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This paper considers estimation of the trend function g as well as its íth derivative g(í) in a so-called

semi-parametric FARIMA-GARCH model by local polynomial ®ts. The focus is on the derivation of

the asymptotic normality of ĝ(í). A central limit theorem based on martingale theory is developed.

Asymptotic normality of the sample mean of a FARIMA-GARCH process is proved. These results are

then used to show the asymptotic normality of ĝ(í). As an auxiliary result, the weak consistency of a

weighted sum is obtained for second-order stationary time series with short or long memory under

very weak conditions. Formulae for the mean integrated square error and the asymptotically optimal

bandwidth of ĝ(í) are also given.
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1. Introduction

Consider the semi-parametric regression model

Yi � g(ti)� X i, (1:1)

where g: [0, 1]! R is a smooth function, ti � (i=n) and

X i � (1ÿ B)ÿäöÿ1(B)ø(B)Ei, (1:2)

with

Ei � zi h
1=2
i , hi � á0 �

Xr

j�1

á jE2
iÿ j �

Xs

k�1

âk hiÿk : (1:3)

The zi are independent and identically distributed (i.i.d.) standard normal random variables,

á0 . 0, á1, . . . , ár, â1, . . . , âs > 0, ä 2 (ÿ0:5, 0:5), B is the backshift operator, ö(B) �
1ÿ ö1 B ÿ . . . ÿ ö l B

l and ø(B) � 1� ø1 B � . . . � øm Bm are polynomials in B with no

common factors and all roots outside the unit circle. Here, the fractional difference (1ÿ B)ä

introduced by Granger and Joyeux (1980) and Hosking (1981) ± see also the monograph of

Beran (1994) ± is de®ned by
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(1ÿ B)ä �
X1
k�0

bk Bk , (1:4)

with

bk(ä) � Ã(k ÿ ä)

Ã(k � 1)Ã(ÿä)
: (1:5)

The innovation process de®ned in (1.3) follows a GARCH model (Bollerslev 1986),

which is a generalization of the autoregressive conditional heteroscedastic (ARCH) model

proposed by Engle (1982). It is assumed that there is a strictly stationary solution of (1.3)

such that E(E4
i ) ,1. Necessary and suf®cient conditions which guarantee this may be

found in Ling (1999) and Ling and McAleer (2000) (see also Ling and Li 1997; Chen and

An 1998; He and TeraÈsvirta 1999a). The error process X i has short memory if ä � 0, long

memory if 0 , ä , 0:5 and antipersistence if ÿ0:5 , ä , 0 (see Beran 1994). Model

(1.1)±(1.3) is an extension of the semi-parametric fractional autoregressive (SEMIFAR)

model introduced by Beran (1999) (see also Beran 1995), which will be called a semi-

parametric fractional autoregressive integrated moving average (FARIMA)-GARCH model ±

see Ling and Li (1997) and Ling (1998) for a FARIMA-GARCH model without trend. Such

a model allows for simultaneous estimation of trend, long memory as well as conditional

heteroscedasticity in a time series. Estimation of g(í), the íth derivative of g, leads to a

nonparametric regression problem with different dependence structures.

The current paper focuses on investigating the asymptotic properties of the local

polynomial ®ts of g(í). It is shown that ĝ(í) converges uniformly on the whole support

[0, 1] for errors with short or long memory as well as for errors with antipersistence. Under

given conditions, the rate of convergence of ĝ(í) is n(2äÿ1)( p�1ÿí)=(2 p�3ÿ2ä) for all

ä 2 (ÿ0:5, 0:5) and n(1ÿ2ä)( p�1ÿí)=(2 p�3ÿ2ä)( ĝ(í) ÿ g(í)) is asymptotically normal, where

p > í is the order of the local polynomial with pÿ í odd.

The paper is organized as follows. The proposed local polynomial estimator is described

in Section 2. Section 3 gives some auxiliary results, including a central limit theorem for

stationary processes being a weighted sum of a square-integrable martingale difference. Our

main results are given in Section 4. Section 5 contains some ®nal remarks. Proofs of

theorems are to be found in the Appendix.

2. The estimator

Kernel estimation for nonparametric regression with long-memory errors is investigated by

Hall and Hart (1990), CsoÈrg}o and Mielniczuk (1995) and Beran (1999). Beran and Feng

(1999) proposed to estimate g(í) in nonparametric regression with long-memory errors by

local polynomial ®tting, introduced by Stone (1977) and Cleveland (1979). See Ruppert and

Wand (1994) and Fan and Gijbels (1996) for recent development in the context of local

polynomial ®ts. Assume that g is at least ( p� 1)-times differentiable at a point t0. Let K be

a symmetric density having compact support [ÿ1, 1], called the weight function. Let
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X �
1 t1 ÿ t0 . . . (t1 ÿ t0) p

..

. ..
. . .

. ..
.

