaining part is obtained by using the ®rst

part and the triangle inequality, that is,�
(2K ÿ K � K)2(x) dx

� �1=2

> 2

�
K2(x) dx

� �1=2

ÿ
�

(K � K)2(x) dx

� �1=2

>

�
K2(x) dx

� �1=2

:
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