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Mixed fractional Brownian motion
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We show that the sum of a Brownian motion and a non-trivial multiple of an independent fractional
Brownian motion with Hurst parameter H € (0, 1] is not a semimartingale if H € (0, %) U (%, % , that it
is equivalent to a multiple of Brownian motion if H :% and equivalent to Brownian motion if
H e (%, 1]. As an application we discuss the price of a European call option on an asset driven by a

linear combination of a Brownian motion and an independent fractional Brownian motion.
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1. Introduction
Let (R, A, P) be a probability space.

Definition 1.1. A fractional Brownian motion (BtH)teR with Hurst parameter H € (0, 1] is an
almost surely continuous, centred Gaussian process with

cov(BY, By = L[t + |7 — |t — s|*), t,s€R. (1.1)

These processes were first studied by Kolmogorov (1940) within a Hilbert space frame-
work. For H € (0, 1), Mandelbrot and Van Ness (1968) defined fractional Brownian motion
more constructively as

BtH = CHJ[R[I{sst}(t - S)H71/2 - l{xso}(_s)Hil/z]qu teR, (1.2)

where (W;)ser is a two-sided Brownian motion and ¢y a normalizing constant. For H = 1,
fractional Brownian motion can be constructed by setting

B} = t&, teR, (1.3)

where £ is a standard normal random variable. It can be deduced from (1.1) that fractional
Brownian motions divide into three different families. B'/? is a two-sided Brownian motion.
For H € (%, 1] the covariance between two increments over non-overlapping time intervals is
positive, and for H € (0, %) it is negative. From the representations (1.2) and (1.3) it can be
seen that fractional Brownian motion has stationary increments. Furthermore, it can easily be
checked that, for all a >0,
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914 P Cheridito
(aH Bffa) . has the same distribution as  (B/) k.
te

This property is called self-similarity.

By ‘mixed fractional Brownian motion’” we mean a linear combination of different
fractional Brownian motions. In this paper we examine whether a mixed fractional
Brownian motion is a semimartingale when it is of the special form

M™"* .= B+ aB",

where B is a Brownian motion, B an independent fractional Brownian motion and
a € R\{0}.

To avoid localization arguments we consider (M IH’“)te[o,T] for T <oo. It follows from
self-similarity of fractional Brownian motion that the process

(Bt + aB{{) t€[0,7]

has the same distribution as

<T1/th/T +aTHBtF/[T) €f0.7] = T]/2<B’/T + aTH_I/zB’%) refo.71’

This shows that there is no loss of generality in assuming 7 = 1.

Definition 1.2. A filtration F = (F;)scqo,1] is said to fulfil the usual assumptions if it is right-
continuous, JFi is complete and Fy contains all null sets of F. For an arbitrary filtration
F = (Fi)efo,1) we denote by F= (f,)te[o,l] the smallest filtration that contains F and satisfies
the usual assumptions.

The classical notion of a semimartingale stands at the end of a chain of generalizations
of Brownian motion, each of which extended the class of stochastic processes that can play
the role of the integrator in stochastic integration in the It6 sense — see Ito (1944) for Ito’s
construction of the stochastic integral. It reached its final form in Doléans-Dade and Meyer
(1970). In their paper a stochastic process (X,) that is adapted to a filtration F = (F;)
satisfying the usual assumptions is called an [F-semimartingale if it admits a decomposition
of the form

X[:X0+M[+A[, (1.4)

where X is an Fy-measurable random variable, My = 49 = 0, M is an a.s. right-continuous
local martingale with respect to | and A an a.s. right-continuous, [F-adapted finite-variation
process. Later it was found that if a filtration F = (F) [ satisfies the usual assumptions, an
a.s. right-continuous, F-adapted stochastic process (X, ,),6[0’1] is of the form (1.4) if and only
if X fulfils the following condition:

Ix(B(F)) is bounded in L°, (1.5)

where
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n—1
B(F) = {ijl(,j,wm eN,O<t<..<t,<1,
=0

Vj, f; is F; -measurable and |f;| <1 a.s.} (1.6)
and

n—1 n—1
L => filX,, —X;)  for8=>"fili,...1 €BE.
=0

=0

This result is usually referred to as the Bichteler—Dellacherie theorem — see, for example,
Section VIII.4 of Dellacherie and Meyer (1980) for a proof. For our purposes it is more
convenient to work with condition (1.5) than with the decomposition property (1.4). If one
does not require the process to be a.s. right-continuous and the filtration to satisfy the usual
assumptions, one obtains a weaker form of the semimartingale property than the classical
one.

Definition 1.3. A stochastic process (X{)iwcjo,1] IS a weak semimartingale with respect to a
Siltration F = (Fi)sepo,1) if X is F-adapted and satisfies (1.5).