1 t n ÿ t0 . . . (tn ÿ t0) p

264
375,

and let e j, j � 1, . . . , p� 1, denote the jth ( p�1)31 unit vector. Also let K denote the

diagonal matrix with

ki � K
ti ÿ t0

b

� �
as its ith diagonal entry, where b is the bandwidth. Finally, let y � (Y1, . . . , Yn)T be the

vector of observations. Then ĝ(í)(t0) (í < p) is obtained by solving the locally weighted

least-squares problem

Q �
Xn

i�1

Yi ÿ
Xp

j�0

b j(ti ÿ t0) j

( )2

K
ti ÿ t0

b

� �
) min, (2:6)

which leads to

ĝ(í)(t0) � í!eT
í�1(XTKX)ÿ1XTKy: (2:7)

Here ĝ(í)(t0) is a linear smoother with the weighting system wí(t0) �
í!(eT

í�1(XTKX)ÿ1XTK)T � (wí
1, . . . , wí

n)T, where wí
i 6� 0 only for jti ÿ t0j < b. The weight-

ing system does not depend on the dependence structure of the error process. For any interior

point t0 2 [b, 1ÿ b] the non-zero part of wí(t0) is the same, that is, ĝ(í) works as a moving

average in the interior. Furthermore, wí(t0) satis®esXn

i�1

wí
i (ti ÿ t0)í � í!

Xn

i�1

wí
i (ti ÿ t0) j � 0 for j � 0, . . . , p, j 6� í: (2:8)

Property (2.8) ensures that ĝ(í) is exactly unbiased if g is a polynomial of order not larger

than p.

3. Auxiliary results

In the following a central limit theorem will be developed for the sum of random variables

Sn �
Pn

i�1 X i, where X i is a weighted sum of (0, ó 2) random variables Ek forming a square-

integrable martingale difference. For the de®nitions of martingales and martingale differences

see, for example, Hall and Heyde (1980) and Shiryaev (1996). A martingale difference

with ®nite variance is called a square-integrable martingale difference. Let (Ù, F , P)

be a probability space, where F is a ó -®eld of subsets of Ù. Denote by

fF i, i 2 I � fÿ1, . . . , ÿ1, 0, 1, . . . , 1gg a non-decreasing sequence of ó -®elds of F
sets. We have:
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Theorem 1. Let the sequence (Ei, F i, i 2 I) be a square-integrable martingale difference

with constant variance, that is, E(EijF iÿ1) � 0, E(E2
i ) � E(E2

0) ,1. Furthermore, assume

either one of the following cases

Case 1.

X i �
X1

k�ÿ1
ckÿiEk , (3:1)

where X1
k�ÿ1

c2
k ,1, (3:2)

with ó 2
n � E(X 1 � . . . � X n)2 !1 as n!1, and the conditional variance of Ei is

equal to the unconditional one, that is, hi � E(E2
i jF iÿ1) � E(E2

0),

or that

Case 2. X is a FARIMA process with strictly stationary innovations Ei, the process jEij
has an extreme index è 2 (0, 1] and the square process E2

i is second-order stationary with

autocovariances ãE2 (k) � cov(E2
i , E2

i�k)! 0 as k !1.

Then

X1 � . . . � X n

ó n

!D N(0, 1):

The proof of Theorem 1 is given in the appendix.

Remark 1. Note that i.i.d. (0, ó 2) random variables form a square-integrable martingale

difference with hi � ó 2, Theorem 1, case 1, includes Theorem 18.6.5 of Ibragimov and

Linnik (1971) as a special case.

Remark 2. Theorem 1, case 2, is developed for a FARIMA process with the FARIMA-

GARCH model as a special case. Such processes are special cases of those de®ned by (3.1)±

(3.2) with ck � 0 for k . 0 and ck � ãkÿ1�ä for k , 0 and jkj large, where ã is a constant.

In this case we have ó 2
n � E(X 1 � . . . � X n)2 � O(n1�2ä) for ä 2 (ÿ0:5, 0:5).

Remark 3. Some conditions of Theorem 1 are made here in order to simplify the proof. For

instance, in case 2 it is assumed that the process jEij has an extreme index è 2 (0, 1] so that

the extreme value of jEij is asymptotically of the same order as that for an associated

independent sequence (with the same marginal distribution) (see Leadbetter 1983; Embrechts

et al. 1997, Section 8.1). The degenerate case with è � 0 is excluded in this paper.

Remark 4. The assumption of constant variance for Ei implies that it is an uncorrelated white

noise (see Shiryaev 1999, p. 42). Hence, the assumptions on Ei given in Theorem 1 are

stronger than that Ei is an uncorrelated white noise. For long-memory processes the
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assumption that the Ei are uncorrelated (0, ó 2) random variables is not suf®cient for the

derivation of asymptotic normality of the sample mean (see, for example, Taqqu 1975).

We will now develop a theorem on the convergence of the variance (to zero) of a general

linear ®lter. The corollary of this on the weak consistency of a general weighted sum will

be used to prove the weak consistency of a weighted sum of the square process E2
i in

Theorem 1, case 2. Both of them are given for second-order stationary time series.

Theorem 2. Let (X i,n), 1 < i < n, n � 1, 2, . . . , be a triangular array of random variables

from a second-order stationary time series with zero mean, variance ó 2 and autocovariances

ã(k) such that ã(k)! 0 as k !1. Let (wi,n) be a triangular array of weights such thatPn
i�1jwij ,1 and max1<i<njwij ! 0 as n!1. Then var(

Pn
i�1wi X i)! 0 as n!1.

The proof of Theorem 2 is given in the appendix. The weighting system wi is `formless':

the wi are also allowed to be negative. Localized weighting systems are included by setting

wi � 0 for all i outside a given interval. Hence, all weighting systems generated by

common kernel or local polynomial estimators of g(í) are special cases of Theorem 2. This

means that the variances of these estimators converge to zero for any second-order

stationary time series with ã(k)! 0 as k !1. Furthermore, if X i is a process with

unknown mean ì, we have:

Corollary 1. Let (X i,n) and (wi,n), 1 < i < n, n � 1, 2, . . . , be the triangular array as

de®ned in Theorem 2. Suppose now that the mean ì of X i is unknown and is estimated by

ì̂ �Pn
i�1wi X i. If

Pn
i�1wi ! 1 as n!1 and the other conditions of Theorem 2 are

satis®ed, then ì̂ is weakly consistent.

