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LUDGER RUSCHENDORF™* and JEANNETTE H.C. WOERNER**

Albert-Ludwigs-Universitdit Freiburg, Institut fiir Mathematische Stochastik, Eckerstr. 1, D-79104
Freiburg, Germany. E-mail: *ruschen@stochastik.uni-freiburg.de; **woerner@stochastik.uni-
freiburg.de

We establish for small time ¢ a series expansion of the transition density and the transition distribution
function of Lévy processes in terms of the density and the spectral function of the Lévy measure,
respectively. Furthermore, the integrals with respect to the distribution function weighted by 1/¢ are
proved to converge to the integral with respect to the spectral function of the Lévy measure, when the
integrated function does not increase too fast and ¢ — 0.
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1. Introduction

In general, Lévy processes are determined by their characteristic functions. Typically, neither
the transition density nor the transition distribution function of Lévy processes can be
calculated explicitly. It is, however, known that the local behaviour of the transition
distribution P; of the Lévy process determines the Lévy measure dG(x), in the sense that, for
every fixed a > 0, (1/£)dP,(x) converges vaguely on {|x| > a} to dG(x) as ¢t — 0. In this
paper we give a detailed treatment of the behaviour of the transition distribution as ¢t — 0.

In the first part we establish a series expansion of the transition density as well as of the
transition distribution function in small time. The proof involves splitting the process into a
compound Poisson part and a small jump part, which leads to a sum representation where
we can estimate each term separately. For the transition distribution function the important
step is to find an estimate for the small jump part. The expansion holds true in general
without any regularity conditions on the Lévy process.

In the case where transition densities and densities of the Lévy measure exist, we obtain
an expansion of the density in small time under some regularity assumptions. The proof
requires results due to Léandre (1987) and Ishikawa (1994) on first-order estimates of pure
jump type Markov processes as ¢t — 0. Related estimates for more general Lévy measures
are also given in Picard (1997). The special properties of Lévy processes allow us to sim-
plify their arguments considerably and to obtain an expansion of the transition density in
this case. Barndorff-Nielson (2000) independently obtained by different methods some
related results on the local expansion of densities for subordinator processes. That paper
also presents an interesting approach which leads to a complete infinite expansion.

From our results we obtain a local expansion of the transition distribution of a Lévy
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process in terms of the Lévy measure. Conversely, from the local behaviour of the transition
distribution we can infer properties of the Lévy measure. Both directions of this relationship
are of prime importance to questions of statistical inference in Lévy processes; these,
however, are outside the scope of this paper.

In the second part of the paper the vague convergence as ¢ — 0 of the normalized
distribution of the Lévy process to the Lévy measure is extended to the convergence of
integrals of functions belonging to a certain class which do not increase too fast. The proof
employs an extension of a result due to Kruglov (1970) on a characterization of the tail
behaviour of infinitely divisible measures in terms of the finiteness of integrals. Further, we
use the decomposition of the Lévy process into a compound Poisson part and a small jump
part as well as an approximation technique in Sato (1999). In this case the influence
of the big jumps is dominant, and we finally obtain approximations of the form
(1/0) [ f(x)dPi(x) — [ f(x)dG(x) as t — 0. These results again have applications to the
asymptotics of statistical estimators.

2. Expansion of the transition density

In this section we shall derive an approximation of the transition density in terms of the
density of the Lévy measure for small time. Léandre (1987) and Ishikawa (1994) gave a first-
order estimate of the transition density of a pure jump type Markov process, when the time
tends to zero. We adopt their method for proving a series expansion of the transition density
of Lévy processes, which involves rather fewer technicalities due to the special properties of
Lévy processes.

Let X, be a Lévy process with transition density p,(x) and characteristic function

, .
Hiu) = exp{ ‘ <i,uu - 07 w2+ J (e”‘z - 11‘;) g(z)dz) } (1)

where g(z) denotes the density of the Lévy measure, such that [ 1 A x? g(x)dx < oo.

Theorem 1. Assume the following conditions:

(i) The Levy process X; possesses a C* transition density p;(x).
(i) The density of the Lévy measure g(x) is C*™ and, for ¢ > (,

’ 2
J 1g'(2)] i < oo, @
|z|=€ g(Z)
and there exists h € C*® such that h(z) < c|z|*>, h(z) >0 if g(z) >0 and z # 0 for
which
d 2
—h(2)g(z)] —— < o0. 3
| lgmee| 5 G)
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Then for N =1 and n >0 there exist € (N)>0 and ty>0 such that, for all
0<e<e(N), 0<it<tyand |x| >n>0,
N-1 £ i
p(x) = exp(—tjgs(y)dy) D 38"+ Ouy(tY), )

i=0

where g.(x) = 1|y=,g(x) is the truncated Lévy density.