Let (X/),c0,; be a stochastic process. If F' = (F )0y and F? = (F7)seo) are two
filtrations with F!  F2 for all ¢ € [0, 1], then B(F') C B(F?). Hence, L°-boundedness of
Ix(B(F?)) implies L°-boundedness of Iy(B(F')). This shows that if X is not a weak
semimartingale with respect to the filtration generated by X, then it is not a weak semi-
martingale with respect to any other filtration. Therefore it is natural to introduce the
following definition.

Definition 1.4. Let (X,)c0.1] be a stochastic process. We define the filtration F* = (F f( )ie0,1]
by

‘7:? = 0 ((Xs)o=s=1), t €0, 1].

We call X a weak semimartingale if it is a weak semimartingale with respect to FX. We call
X a semimartingale if it is a semimartingale with respect to F¥.

Example 1.5. 1t is easy to see that the deterministic process

0 for ¢ € [0, %],
1 for r € (3, 1],

is a weak semimartingale. But it is not a semimartingale because it is not a.s. right-
continuous.
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However, it follows from Lemma 2.4 below that for every filtration | = (F),c(o7, an a.8
right-continuous F-weak semimartingale is also an F-semimartingale.

The problem of determining whether M¢ is a semimartingale is easiest when
H e {4 1}. It is clear that

1
Ml/z,a
V14 a2

is a Brownian motion. In particular, it is an
semimartingale. M!“ can be represented as

M} = B, + atg, t €0, 1],

a2 o _
FM ™ _semimartingale. Hence, M'/>“ is a

where B is a Brownian motion and & an independent standard normal random variable. This
shows that M'“ is a semimartingale with respect to F = (F t)ie[0,1], Where

f;‘ - O(‘Ea (BS)Ogsgl‘)a te [05 1]

With the help of Girsanov’s theorem we can show even more. Unlike M'/>% M is not a
multiple of a Brownian motion under the measure P. But it is a Brownian motion under an
equivalent measure Q. It can be deduced from Fubini’s theorem that

Elexp(—a&B — a&)H)] = 1.
Therefore,
0 = exp(—a&B) —3(a)’) - P

is a probability measure that is equivalent to P and it follows from Girsanov’s theorem that
M"* is a Brownian motion under Q. Hence, M'“ is equivalent to Brownian motion in the
sense of the following definition.

Definition 1.6. Let (C[0, 1], B) be the space of continuous functions with the o-algebra
generated by the cylinder sets. If (Xi)wc[o,1] IS an a.s. continuous stochastic process, we
denote by Py the measure induced by X on (C[0, 1], B). We call two a.s. continuous
stochastic processes (X;)icr0,1] and (Y;)ieo,1] equivalent if Py and Py are equivalent.

It can be seen from Definition 1.3 that the weak semimartingale property is invariant
under a change of the probability measure within the same equivalence class. The same is
true for the semimartingale property. Hence, all processes that are equivalent to Brownian
motion are semimartingales.

We express the main results of this paper in the following theorem.

Theorem 1.7. (M%) 01y is not a weak semzmartmgale if He (0, 2)U(2’Z it is
equivalent to 1+ a2 times Brownian motion if H =3 and equivalent to Brownian
motion if H € (i, 1].

For H e {%, 1}, we have already proved Theorem 1.7. For (0, %)U(%, 1) it has been
shown by several authors (for example, Lipster and Shiryaev, 1989; Lin, 1995; Rogers,
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1997) that fractional Brownian motion B cannot be a semimartingale. Since [ " does not
satisfy the usual assumptions, the statement that B is not a weak semimartingale is
slightly stronger. We will prove this statement in Section 2. Nothing in this proof is
essentially new. We give it to make clear which parts of it can also be used to deal with
M*™* and when new methods are needed. For H € (0, 1) the proof is based on the fact
that the quadratic variation of B is infinite. The same argument can be used to show that
M™% is not a weak semimartingale for H € ( ) because, as we will show in Section 3,
in this case M/ has also infinite quadratic variation. For H € (1, 1), B is not a weak
semimartingale because it is a stochastic process with vanishing quadratic variation and a.s.
paths of infinite variation. This reasoning cannot be applied to treat M for H € (3, 1)
because then M has the same quadratic variation as Brownian motion. In this case we
need more refined methods to see whether M* is a semimartingale. Surprisingly, M “-* is
not a weak semimartingale if H € (%, %] and it is equivalent to Brownian motion if
H e (%, 1]. In Section 4 we prove Theorem 1.7 for H € (2, 4] The proof depends on a
theorem of Stricker (1984) on Gaussian processes. In Section 5 we prove Theorem 1.7 for
He (%, 1]. In this case we use the concept of relative entropy and the fact that two
Gaussian measures are either equivalent or singular. In Section 6 we discuss the price of a
European call option on a stock that is modelled as an exponential mixed fractional
Brownian motion with drift.