4. Main results

4.1. Properties of the error process

We consider ®rst the asymptotic normality of the sample mean X � (1=n)
Pn

i�1 X i of

a FARIMA-GARCH process de®ned by (1.2)±(1.3). To our knowledge, there are no

detailed results on this topic in the literature. Under the condition E(E4
i ) ,1 we havePr

j�1á j �
Ps

k�1âk , 1 (see Lemma 2.2 in Chen and An 1998). Under this condition Ei is a

square-integrable martingale difference with respect to (F i, i 2 I), where F i is the ó -®eld

generated by the information in the past (Shiryaev 1999) and I is as in Theorem 1. And

hence Ei is an uncorrelated white noise. The autocovariance function ãx(k) of the FARIMA-

GARCH process X has the same form as given in Brockwell and Davis (1991) and Beran

(1994). Furthermore, He and TeraÈsvirta (1999a) show that, under the condition E(E4
i ) ,1,

the autocorrelation function of the square process E2
i decays exponentially. More detailed

results on this may be found in He and TeraÈsvirta (1999b) for second-order GARCH models.

The existence of an extreme index for the process jEij follows from Davis et al. (1999) ± see
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de Haan et al. (1989) and Mikosch and St�aric�a (2000) for explicit results in some special

cases. Whence Ei ful®ls the conditions of Theorem 1, case 2.

Based on Theorem 1 we obtain the following theorem, which extends the results of

Theorem 8(ii) in Hosking (1996).

Theorem 3. Let X i be generated by model (1.2)±(1.3) with ä 2 (ÿ0:5, 0:5). Assume that

there is a strictly stationary solution of (1.3) such that E(E4
i ) ,1. And suppose that ö(B)

and ø(B) have no common factors, and all roots of ö(B) and ø(B) lie outside of the unit

circle. Then

n1=2ÿäX!D N (0, Vä),

where

Vä � ó 2
E
jø(1)j2
jö(1)j2

Ã(1ÿ 2ä)

(2ä� 1)

sin (ðä)

ðä
: (4:1)

The proof of Theorem 3 is given in the Appendix.

4.2. An extension of Theorem 1

Theorem 1 is a central limit theorem for the sample mean of a second-order stationary time

series. In the following we will extend it to a central limit theorem for a linear ®lter of such a

process, which can be directly used to derive asymptotic normality of a kernel or a local

polynomial estimator.

Theorem 4. Let (X i,n), 1 < i < n, n � 1, 2, . . . , be a triangular array of random variables

and let (wi,n) be a triangular array of weights such that ó 2
n :� var(

Pn
i�1wi X i) . 0 for all n.

If

max
1<i<n

jwij=ó n ! 0 as n!1, (4:2)

sup
k

����Xn

i�1

wickÿi

����=ó n ! 0 as n!1 (4:3)

and the conditions as given in cases 1 and 2 of Theorem 1 hold respectively, thenXn

i�1

wi X i

" #
=ó n!D N (0, 1):

Condition (4.2) means that the weights wi are uniformly negligible. If maxjwij � O(1),

then it implies that ó 2
n !1 as n!1. Condition (4.3) on the weighted sum

P
wickÿi is

often not independent of (4.2). Theorem 1 is a special case of Theorem 4 with wi � 1, in

which case (4.3) can be derived from (4.2). Theorem 4.2 in MuÈller (1988) on the
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asymptotic normality of a weighted sum of i.i.d. random variables is also a very special

case of Theorem 4. Based on Theorem 4, the asymptotic normality of ĝ(í) is easily proved.

4.3. Pointwise asymptotic results

What follows gives asymptotic normality of ĝ(í)(t) at any point t 2 [0, 1] for ä 2 (ÿ0:5, 0:5).

Asymptotic results on ĝ(í)(t) as given in Beran and Feng (1999) are included without proof,

since they also hold for the current model. It is assumed that pÿ í is odd, and we put

k � p� 1. Note that it is enough to give formulae at points t � cb with c 2 [0, 1]. Here

c , 1 corresponds to a left boundary point and c � 1 to a point in the interior. Following

MuÈller (1987) and Feng (1999), ĝ(í) is asymptotically equivalent to a kernel estimation in the

interior as well as at the boundary. For any í, k and c, denote by K(í,k,c) the asymptotically

equivalent kernel (or boundary kernel, respectively) for ĝ(í) (see, for example, Ruppert and

Wand 1994); it is easy to show that�1

ÿc

u j K(í,k,c)(u)du �
0, j � 0, . . . , íÿ 1, í� 1, . . . , k ÿ 1,

í!, j � í,

â(í,k,c), j � k,

8<: (4:4)

where â(í,k,c) is the (non-zero) kernel constant.

To drive the asymptotic results given below additional assumptions are required:

Assumption 1. g is an at least k-times continuously differentiable function on [0, 1].

Assumption 2. The weight function K(u) is a symmetric density (a kernel of order 2) with

compact support [ÿ1, 1], having the polynomial form

K(u) �
Xr

l�0

á lu
2 l1[ÿ1,1](u)

(see, for example, Gasser and MuÈller 1979).

Assumption 3. The bandwidth satis®es b! 0, (nb)1ÿ2äb2í !1 as n!1.