Remark. Condition (i) may be ensured by conditions on g(x). For example, by a result of
Orey (1968) an infinitely divisible distribution 4 on R has a density of class C*° and all
derivatives of the density tend to 0 as |x| — oo if the Lévy measure v satisfies

x*v(dx)
. . [—r,r]
hrrn_}gf e >0, (5)
for some 0 < a < 2.
Condition (ii) is used to establish an upper bound for the transition density by Léandre
(1987).

Proof. For the proof we split the process X, into one part (X7) with jumps smaller than &,
where the transition density is denoted by pf(x), and another part (X;*) which is a compound
Poisson process whose transition density for x # 0 is denoted by p?‘(x) and where the
density of the corresponding Lévy measure is given by g.(x) = ly=,g(x). This de-
composition yields, for all € > 0,

p(x) = p; * pi(x) + exp (—t Jgs(y)dy>pf(x)
= exp <—tjge(y)dy> (pf(X) + Z%pf * gl "(X))
=1 "

N-1 i
= exp (—tjgs(y)dy> (pf(x) +y %pf * g i(X)) + Dj(N, x). (©6)
=1 "

For the estimate of the first term of the sum we use an estimate due to Léandre (1987)
which states that, for every p > 1 and any # > 0, there exists &'(p) > 0 such that for all
t <1 and every ¢ € (0, &'(p)),

wp exp (—tjgg(wdy) i) = Cle, D). ™
X 277

For the estimate of the remaining term we apply a lemma of Ishikawa (1994) which
yields that, for every € >0 and ¢ >0,

sup p(N, x) < C(e)t". 8)

xeR
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Hence, in particular as ¢t — 0, for every ¢ > 0,
Po(N, x) = O.(M). ©)

By the following lemma we finally obtain an upper and lower bound for each summand in the
convolution (6). O

Lemma 1. Let IC be the class of non-negative, bounded functions. Then, given 0 > 0 and
n > 0, there exists ty > 0 such that

f)—o= Jf(y—Z)pf(Z)dZ </ +0o+Cle, ), (10)

Jorall f e, |y|>n yeCy te(0,ty) and € € (0, €'(p)), where &'(p) is given in (7).

Proof. The main part of the proof is similar to the proof in Ishikawa (1994). Given ¢ > 0,
choose y > 0 such that |f(y) — f(2)] < /4 for |y — z| < x. We may assume y < 7. Then,

Jf(y )Pz = J F( - Dp(2)dz

|zl=x

- jl RS f(y)J P2z
Z| i;{

lzl<x

= (f() - 6/4>j P2z
4

B

= f(y) -9

for ¢ € (0, #;) for some appropriate ¢; > 0, since

i | pioz = timPi0 — P2 = Pitn — Pi = 1
z|<y -
For inequality (10) in the opposite direction we obtain, for ¢ € (0, #;), by choosing an
appropriate ?;,

(= 2 — FONP )z + f(y)J P2z

lz|=<n

stnf(y —2)pi(2)dz = J

|z=<x

4 J (f(r—2) — FONP )z
x<lz|<n

PE)dz + sup f(x)J P2z

x<lz2l<n

= (/) + 6/4)J

|z|<n

<f+9o
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and, for ¢ € (0, &'(p)), by Léandre’s estimate (7),
J| RCEERCIEEE D [10 - 2z
z|>n

This yields [ f(y —2)pi(z2)dz < f(y)+ 0 + C'(e, m)t’ [ f(y — z)dz. Since d > 0 is arbi-
trary we obtain, for 1 = n <N — 1,

tn & n tn n
exp (—t J gs(y)dy> P} gr¥(x) = exp (—t J gg(y)dy> o 27 () + Oy (1Y)
for t < tp = min{#, #,} and € € (0, ¢'(N)). O

Lemma 1 and the steps described before it yield, for any |x| ># >0, € € (0, ¢'(N)) and
1 € (0, 1),

N—1

Pi(x) = exp (—tjgsmdx) S 580+ 0y (1), (D

i=0

Corollary 1. Under the conditions of Theorem 1 we obtain, for fixed x # 0,

o1
lim — pi(x) = g, (12)

Example 1 Gamma process.
For the gamma process the transition density is given by

ﬂazxatfle—ﬁx atﬁatxatfle—ﬁx

% @ ) = e T T T Nt D)

and

1 —Px
lim - pi(x, a, f) = 25—,
t—0 t X

which is indeed the density of the Lévy measure.