2. B is not a weak semimartingale if H € (0, ) U (%, 1)

From now on we use the following notation. For a stochastic process (X;)«jo,1] and n € N,
we set, for j=1,...,n, AX Xjn— X(j—1y/n-

That B is not a weak semlmartmgale for H € (0, 2) U (2, 1) can be derived from the
fact that in this case B” does not have the ‘right’ variation. The following facts about the
p-variation of fractional Brownian motion are well known.

Lemma 2.1. Let p, ¢>0. Then
(@) nP"=1570 |ATBH P — |BH| ]in LY
(b) nrH=1=a5>" |A”BH|P( '0'in L';
(¢) nPH- ”qz AT B P 2% % in probability,

i.e. for all L>0 there exists an ny such that
P10y 70 |ATBY P <L]<1/L for all n=n

(nﬂoc)

Proof. To show (a) we recall that the sequence
H H
(Bj - Bj—l);czl
is stationary. Since it is Gaussian and

cov(Bl' — BY!, B — B )"0,
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it is also mixing. Hence, the ergodic theorem implies that
>
n4=
On the other hand, it follows from the self-similarity of B that, for all n € N,
IS an 1 ,
nP=1 Z |AjBH|p = ;Z |BJH - BJH_IV’ in law.

J=1 Jj=1

P (n—so0)

B — B, | "TE[B{)P]in L. 2.1)

This, together with (2.1), proves (a).
Now (b) follows from (a).
To prove (c) we choose L>0. It follows from (a) that
P15 " A7 BH P "3V Ef|BY|7) in probability.
=1

In particular, there exists an n; € N such that

PUE[le’V]—n"H”/_Xj;A;B”” >%E[|Bl”\"] <%,
for all » = n;. This implies that, for all n = n,,
Pln”Hl zn:|A;BH|P <1E[BIH|1’]] <21
= 2 L
or, equivalently,
P nPH1+q;|AjBH|P<n4%E[|BIH|P] <%.

This shows that there exists an ny € N, such that

P

n 1
n!’HHqZ|A;’BH|p<L] <Z for all n = ny,
=1

and (c) is proved. U

It follows from Lemma 2.1(c) that, for H € (0, 1), B has infinite quadratic variation.
The next proposition shows that this implies that B cannot be a weak semimartingale if
H € (0, )).

Proposition 2.2. Let (X;)cjo,1] be an a.s. cadlag process and denote by T the set of all finite
partitions

0=tr<n<...<t,=1
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of [0, 11. If

n—1
{Z(Xt;/*l - X[_,‘)2|(t09 tl» ceey ZLn) S T}
j=0

is unbounded in L°, then X is not a weak semimartingale.

Proof. To simplify calculations we define Y, = X, — Xo, ¢ € [0, 1]. Then (Y;);c[0,17 is an FX-
adapted, a.s. cadlag process with Yy = 0. It is clear that Iy = Iy and

n—1 5 n—1 2
Z(ijH - Yt/) = (Xtﬁl Xt/)
j=0 j=0

for all partitions (¢, t, ..., t,) € T.
To prove the lemma, we must show that Iy(B(FY)) is unbounded in L°. The key
ingredient in our derivation of this from the L°-unboundedness of

n—1
{Z(th — Y ) (tos 11y -y 1) € r}

=0
is the equality

1 n—1
(Y’m - Yf/)zz Y% _22 Yt/(Y,/H - Yt,), (2.2)
j=1

n

Iy
o

J

which holds for all partitions (z, t1, ..., t,) € T.
That

n—1
{Z(Yfm =Y ) [(to, ty o-ns t) € r}
=0

is unbounded in L° means that

n—1
= lim sup P > (Yo, =Y > L] >0. (2.3)
L—oo T ]':O
We will deduce from this that
lim sup P[|Ix(9)|> L] > - 2.4)

Lo gepF)
which implies L°-unboundedness of 7y(3(F¥)). To do this we choose L > 0. Since Y is a.s.
cadlag, sup e, 1] |Y,| <oo a.s. Therefore there exists an N >0 such that
c
P| sup |Y/|>N|<-. (2.5)
1€[0,1] 4

It follows from (2.3) that there exists a partition (#y, t, ..., t,) € T with
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P

n—1
> (Y., = Y, >2LN + N
j=0

c
>—.
2

Inequalities (2.5) and (2.6) show that

n—1
P { sup |Y,|> N} US> Yy, = Yi)) <2LN + N’
tef0,1] =0
n—1 c
<P|sup |V,|>N|+P|> (Y1, =¥ ) <2UN+N*| <1——.
t€[0,1] =0 4