It can be shown that, under Assumption 3

max
1<i<n

jwij � O([nb1�í]ÿ1) � o(1):

Let n0 � [nt � 0:5], n1 � [nb], nc � [ncb], where [�] denotes the integer part. Let

Vn(c, ä, b) � (nb)ÿ1ÿ2ä
Xn0�n1

i, j�n0ÿnc

K(í,k,c)

ti ÿ t

b

� �
K(í,k,c)

t j ÿ t

b

� �
ã(iÿ j): (4:5)

We obtain the following theorem.

Theorem 5. Let Yi be generated by model (1.1)±(1.3). Suppose that the assumptions of
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Theorem 3 hold. Suppose that Assumptions 1±3 hold, and let t � cb with 0 < c < 1. Then,

for ä 2 (ÿ0:5, 0:5):

(i) we have bias

E[ ĝ(í) ÿ g(í)] � b(kÿí) g(k)(t)â(í,k,c)

k!
� o(b(kÿí)); (4:6)

(ii)

lim
n!1Vn(c, ä, b) � V (c, ä), (4:7)

where 0 , V (c, ä) ,1 is a constant;

(iii) the variance of g(í) is given by

var( ĝ(í)(t)) � (nb)ÿ1�2äbÿ2í[V (c, ä)� o(1)]; (4:8)

(iv) when the bias is given by (4.6), assuming that nb(2k�1ÿ2ä)=(1ÿ2ä) ! d2 as n!1,

for some d . 0, then

(nb)1=2ÿäbí( ĝ(í)(t)ÿ g(í)(t))!D N (dÄ, V (c, ä)), (4:9)

where Ä � g(k)(t)â(í,k,c)=k! and V (c, ä) is the constant de®ned in (4:7).

All of the results of parts (i)±(iii) and those of Theorem 6 below also hold when X i in

(1.1)±(1.3) is a FARIMA process with uncorrelated innovations. Denote V (c, ä) with c � 1

by V (ä). The formula for V (ä) with í � 0 and ä . 0 may be found in Hall and Hart

(1990). In the special case when g is estimated by an unweighted local linear ®t, then we

have, for all ä 2 (ÿ0:5, 0:5),

V (ä) � 2(2äÿ1)ó 2
E
jø(1)j2
jö(1)j2

Ã(1ÿ 2ä)

(2ä� 1)

sin(ðä)

ðä
(4:10)

(see Corollary 1 in Beran 1999). Note that the only difference between Vä given in (4.1) and

V (ä) in (4.10) is the factor 2(2äÿ1).

Remark 5. The condition nb(2k�1ÿ2ä)=(1ÿ2ä) ! d2 as n!1 implies bandwidth b �
O(n(2äÿ1)=(2k�1ÿ2ä)) with (nb)1=2ÿäbí � O(n(1ÿ2ä)(kÿí)=(2k�1ÿ2ä)). Theorem 6 below shows

that such a bandwidth is of the optimal order. In this case the squared asymptotic bias and the

asymptotic variance are of the same order. If the bandwidth b is of higher order that is, with

a small bandwidth ± the result in Theorem 5(iv) also holds with Ä � 0. Now the asymptotic

bias is negligible. On the other hand, the asymptotic result will be dominated by the bias part,

if the bandwidth b is of a smaller order. In this case, bÿk�í( ĝ(í)(t)ÿ g(í)(t)) has a degenerate

asymptotic distribution with a constant mean and variance zero.
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4.4. The MISE

A well-known criterion for the quality of a nonparametric regression estimator is the mean

integrated square error (MISE) de®ned by

MISE( ĝ(í)(x)) �
�1

0

Ef[ ĝ(í)(x)ÿ g(í)(x)]2gdx: (4:11)

For pÿ í even, MISE( ĝ(í)(x)) is dominated by the estimation in the boundary area. For

pÿ í odd, the MISE due to the estimation in the boundary area is negligible. Let

I(g(k)) �
�1

0

[g(k)(t)]2 dt , (4:12)

and denote by K(í,k) and â(í,k) respectively the equivalent kernel and the kernel constant for

the interior points with c � 1. Then the following result holds.

Theorem 6. Under the assumptions of Theorem 5 and for ä 2 (ÿ0:5, 0:5):

(i) the MISE of ĝ(í) is given by�1

0

Ef[ ĝ(í)(t)ÿ g(í)(t)]2gdt

� MISEasympt(n, b)� o(max(b2(kÿí), (nb)2äÿ1bÿ2í))

� b2(kÿí)
I(g(k))â2

(í, p)

k!
� (nb)2äÿ1bÿ2íV (ä)� o(max(b2(kÿí), (nb)2äÿ1bÿ2í)); (4:13)

(ii) the optimal bandwidth that minimizes the asymptotic MISE is given by

bopt � Copt n
(2äÿ1)=(2k�1ÿ2ä), (4:14)

where

Copt � 2í� 1ÿ 2ä

2(k ÿ í)

(k!)2V (ä)

I(g(k))â2
(í, p)

" #1=(2k�1ÿ2ä)

, (4:15)

in which it is assumed that I(g(k)) . 0.

The proof of Theorem 6 will be omitted, since it is the same as for the case when the Ei are

an i.i.d. sequence (see Beran and Feng 1999).