Example 2 Normal inverse Gaussian process.
For the normal inverse Gaussian process the transition density is given by

pt(x9 a, ﬁ) 69 ALL)

aexp(rdx/az—ﬂz— tﬁ,u) 5
B " VT + (= w2

K (a\/ 202 + (x — t,u)2>eﬁx.
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For x # 0 this leads to

_ 0akK(alx|)e’

1
E‘II}% ;pl(xs a, ﬁy 6’ M)_T’ (13)

which is the density of the Lévy measure.

3. Approximate distribution function

In this section we give an expansion of the transition distribution function P;(x), without
regularity assumptions on the existence of the densities of the Lévy measure or the transition
distribution function. Let G(x) denote the spectral function of the Lévy measure, i.e.
G(x) = v([x, 00)) for x > 0 and G(x) = v((—o0, x]) for x < 0.

The proof of the expansion is similar to that in the case with transition densities. We
have to find analogues to the estimates of the different terms in that proof.

Lemma 2. Let A be the smallest non-negative number such that {x : |x| < A} contains the
support of the Lévy measure dG(x), which should not be identically zero. Then, for all x > 0
and a < 1/ A, there exists a constant K > 0 such that, as t — 0,

1 — P(x) < Kexp{ax — axlogx}*,
Pi(—x) < Kexp{ax — axlogx}r.
Proof. We use essentially ideas from the proof of Sato (1973, Lemma 1) and of Zolotarev

(1965, Theorem 1).
For Lévy measures with bounded support we may write

~ 0'2 .
Pi(u) = exp? t| ipu + 7(iu)2 + J(emz — 1 — iuz)dG(2)

= exp{rp(in)},

and
o2

22 + J(exz — 1 —x2)dG(2)

YP(x) = px +
exists for any real number x. We have

V) =k ot [ - Dzd6e)

Y'(x)=0%+ Jzze“ dG(z).
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Since "(x) > 0 the function %'(x) is monotone increasing and hence there exists a
monotone increasing inverse function 7 for 0 < x < oo, which is given by

x=9'(1(x) = u+ 07(x) + J(e’(")y — DydG(y), (14)
for 0 =< x < B < oco. We consider 7(x) as defined on 0 < x < oo, letting 7(x) = oo for x = B
if B < 0.

We now wish to find an upper bound for 1 — P;(x). From Chebyshev’s inequality we
obtain
Eexp{sX,}
l1-Pkx)=PX;,=x) < e T exp{ty(s) — sx}.

Minimizing the right-hand side over s, this implies

0

x/t
inf exp{ty(s) — sx} = exp{ —IJ T(z)dz}.
N
To show this, note that

0
exp{1(s) — s} = (1'(s) = X)exp{r(s) — s} = 0

and, therefore, ¥’'(s) = x/¢t and s = 7(y'(s)) = ©(x/ ). Hence

oo =eo{ (1)) () (1)}

This, together with

(o) (O ()= [ v (o)
Jr ()

= Y'(z(w))dz(w) — T(
x/t x/t
| wdiw) -7 (x> T —J 2(2)dz,

~ | =

¥'(0)
¥'(0) r)t ¥'(0)
leads to the desired estimate.

The next step is to find an estimate for 7. Since by Taylor expansion
(€™ — 1)y < e™4g(x)y? for |y| < 4, we obtain from (14)

x < u+ot(x)+ e’()‘)Ar(x)Jy2 dG(y).

Therefore, letting a < 1/4, we obtain logz < 7(z)/a for large enough z, say z > x;. Hence,
for ¢ small enough, i.e. such that x/¢ > xo,
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x/t
1—Px) = exp{—taj logzdz}

X0
= exp{—ta[—z + zlog z];)/’}
= exp{—taxy + taxylogxy + ax — axlogx}t™. (15)

Similar calculations yield the corresponding result for P,(—x). U]

We can now give the analogue to Léandre’s estimate (7) of the part with small jumps.

Corollary 2. Let ¢ be the smallest non-negative number such that {x : |x| < €} contains the
support of the Lévy measure dG(x), which should not be identically zero. Then, for all n > 0
and N =1, there exists €'(N) > 0 such that, for any € € (0, €'(N)),

sup(l — Pf(x)) = Os,r/(tN)y
x>n

sup PE(—x) = O, (") (16)

—x<-7

as t — 0.