Hence,

P
1€[0,1]

n—1
{ sup |Y| < N} N {Z(Yw — Y, >2LN + N2H >§.
j=0

It is clear that

n—1 Yt

J

9= Z _I{IYtj‘SN} W 1(’_;atj+l]

J=1

is in B(F¥), and it can be seen from (2.2) that on the event

n—1
{ sup |Y,] < N} N {Z( Y, — Y,)* >2LN + NZ}
J=0

t€[0,1]

we have
1 n—1 5 X
[Y(‘g) = N ;:O(th - th) - Yl

>%(2LN+ N* - N*) = L.
Together with (2.7), this implies that
P[Iy(9)> L] > :"; .
Since L was chosen arbitrarily, this shows (2.4) and the proposition is proved.
Corollary 2.3. (Bf{),e[o,l] is not a weak semimartingale if H € (0, %).

Proof. 1t follows from Lemma 2.1(c) that

1 2 (n—oo
Z (A;’BH) ) 0o in probability.
J=1

(2.6)

2.7)
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This implies that

{Zn:(A;BHﬂn € N}
j=1

is unbounded in L°. Since B is a.s. continuous, the corollary follows from Proposition
2.2. O

For H € (%, 1) a direct proof of the fact that B is not a weak semimartingale appears to
be difficult. Our roundabout method permits us to use already existing results on
semimartingales.

Lemma 2.4. Let F = (F;)icp0,1 be a filtration. Then every stochastically right-continuous [F-
weak semimartingale (X,).cj0,1] is also an F-weak semimartingale. In particular, if X is a.s.
right-continuous, it is an F-semimartingale.

Proof. Define [° = (F%) (0,17 as follows. Let F be the completion of 7, N the null sets of
FY and set

FY=0(FUN), tefo, 1].
Let £ € [0, 1] and f € L°(FY) such that |f| <1 a.s. We set
A={f>E[f|F]}, and B = {f <E[f|F]}.

Since
F'={G c Q|3F € F, such that GAF € N'},

there exist A, B € F, with AAA, BAB € N. The equalities
f—Elf|FRldP=| f—E[f|FR]dP =0
Ja Ji

and

Bf —E[f|F]dP = Bf —E[f|F1dP =0

imply P[4] = P[B] = 0. Hence,
f=E[f|F] as. 2.8)

Let (X/)ef0,17 be an F-weak semimartingale. It follows from (2.8) that for every § € B(FY)
there exists a 3 € B(F) with Ix(3) = Ix(9) a.s. Therefore

Ix(B(F)) = Ix(B(F)) in L°.



922 P Cheridito

This shows that X is also an F°-weak semimartingale.
Let

n—1
Y= ijl(tjstf+l] € ﬂ<[F)
=0

For all ¢ € [0, 1],

Fi= ﬂ ‘7:(s)/\1'
s>t
Therefore,
n—1
Y= Z Filiensn € B(F), (2.9)
Jj=0

for all & with 0 <& <min; (7,1 — 1;). If (X, t) 0.1y 1s stochastically right-continuous, then
1{% Ix(y%) = Ix(v) in probability.
&

This, together with (2.9) and the fact that 7 X(,@(FO)) is bounded in L°, implies that Iy (B(F))
also is bounded in L°, and therefore X is an F-weak semimartingale. O

Proposition 2.5. Let (X;):cp0,1] be an a.s. right-continuous process such that
P[(X1)¢er0,17 has finite variation] <1 (2.10)
and, for all € >0, there exists a partition

0=rt<(,<...<t,=1

with
max(tj41 — 1) <e (2.11)
J
and
n—1
P lZ(X,“ - X, > e] <e. (2.12)
Jj=0

Then X is not a weak semimartingale.

Proof. Suppose X is a weak semimartingale. By Lemma 2.4 X is also an F¥-semimartingale.
Hence, X is of the form

Xi=Xo+ M+ A4,
where X is an Fy-measurable random variable, My = 4y = 0, M is an a.s. right-continuous

local martingale with respect to F and 4 an a.s. right-continuous, F-adapted finite-variation
process. It follows from (2.11), (2.12) and Theorem I1.22 of Protter (1990) that



Mixed fractional Brownian motion 923

[Xs X]t:X09 te[os 1]
Hence,
[M, M], =0, t €0, 1].

Therefore Theorem I1.27 of Protter (1990) implies M, =0, ¢t € [0, 1]. Hence, X is a finite-
variation process. This contradicts (2.10). Therefore X cannot be a weak semimartingale.
O

Corollary 2.6. (BtH) refo,1] 18 not a weak semimartingale if H € (%, 1).
Proof. 1t follows from Lemma 2.1(c) that

> 147B") "2 00 in probability.

Jj=1

Therefore there exists a sequence (1)}~ such that
n
(k—
Z\A}”‘BH| T %0 as.
j=1

Hence,

P[(BIH ) tefo,1] has finite Variation] =0.