Note that by inserting bopt in (4.13), Theorem 2 implies that for pÿ í odd the optimal

MISE is of order �1

0

Ef[ ĝ(í)(t)ÿ g(í)(t)]2gdt � O(n2(2äÿ1)(kÿí)=(2k�1ÿ2ä)): (4:16)

The rate of convergence of ĝ(í) is n(2äÿ1)(kÿí)=(2k�1ÿ2ä) � n(2äÿ1)( p�1ÿí)=(2 p�3ÿ2ä). For í � 0

with ä > 0, Hall and Hart (1990) show that this is the optimal convergence rate.

Local polynomial estimation with a FARIMA-GARCH error process 741



5. Final remarks

The ARCH and GARCH models proposed by Engle (1982) and Bollerslev (1986) have

become a widely used model for analysing ®nancial time series. Ling and Li (1997) showed

the potential usefulness of the FARIMA-GARCH model. The semi-parametric FARIMA-

GARCH model proposed in this paper is expected to become a useful tool for modelling

stochastic processes with trends, long memory as well as conditional heteroscedasticity.

Examples for modeling ®nancial time series with the related SEMIFAR model proposed by

Beran (1999) may be found in, for example, Beran and Ocker (1999).

To estimate the whole model one has to combine the proposal here and the approach for

estimating the parameters, which determine the stochastic structure of the model, as

proposed in Beran (1995; 1999) and Ling and Li (1997). This will be discussed elsewhere.
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Appendix: Proofs of theorems

Suppose that on the probability space (Ù, F , P) there are given martingale differences

î n � (înk , F nk), 0 < k < n, n > 1,

with în0 � 0, F n0 � (Ö, Ù), F nk � F n,k�1 � F . Set

Snk �
Xk

i�0

îni, 1 < k < n:

The double sequence fSnk , F nk , 1 < k < n, n > 1g will be called a martingale array.

To prove cases 1 and 2 of Theorem 1 we will use the following Lemmas A.1 and A.2,

respectively. Lemma A.1 is a special case of Theorem 4 of Shiryaev (1996, Section VII.8)

± see also Corollary 3.1 of Hall and Heyde (1980) and Corollary 6 of Liptser and Shiryaev

(1980). Denote by I(A) the indicator function of a set A.

Lemma A.1. Let the square-integrable martingale differences î n � (înk , F nk), n > 1, satisfy

the conditional Lindeberg condition that for each E . 0,
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Xn

k�0

E[î2
nk I(jînk j . E)jF n,kÿ1]!P 0, (A:1)

and the condition Xn

k�0

E(î2
nk jF n,kÿ1)!P 1: (A:2)

Then Snn!D N (0, 1).

Lemma A.2 is a special case of Theorem 3.2 of Hall and Heyde (1980). This lemma is

used here to avoid the need to check the conditional Lindeberg condition (A.1).

Lemma A.2. Let fSnk , F nk , 1 < k < n, n > 1g be a zero-mean, square-integrable martin-

gale array with differences înk . Suppose that

max
1<k<n

jînk j!P 0, (A:3)

Xn

k�1

î2
nk!

P
1 (A:4)

and

E( max
1<k<n

î2
nk) is bounded in n: (A:5)

Then Snn!D N (0, 1).

Proof of Theorem 1. Let ó 2
n � E(X 1 � . . . � X n)2. Suppose that E(E2

0) � 1 for simplicity.

Following the proof of Theorem 18.6.5 in Ibragimov and Linnik (1971), we have

ó 2
n � E(X 1 � . . . � X n)2

�
X1

k�ÿ1
(ckÿ1 � . . . � ckÿn)2

�
X1

k�ÿ1
c2

k,n,

say. Hosking (1994) gave some corrections of the proof of Ibragimov and Linnik (1971) and

showed that

jck,nj
ó n

< an :� 8óÿ1
n

X1
i�ÿ1

c2
i

 !1=2

� 1

2
óÿ1

n

X1
i�ÿ1

c2
i

8<:
9=;

24 351=2

, (A:6)

that is, ak,n :� ck,n=ó n tends to zero uniformly in k as n!1. Following Hosking (1994),

we have
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óÿ1
n (X1 � . . . � X n) �

X1
k�ÿ1

ak,nEk

with X1
k�ÿ1

a2
k,n � 1:

For each n > 1 let n1 � ÿ[(nÿ 1)=2], n2 � [n=2] such that n1 < 0, n2 > 0 and

n1 � n2 � 1 � n, where [�] denotes the integer part. For k � 1, . . . , n denote En1�kÿ1 by

Enk , F n1�kÿ1 by F nk and an1�kÿ1,n by bnk for convenience. De®ne En0 � 0. Also de®ne

î n � (înk , F nk) with în0 � 0 and înk � bnkEnk for 1 < k < n. Then we have

óÿ1
n (X1 � . . . � X n) �

X1
k�ÿ1

ak,nEk

�
Xn2

k�n1

ak,nEk �
X
k,n1

k.n2

ak,nEk

� Snn � çn, (A:7)

where

Snk �
Xn1�kÿ1

i�n1

ai,nEi �
Xk

i�0

îni, k � 1, . . . , n,

and

çn �
X
k,n1

k.n2

ak,nEk :

It is clear that çn � o p(1), since E(çn) � 0 and

var(çn) �
X
k,n1

k.n2

a2
k,n ! 0, as n!1:

Here, î n � (înk , F nk) is a square-integrable martingale difference and fSnk , F nk ,

1 < k < n, n > 1g is a zero-mean square-integrable martingale array. It remains to show

that, in Theorem 1, case 1, î n � (înk , F nk) ful®l the conditions of Lemma A.1 and, in

Theorem 1, case 2, fSnk , F nk , 1 < k < n, n > 1g ful®l those of Lemma A.2, respectively.