On the other hand, Lemma 2.1(b) shows that
S " oin L.
=1

Hence, B satisfies the assumptions of Proposition 2.5. Therefore it is not a weak semi-
martingale. O

Remark 2.7. Let H € (0, %) U (%, 1) and define the filtration F = (F;)sc[0,17 by
Fi = 0((BS)0S5$13 (BSH)Ossst), t € [0, 1].

Since B is an F-Brownian motion and therefore also an F-weak semimartingale and B is not
an F-weak semimartingale, M* = B + aB" cannot be an F-weak semimartingale. This
does not imply that M“ is not a weak semimartingale. However, in the next section we
show that for H € (0, 1), M has infinite quadratic variation. Therefore M*-* cannot be a
weak semimartingale by Proposition 2.2.

3. Proof of Theorem 1.7 for H € (0, 1)

Like BY, M"* cannot be a weak semimartingale for H € (0, %) because it has infinite
quadratic variation. To show this we write, for n € N,
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nyrH,aN2 _ n 2 n npH 2 n pH\2
D> AIMEYT =N (AIBY +2a Y AIBATB 4> (ATBTY.
j=1 j=1 j=1 j=1
It is known that
L 2 n—o0o
> (arB) " iin 1
j=1
see, for example, Theorem 1.28 of Protter (1990). From

2
n npH _ n npH An npH
E ( ATBA]B ) = > E|A7BAIBY ALBALB"]

J= Jrk=1

n 1 1 2H
= e[@m?e[(ags)] = nl(5)
A n\n
Jj=1
it follows that
S arsarB” "X 0in 12,
=
On the other hand, it follows from Lemma 2.1(c) that
2”: A"BH 2 (n—00) . -
( ;B ) — 00 in probability.
j=1

Hence,

n 2 (nooo
Z (A}’MH’“) =) 00 in probability.

J=1

In particular,

{Xn:(A;MH"‘)ZM € N}
Jj=1

is unbounded in L° and M % is not a weak semimartingale by Proposition 2.2.

4. Proof of Theorem 1.7 for H € (%, %]

For H € (4, 3], the key in the proof of Theorem 1.7 is Lemma 4.2 below. It is based on
Theorem 1 of Stricker (1984). Before we can formulate Lemma 4.2, we must specify our
notion of a quasimartingale. As we did in the case of weak semimartingale, we call a

stochastic process X a quasimartingale if it is a quasimartingale with respect to F¥.
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Definition 4.1. A stochastic process (X;)wpo,1] IS a quasimartingale if
X, el for all ¢ € [0, 1],

and
J+l

n—1
sup E
T 50

where T is the set of all finite partitions 0 =ty <t < ...<t, =1 of [0, 1].

E [Xt _ X,j|fﬂ

<00,
1

Lemma 4.2. If M is not a quasimartingale, it is not a weak semimartingale.

Proof. Let us assume that M™% is a weak semimartingale. Then Theorem 1 of Stricker
(1984) implies that Z,;u«(S(FM™)) is bounded in L2. Therefore it is also bounded in L!. For
any partition 0 = fo<t; ... <t, =1,

n—1
> sen(B[MU — MIF | )10, € BF),
=0

Lyt <Z sgn (E [ij’f — M f?/gHﬂDIWM]>
1
n—1 "
=E [IMH,a (Z sgn(E {M{jﬁ? — M{j’a _7—'?;’ | })1(,/.,,‘,,]>]

M
|

and

1

It follows that M 7-* is a quasimartingale. Hence, if M #* is not a quasimartingale, it cannot
be a weak semimartingale. O

It remains to prove that M is not a quasimartingale if H € (
next two lemmas.

1,3]. We do this in the

Lemma4.3. If H € (%, f—‘), M is not a quasimartingale.

Proof. Since conditional expectation is a contraction with respect to the L!'-norm, we have,
forall neNandall j=1,...,n—1,

‘E[A;’HMH’“ fﬁf’“} = HE[A;’HMH*“M;?MH*“} (@.1)
Moreover,
2
HE[A}’HMH’O‘ A_;?MH»a} = \/;HE[A;'HMH’C‘ A;’MH’Q] 4.2)
1 2
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because E[A7,, M"|A7M™“] is a centred Gaussian random variable. Using (4.1) and (4.2),
we obtain '

n—

J+1 jln

E [A” M

fMH,a:|

n H,
saen]

2 n—1
- Sl
1 j=1

J

B \/gnzf cov(Aj'.'HMH’“, A}’MH’“)

- V<
= \/COV(AJ’.’MH’“, Ay M)

2. -2H 22H
gu e 5l

— 1 _
j=1 S 2p2H
n

2a2 22H | "24 —2H/ /1/ +a21
7 2 j:]n " n

n—1
_ %(22_11_1)0(722”1/“11
T\ 2 \/1+a2j:1

\/5(221{ a? oy
=\/-|—-1)]——=n—-1Dn/"“" 50 as n — oo.
T\ 2 >\/1+a2 ’

This proves the lemma. O

1
=0 2

COV(AL M ATy

cov(ATM e, ATM ey

H,a

2

Lemma 4.4. M>/4% is not a quasimartingale.