Case 1. In this case it is easy to show that the square-integrable martingale differences

î n � (înk , F nk) satisfy conditions (A.1) and (A.2). We have E(î2
nk jF n,kÿ1) � bnk and hence
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Xn

k�0

E(î2
nk jF n,kÿ1) �

Xn2

k�n1

b2
nk �

X1
k�ÿ1

a2
k,n � o(1)! 1,

and (A.2) is satis®ed. Furthermore, using (A.6) and noting that
P

b2
nk < 1, we haveXn

k�0

E[î2
nk I(jînk j . E)jF n,kÿ1] �

Xn

k�0

b2
nkE[E2

0 I(jE0j . E=bnk)]

<
Xn

k�0

b2
nkE[E2

0 I(jE0j . E=an)]

< E[E2
0 I(jE0j . E=an)]! 0:

This shows that î n � (înk , F nk) satisfy (A.1).

Case 2. Now, we have to check that fSnk , F nk , 1 < k < n, n > 1g ful®ls conditions

(A.3)±(A.5). Let ~Ei denote an associate independent sequence for Ei, that is, an i.i.d.

sequence with the same marginal distribution. Using the Chebyshev's inequality we can

obtain the tail behaviours of j~Eij and ~E2
i , that is, P(j~Eij . x) < E(~E4)=x4 and

P(~E2
i . x) < E(~E4)=x2 for every x. Following results in extreme value theory (see, for

example, Embrechts et al. 1997) we have max1<i<nj~Eij � O p(n1=4) and

E(max1<i<n~E2
i ) � O(n1=2). Under the assumption that jEij has an extreme index è 2 (0, 1],

the same results hold for jEij and E2
i , respectively: max1<i<njEij � O p(n1=4) and

E(max1<i<nE2
i ) � O(n1=2).

For ä . 0 we have an � O(óÿ1=2
n ) � O(nÿ1=4ÿä=2). Using (A.6),

max
1<k<n

jînk j < an max
1<k<n

jEnk j

� O(nÿ1=4ÿä=2)O p(n1=4) � o p(1):

If ä � 0 we have ck,n � O(1), ak,n � ck,n=ó n � O(óÿ1
n ) � O(nÿ1=2). If ä , 0, it can be

shown that, for n1 < k < n2, ck,n � O(nä) and ak,n � O(nä)O(óÿ1
n ) � O(nÿ1=2). Hence we

have, for ä < 0,

max
1<k<n

jînk j � O(nÿ1=2) max
1<k<n

jEnk j

� O(nÿ1=2)O p(n1=4) � o p(1):

This shows that (A.3) holds for ä 2 (ÿ0:5, 0:5).

In this case E2
i is a second-order stationary process with E(E2

0) � 1 and ãE2 (k) �
cov(E2

i , E2
i�k)! 0 as k !1. Observing that the weights b2

nk satisfy the conditions of

Corollary 1, we have Xn

k�1

î2
nk �

Xn

k�1

b2
nkE

2
nk!

P
E(E2

0) � 1,
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Thus (A.4) is ful®lled.

We will now show that (A.5) holds. In fact we have E(max1<k<nî
2
nk) � o(1). This will

only be shown for ä . 0:

E( max
1<k<n

î2
nk) < a2

nE( max
1<k<n

E2
nk)

� O(nÿ1=2ÿä)O(n1=2) � o(1):

This completes the proof. h

Proof of Theorem 2. Again, we put var(X i) � 1 for convenience. In this case we have that

jã(k)j < 1. It is clear that Theorem 2 holds in the naive case with wi � 0. Otherwise we have

max1<i<njwij . 0. Now let N � N n � (max1<i<njwij)ÿ1=2, such that N !1, N �max1<i<n

jwij ! 0 as n!1. Then

var
Xn

i�1

wi X i

 !
�
Xn

i�1

Xn

j�1

wiw jã(iÿ j)

�
Xn

i�1

wi

Xn

j�1

w jã(iÿ j)

�
Xn

i�1

wi

X
jiÿ jj<N

w jã(iÿ j)�
X
jiÿ jj.N

w jã(iÿ j)

24 35

<
Xn

i�1

jwij
X
jiÿ jj<N

jw jj jã(iÿ j)j �
X
jiÿ jj.N

jw jj jã(iÿ j)j
24 35:

Observing that
P1

i�ÿ1jwij ,1, it is suf®cient to show thatX
jiÿ jj<N

jw jj jã(iÿ j)j �
X
jiÿ jj.N

jw jj jã(iÿ j)j � o(1) (A:8)

holds uniformly in i. Consider the ®rst part of the left-hand side of (A.8):X
jiÿ jj<N

jw jj jã(iÿ j)j < (2N � 1) max
1<i<n

jwij

� O(( max
1<i<n

jwij)1=2) � o(1): (A:9)

For the second part we have
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X
jiÿ jj.N

jw jj jã(iÿ j) < sup
jkj.N

ã(k)j
X
jiÿ jj.N

jw jj

� O( sup
jkj.N

jã(k)j) � o(1), (A:10)

completing the proof of Theorem 2. h

Proof of Corollary 1. By Theorem 2, we have var( ì̂)! 0 as n!1. Since
Pn

k�1wk ! 1 as

n!1, we have

E( ì̂) � E
Xn

k�1

wkEk

 !
! ì as n!1: h

Proof of Theorem 3. The formula for the asymptotic variance of X remains unchanged from

case to case only if Ei are uncorrelated (0, ó 2) random variables. Hence, it is the same as that

for i.i.d. innovations given by Theorems 1 and 8 of Hosking (1996), that is,

var(X ) � n2äÿ1Vä for ÿ1
2

, ä , 1
2
, where

Vä � ó 2
E
jø(1)j2
jö(1)j2

Ã(1ÿ 2ä)