Proof. In this case the estimate (4.1) is not good enough. Now we need that, for all n € N
and all j=1,...,n—1,

HE |:A;+1M3/4,(l|fM3/4'a:|

iln

‘ > HE |:A7+1M3/4,(1|A}1M3/4,a, o AizM3/4,a:|
1

1

which follows, like (4.1) from the fact that conditional expectation is a contraction with
respect to the L'-norm. Since

E[A}’HM”“’“\A;?M”“’“, L., ATM3Aa

is centred Gaussian,
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n n n 2 " " .

2
Hence,
n—1 n—1
n a 3/4a 2 n A AR a n a
> E[A/‘+1M3/4’ F 57 } = \/;Z E{AHIM}M’ AF MR AT }
j=0 1 j=1 2
and the lemma is proved if we can show that
n—1
3 E[A;?+1M3/4’“|A7M3/4’“, ...,A;“MW‘W] oo,  asn—oo.  (43)
=1 ‘ 2
For neNand je{l,...,n—1},
n 3/4, nqr3/4, nr3/4,
(Ag M3, ATMe L AT
is a Gaussian vector. Therefore,
J
E[A;?+1M3/4’“|A;’M3/4°“, L A{’M”“’“] =" by An M, (4.4)
k=1

where the vector b = (by, ..., b;)" solves the system of linear equations
m = Ab, 4.5)
in which m is a j-vector whose kth component my is
3/4, 3/4,
COV(A;’HM/ “ AIMP/ “)
and A is the covariance matrix of the Gaussian vector

(AIIM3/4,(1 A(IM3/4,(1)
ERRERAY .

Note that 4 is symmetric and, since the random variables AJM3/4¢ .. A;’M3/4’a are
linearly independent, also positive definite. It follows from (4.4) and (4.5) that

2
A1 (4.6)

2
=b"Ab=m"4"'m = Hm
2

2

’E (AL MAATMA A ]

where A is the largest eigenvalue of the matrix A. Since

1
A=—id+ d’C,
n
where C is the covariance matrix of the increments of fractional Brownian motion
(AfB3/4 A’?B3/4>
2 "t j b
we have
1
A=—+du,
n
where u is the largest eigenvalue of C. As
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ck,=n*3/2%((|k—l|+1>3/2—2|k—1\3/2+Hk—ll—1|3/2), ko l=1,..., ],

it follows from the Gershgorin circle theorem (see Golub and Van Loan 1989) and the special
form of C that

u< max Z'Ckl| = ZZ‘C”‘

,,,,,

- 2n_3/2% ((1+ D2 =282 4 1= 1PP) = n 2 (14 PR = (= 17F).

=0
Furthermore,
n’3/2(1 Jr]3/2 (j— 1)3/2> < lJr 32 ﬂja/z
n 0j
_1 33 1/2<1 33 1/2<
R N 3
Hence,
As<—+4a’3-=(1+3a%) -
and
1 n
= (4.7)
On the other hand,
J J
|| ml||3 = Z(cov(A7+1M3/4’a, AZM3/4’“))2 = a4Z(cov(A?ﬂBy“AZBW‘))Z
k=1 k=1
J
= a3 (ke + 1 28 4 (k- 1))
k=1
Since the function x — x3/2 is analytic on the set {x € C | Rex >0},
1 o” 1 o”
k41 3/2 2k3/2 k—1 3/2 _ — 3/2 1 k3/2
(k+ 1) +(k—1) Zjl e K D
0? 3
= =" k=2,...].
oKz R e
That
3 3 1
(k+ 1)y — 206 + (k—l)2 4_1 2
also holds for k£ = 1, can be checked directly. It follows that
1 5,91 9 L1 9
2=t 2N =t L —de=at = 0 log 4.8
mlly = g m 162k~ " 64" Lxdx “ea 8/ 8
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Putting (4.6), (4.7) and (4.8) together, we obtain

3 o 1]
= Vlogj— oo
2 8\/1+3a2n;

n—

E {A7+1M3/4’“|A}’M3/4’“, o AfM3/4’“}

Jj=1

as n — oQ.

Hence, (4.3) holds and the lemma is proved. U]

5. Proof of Theorem 1.7 for He (3, 1]

To show that, for H € (%, 1], M* is equivalent to Brownian motion, we use the concept of
relative entropy. The following definition and all results on relative entropy that we need in
this section can be found in Chapter 6 of Hida and Hitsuda (1976).