(2ä� 1)

1

Ã(1� ä)Ã(1ÿ ä)
:

Using the relationships Ã(1� ä) � äÃ(ä) and Ã(ä)Ã(1ÿ ä) � ð=sin(ðä) (for 0 , ä , 0:5),

we obtain the alternative representation of Vä,

Vä � ó 2
E
jø(1)j2
jö(1)j2

Ã(1ÿ 2ä)

(2ä� 1)

sin (ðä)

ðä
,

which is used in this paper.

Since X i de®ned in (1.2)±(1.3) is a zero-mean FARIMA process with innovations Ei

following a GARCH model, we have

X i �
X1
k�0

ckEiÿk (A:11)

with ck � (jø(1)j=jö(1)j)käÿ1 as for large K (see, for example, Brockwell and Davis 1991;

Beran 1994). Hence, for ÿ0:5 , ä , 0:5,
P1

k�0c2
k ,1. This, together with the context

above Theorem 3, shows that X i ful®ls the conditions of Theorem 1, case 2, and so

(X1 � . . . � X n)=ó n!
D

N (0, 1). Observing that [n1=2ÿäX ÿ (X1 � . . . � X n)=ó n] !P 0, we

have n1=2ÿäX!D N (0, 1). h

Proof of Theorem 4. In order to prove Theorem 4 we only need to show that the

decomposition (A.7) holds for proper ak,n. Following (3.1), the weighted sum can be

rewritten as
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Xn

i�1

wi X i �
Xn

i�1

wi

X1
k�ÿ1

ciÿkEk

 !

�
X1

k�ÿ1

Xn

i�1

wickÿi

 !
Ek

�:
X1

k�ÿ1
ck,nEk , (A:12)

where ck,n � (w1ckÿ1 � . . . � wnckÿn). Noting that Ek are uncorrelated random variables,

we have

ó 2
n :� E

Xn

i�1

wi X i

 !2

�
X1

k�ÿ1
c2

k,n: (A:13)

De®ne ak,n � ck,n=ó n, we have

óÿ1
n

Xn

i�1

wi X i �
X1

k�ÿ1
ak,nEk ,

with X1
k�ÿ1

a2
k,n � 1:

The uniform negligibility of ak,n ± which means that it tends to zero uniformly in k as

n!1 ± is guaranteed by condition (4.3). The rest part of the proof of Theorem 4 is the

same as that of Theorem 1. h

Proof of Theorem 5. The proof of the ®rst three parts will be omitted (see Beran and Feng

1999). Note that

ĝ(í)(t)ÿ g(í)(t) �
Xn

i�1

wi X i:

The weights of ĝ(í) generated by local polynomial ®tting have the properties that

max1<i<njwij � O[(nb1�í)ÿ1] and wi � 0 outside an interval with length of order nb. Using

the result given in part (iii) we have maxjwij=ó n � O[(nb)ÿ1=2ÿä]! 0 as n!1. Noting

that ck � käÿ1, ����Xn

i�1

wickÿi

����=ó n < max
1<i<n

jwij
Xn

i�1

jckÿij
����wi 6� 0

" #
=ó n

� O[(nb)ÿ1=2ÿä]O[(nb)ä]

� O[(nb)ÿ1=2]! 0 as n!1:
Conditions (4.2) and (4.3) are satis®ed by the weights of ĝ(í)(t). We have

748 J. Beran and Y. Feng



ĝ(í)(t)ÿ g(í)(t)

var( ĝ(í)(t))
!D N (0, 1):

When the bias has the representation (4.6), and assuming that nb(2k�1ÿ2ä)=(1ÿ2ä) ! d2, for

some d . 0, we obtain

(nb)1=2ÿäbí( ĝ(í)(t)ÿ g(í)(t))!D N (dÄ, V (c, ä)),

where Ä � g(k)(t)â(í,k,c)=k! and V (c, ä) is the constant de®ned in (4.7). h

References

Beran, J. (1994) Statistics for Long Memory Processes. London: Chapman & Hall.

Beran, J. (1995) Maximum likelihood estimation of the differencing parameter for invertible short- and

long-memory autoregressive integrated moving average models. J. Roy. Statist. Soc. Ser. B, 57,

659±672.

Beran, J. (1999) SEMIFAR models ± a semi-parametric fractional framework for modelling trends,

long-range dependence and nonstationarity. Preprint, University of Konstanz.

Beran, J. and Feng, Y. (1999) Local polynomial ®tting with long-memory, short-memory and anti-

persistent errors. Preprint, University of Konstanz.

Beran, J. and Ocker, D. (1999) SEMIFAR forecasts, with applications to foreign exchange rates.

J. Statist. Plann. and Inference, 80, 137±153.

Bollerslev, T. (1986) Generalized autoregressive conditional heteroscedasticity. J. Econometrics, 31,

307±327.

Brockwell, P.J. and Davis, R.A. (1991) Time Series: Theory and Methods, 2nd edn. Berlin: Springer-

Verlag.