Definition 5.1. Let Q) and Q, be probability measures on a measurable space (2, £) and
denote by ‘P all finite partitions,

=JE:
j=1
of Q, where E; € £ and E;NEy = QD if j # k. The entropy of O, relative to O is given by

QI[E)],

H(Q1|0:) := sup Zlog(Q = ])

where we assume g: 0 log 0 = 0.

For all n € N, we define Y, : C[0, 1] — R" by

T
Y.(w) = (w(l> — w(0), a)(%) —w(l), ...,w(l)—w(n_ 1)) ,
n n n n

and B, = 0(Y,). Note that \/}° | B, is equal to the o-algebra B generated by the cylinder
sets. We denote by Q) n.« the measure induced by M on (C[0, 1], B) and by Qp Wiener
measure on (C[0, 1], B). Further, we let, for all n € N, O}, 4. and Q7, be the restrictions of
Oy e and Qyw, respectively, to B,,.

To show that M** is equivalent to Brownian motion, we make use of the following
lemma.

Lemma 5.2. If
sup H(Q}na|Qy) < o0, (5.1

then Qe and Qw are equivalent.
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Proof. From (5.1) it follows by Lemma 6.3 of Hida and Hitsuda (1976) that Oy na« is
absolutely continuous with respect to Q. But two Gaussian measures on (C[0, 1], B) can
only be equivalent or singular — see, for example, Theorem 6.1 of Hida and Hitsuda (1976).
Therefore Qj«.n and Oy must be equivalent. O

In the following lemma we show that (5.1) holds.

Lemma 5.3.
sup H(Qlyna| Q) < 0.

Proof. For all n € N, Y, is a centred Gaussian vector under both measures Q). and Qy,.
The covariance matrices of Y, under O, and Qj, are

Egp»

1,
L V3] = —id+a?C,
where C,, is the covariance matrix of the increments of fractional Brownian motion
(AYBY, ..., AUB")
and
T 1.
Egn [Y,Y)] = —id.

Since C, is symmetric, there exists an orthogonal » X »n matrix U, such that U,C, U; s a
diagonal matrix D, = diag(4{, ... 4y). X, = /nU,Y, is still a centred Gaussian vector
under both measures Q},;n. and Qj,. The covariance matrices of X, under these two
measures are

Egr . [X,X,] =id + na®D,
and
Egy [X.X)] =id.

Through X, Q},#. and Oy, induce measures R}, ;. and R}, on R". It can easily be seen
from Definition 5.1 that

H(Qya| Q) = H (R | Ry ).
Since both measures R}, ;. and Ry}, are non-degenerate Gaussian measures on R”, they are

equivalent. We denote by ¢, the Radon—Nikodym derivative of R}, .. with respect to Rj,.
Using Lemma 6.1 of Hida and Hitsuda (1976), one finds that

H(R}ua|R})y) =Egr , [logg,] = %Z(nazi;‘ — log(l + nazl;’)).

n
mHa
J=1

For all x = 0, we have

X u X
x —log(l +x) = duijudu:lxz.
g( ) J01+M 0 2
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Therefore,
H (R RYy) < a3 (27)2.

Hence, the lemma is proved if we can show that

n
sup n? Z (/1;’)2 < o0, (5.2)
n =1
where A{, ..., A} are the eigenvalues of the covariance matrix of the increments of fractional

Brownian motion
H H
(AIBY, ..., ABY).
Since orthogonal transformation leaves the Hilbert—Schmidt norm of a matrix invariant,
n n
n2 H H\2

> @)= cov(A1B", ALBT)2.

=1 k=1
As fractional Brownian motion has stationary increments,

Z cov(A}’BH, AZBH>2 < Zanov(AZBH, AT‘BH)2
Jok=1 k=1

B 22H 2 n , ,
=2nn 4H<1 + (T— 1) ) +2nZCOV(AkBH, AlBH)z.

k=3

Since, for H € (3, 1],

92H 2
n2nn 1+ (T — 1> — 0, as n — oo,

it is enough to show

sup n3Zcov(AZBH, A}B")? <00 (5.3)
O

to prove (5.2). For all £ = 3, we have

cov(ALBH, AYB™) = n 2L (KM — 2(k — 1?7 + (k — 2)*1)

< I’IZH%<% kZH 7%(]( o 2)2H) _ Hn72H(k2H71 o (k o 2)2H71)

< Hn_2H2%(k — 21V =2 HQH — )n 2 (k — 2)* 172,

Using this, we obtain
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n n—2
n* Y cov(A;BY, ABM)? < 4HP(2H — 1Py g
k=3 k=1

$4H2(2H— 1)2n3—4HJ X4H_4dx
0

CAHPQH - 1) 4y

-2 4H-3
4H -3 (=2
4H*(2H — 1)
=\ 7
4H -3
Hence, (5.3) holds and the lemma is proved. ]

Remark 5.4. In this section we have shown that, for H € (%, 1], Quue« and Qy are
equivalent. But our method of proof has not given us the Radon—Nikodym derivative, nor
have we found the semimartingale decomposition of M #-*, These problems will be addressed
in future work.