Chen, M. and An, H.Z. (1998) A note on the stationarity and the existence of moments of the

GARCH model. Statist. Sinica, 8, 505±510.

Cleveland, W.S. (1979) Robust locally weighted regression and smoothing scatterplots. J. Amer. Statist.

Assoc., 74, 829±836.

CsoÈrg}o, S. and Mielniczuk, J. (1995) Nonparametric regression under long-range dependent normal

errors. Ann. Statist., 23, 1000±1014.

Davis, R.A., Mikosch, T. and Basrak, B. (1999) Sample ACF of multivariate stochastic recurrence

equations with application to GARCH. Preprint, University of Groningen.

de Haan, L., Resnick, S.I., RootzeÂn, H. and de Vries, C.G. (1989) Extremal behaviour of stochastic

difference equation with application to ARCH processes. Stochastic Process. Appl., 32, 213±224.

Embrechts, P., KluÈppelberg, C. and Mikosch, T. (1997) Modelling Extremal Events for Insurance and

Finance. Berlin: Springer-Verlag.

Engle, R.F. (1982) Autoregressive conditional heteroscedasticity with estimation of the variance of

United Kingdom in¯ation. Econometrica, 50, 987±1008.

Fan, J. and Gijbels, I. (1996) Local Polynomial Modelling and its Applications. London: Chapman & Hall.

Feng, Y. (1999) Kernel- and Locally Weighted Regression. Berlin: Verlag fuÈr Wissenschaft und

Forschung.

Gasser, T. and MuÈller, H.G. (1979) Kernel estimation of regression functions. In T. Gasser and M.

Rosenblatt (eds), Smoothing Techniques for Curve Estimation, Lecture Notes in Math. 757,

pp. 23±68. Berlin: Springer-Verlag.

Local polynomial estimation with a FARIMA-GARCH error process 749



Granger, C.W.J. and Joyeux, R. (1980) An introduction to long-range time series models and fractional

differencing. J. Time Ser. Anal., 1, 15±30.

Hall, P. and Hart, J.D. (1990) Nonparametric regression with long-range dependence. Stochastic

Process. Appl., 36, 339±351.

Hall, P. and Heyde, C.C. (1980) Martingale Limit Theory and Its Application. New York: Academic

Press.

He, C. and TeraÈsvirta, T. (1999a) Fourth moment structure of the GARCH( p, q) process. Econometric

Theory, 15, 824±846.

He, C. and TeraÈsvirta, T. (1999b) Properties of the autocorrelation function of squared observations for

second-order GARCH processes under two sets of parameter constraints. J. Time Ser. Anal., 20,

23±30.

Hosking, J.R.M. (1981) Fractional differencing. Biometrika, 68, 165±176.

Hosking, J.R.M. (1994) Supplement to `Asymptotic distributions of the sample mean, autocovariances,

and autocorrelations of long-memory time series'. Research Report, RC 19831, IBM Research

Division, Yorktown Heights, NY.

Hosking, J.R.M. (1996) Asymptotic distributions of the sample mean, autocovariances, and

autocorrelations of long-memory time series. J. Econometrics, 73, 261±284.

Ibragimov, I.A. and Linnik, Yu.V. (1971) Independent and Stationary Sequences of Random Variables.

Groningen: Wolters-Noordhoff.

Leadbetter, M.R. (1983) Extremes and local dependence in stationary sequences. Z. Wahrscheinlich-

keitstheorie Verw. Geb., 65, 291±306.

Ling, S. (1998) Stationary and nonstationary time series models with conditional heteroskedasticity.

Ph.D. thesis, University of Hong Kong.

Ling, S. (1999) On the probabilistic properties of a double threshold ARMA conditional hetero-

skedastic model. J. Appl. Probab., 36, 688±705.

Ling, S. and Li, W.K. (1997) On fractional integrated autoregressive moving-average time series

models with conditional heteroscedasticity. J. Amer. Statist. Assoc., 92, 1184±1194.

Ling, S. and McAleer, M. (2000) Necessary and suf®cient moment conditions for the GARCH(r, s)

and asymmetric power GARCH(r, s) models. Econometric Theory. To appear.

Liptser, R.S. and Shiryaev, A.N. (1980) A functional central limit theorem for semimartingales. Theory

Probab. Appl., 25, 667±688.

Mikosch, T. and St�aric�a, C. (2000) Limit theory for the sample autocorrelations and extremes of a

GARCH(1, 1) process. Ann. Statist., 28, 1427±1451.

MuÈller, H.-G. (1987) Weighted local regression and kernel methods for nonparametric curve ®tting.

J. Amer. Statist. Assoc., 82, 231±238.

MuÈller, H.-G. (1988) Nonparametric Regression Analysis of Longitudinal Data. Berlin: Springer-

Verlag.

Ruppert, D. and Wand, M.P. (1994) Multivariate locally weighted least squares regression. Ann.

Statist., 22, 1346±1370.

Shiryaev, A.N (1996) Probability, 2nd edn. New York: Springer-Verlag.

Shiryaev, A.N (1999) Essentials of Stochastic Finance ± Facts, Models, Theory. Singapore: World

Scienti®c.

Stone, C.J. (1977) Consistent nonparametric regression (with discussion). Ann. Statist., 5, 595±620.

Taqqu, M.S. (1975) Weak convergence to fractional Brownian motion and to the Rosenblatt process.

Z. Wahrscheinlichkeitstheorie Verw. Geb., 31, 287±302.

Received May 1999 and revised June 2001.

750 J. Beran and Y. Feng