6. Mixed fractional Brownian motion and option pricing

Theorem 1.7 enables us to present an example that calls into question a current practice in
mathematical finance.

Let us consider a market that consists of a bank account and a stock that pays no
dividends. There are no transaction costs. Borrowing and short-selling are allowed. The
borrowing and the lending rate are both equal to a constant r and the discounted stock
price follows a stochastic process (S¢),cpo.17-

We are interested in the time-zero price Cy of a European call option on S with strike
price K and maturity 7 = 1. Its discounted pay-off is (S; —e "K)". To exclude trivial
arbitrage strategies, Cp must be in the interval

((So — e "K)*, So).
Samuelson (1965) proposed modelling the discounted stock price as follows:
S; = Spexp(vt + o By), t €0, 1],

where v, 0 are constants and B is a Brownian motion. In this model Black and Scholes
(1973) derived an explicit formula for Cy. For given Sy, », K and maturity 7 = 1, the Black—
Scholes price BS of a European call option depends only on the volatility o and not on v.
As a function of o, BS is continuous, increasing and bijective from (0, o) to
((So — Ke™")*, Sp).

The Samuelson model has several deficiencies and up to now there have been many
efforts to build better models, including several attempts to remedy some shortcomings of
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the Samuelson model with the help of fractional Brownian motion (for a discussion, see
Cutland et al., 1995).

For our example let us assume that empirical data suggest that the discounted price of
the stock should be modelled as

S; = Spexp(vt+oB]"), tefo, 1], (6.1)

for constants v, ¢ and a fractional Brownian motion B . In Cheridito (2000) it is shown that
for H € (0, %) U (%, 1) such a model admits arbitrage. However, if H € (%, 1), we can
exclude all arbitrage strategies by regularizing fractional Brownian motion in the following
way:

If (Bf)sco,17 1s a Brownian motion independent of B Theorem 1.7 implies that, for all
>0,

(¢B; + B ieq0,17 is equivalent to (¢B,).e0,1]-
We observe that
cov(eB, + B/, eB,+ B') = £*(t A s) + cov(B]', B), t, s €[0, 1].

Hence, (SB, + B{’ ) re[0.1] is an a.s. continuous centred Gaussian process that has, up to €2,
the same covariance structure as (B}) This shows that if the model (6.1) fits empirical

1€[0,1]°
data, then so does

S, = Soexp{vt+o(eB,+ B/}, te[o, 1], (6.2)

for € >0 small enough. But in contrast to (6.1), and like the Samuelson model, (6.2) has a
unique equivalent martingale measure Q°. This implies that the model (6.2) is arbitrage-free
and complete. According to current practice in mathematical finance, in such a framework
options are priced by taking the expected value under the equivalent martingale measure of
the option’s discounted pay-off. In the model (6.2) this leads to the following option price:

Co(e) = Eg: [(Soexp{v + o (eB; + B{')} — e "K)"] = BS(e0). (6.3)

By the above-mentioned properties of the function BS, Cy(e) in (6.3) is close to
(So — e "K)" when &> 0 is small. The deeper reason why Cy(¢) is so low in this situation
is that (6.3) gives the initial capital necessary to replicate the pay-off of the call option with a
predictable trading strategy satisfying certain admissibility conditions, and this strategy seems
to exploit small movements of the stochastic process (6.2) over very short time intervals.

In reality a seller of the option can only carry out finitely many transactions to hedge the
option. Moreover, he cannot buy and sell within nanoseconds. Therefore he will demand a
higher price than BS(eo) ~ (S — e "K)™.

To find a reasonable option price, one should introduce a waiting time 4 >0 and restrict
trading strategies to the class ©"(FS) of strategies that can buy and sell at FS-stopping
times, but after each transaction there must be a waiting period of minimal length % before
the next. For small € >0, the discounted gain process of such a strategy is similar in both
models (6.1) and (6.2), as should be the case. Moreover, it is shown in Cheridito (2000)
that the model (6.1) has no arbitrage in ©” (F¥). Hence, if we confine the strategies to the
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class @h([FS2, we can return to the model (6.1) to value the option. Since (6.1) with the
strategies © ([FS) is an incomplete model, one has to decide in which sense the pay-off of
the option should be approximated and then search for an optimal strategy. It is not clear
whether the regularization (6.2) is of any use in such a procedure.
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