Proof. Choose ¢'(N) such that 7/¢'(N) > N. Then there exists a < 1/¢'(N) with ay = N.
Hence, we have a < 1/¢ for all ¢ € (0, ¢'(NV)), and ax = N for all x > 5. Furthermore,
Supy>y, exp{ax — axlogx} = c(e, ). O

The next lemma is analogous to Lemma 1 and gives estimates for the convolution terms
l=sn=N-1

Lemma 3. Let KC be the class of non-negative, bounded functions. Fix N =1 and n > 0;
then there exist €' (N) and ty > 0 such that, for given d >0, € € (0, ¢'(N)) and ¢t € (0, to),
we obtain

f-od= Jf(y—Z)de(Z) < f(») + 0+ Cle, i, (17)

SJorall f e and |y|>mn ye Cy.

Proof. The proof is essentially the same as that of Lemma 1. At the final estimate we apply
Corollary 2 to obtain
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o -
J WLSELCE J F(r— 2P + j £l — 2dPi(2)
z|=n 00

n —

< sup f(x)(1 — P;(n) + P; (1))

< sup f(x)C(e, n)t".

Next we need an estimate for the remainders.

Lemma 4. Let Pi(e, N, x) = >0\ (£ /i) P¢ x GFi(x). For every ¢ >0 and t > 0, we have

sup Pi(e, N, x) < C(e)t". (18)

Proof. The proof is similar to that of Ishikawa (1994, Lemma 4.1). O

Theorem 2. Let P, be the distribution function of X, and G the spectral function of the
associated Lévy measure, i.e. G(x) = v([x, 00)) for x > 0 and G(x) = v((—o0, x]) for x <O.
Fix N =1, then there exist ¢'(N) >0 and ty > 0 such that, for all ¢ € (0, ¢'(N)) and
t € (0, ty), we obtain:

(i) for x>n>0

N-1
t .
l_ P — —_ *i e N . 1
00 = D7 G0 + Oy (1); (19)
(i) for x < -y <0
& *i N
B = D G+ Oun (1), (20)

where Ge(x) denotes the truncated spectral function 1y=,G(x).

Proof. We split the process X, into two components, one (X °) a compound Poisson process
with Lévy measure 1=, dG(x) = dG,(x), and the other (X?) with Lévy measure 1|,<, dG(x)
which is a process of the type as in Lemma 2. Hence
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PXi = pXiy pY°

o L
exp(t|G£|)<ZﬁPXr*vj>,
=0 b

1= Pi(x) = PY([x, 00))

. e
= exp(—t|Ge|) (1 - Pi(x)+ E FPXz v ([, oo)))
=1 "

N—-1
= exp(—1|Ge|) (1 —Pi)+ Y
i=1

£ . —
I Pf % GF(x) + P&, N, x))

and

Pi(x) = PY((—o0, x])

= exp(—1|G,|) (Pf(x) + Z%pxi # v¥(=o0, x])>
i=1 "

N-1
t ; _
em(ﬂG$<P%0+§ FW*G?@HIM&NJO~
i=1

Now the proof is similar to that of Theorem 1, using Corollary 2, Lemma 3 and Lemma 4.
O

As a corollary we obtain that the Lévy measure can be obtained from the distribution
function of the transition probability measure.

Corollary 3. Let P, be the distribution function of X; and G the associated spectral function.
Then we obtain:

(i) for each fixed x > 0,
lim © (1~ P(9) = Gl @
(i) for each fixed x <0,
lti_r% %P,(x) = G(x). (22)
If P, and G possess densities p, and g, then for x #0

o1 0
lim = p(x) = Ept(x)lt:o = g(x), (23)
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where we additionally assume that P(x) is continuous in a neighbourhood of
(t =0, x) and furthermore that (0/01)P(x), (0/0x)P/(x), (0/I1)(D/0x)P(x) exist and
are continuous in (t =0, x).

Remark. Since G is a spectral function, density in this case means g = 0 and G'(x) = g(x)
for x <0 and G'(x) = —g(x) for x > 0.

This theorem sharpens the well-known property that, for every fixed a >0,
(1/f)P(X, € dx) converges vaguely on {|x| > a} to dG(x) as t+ — 0 (cf. Bertoin 1996,
p- 39).

Proof. The estimates for the distribution functions are an obvious consequence of Theorem 2,
by choosing & < |x|.

Note that Py(x) equals 0 as x < 0 and 1 as x > 0, and define py(x) = 0 for x = 0. Hence,
for x > 0, and interchanging the differentiations,

lim © () = ggz(z)lfo - %%(Pz(x))h; ;
= *%a(l = Plim0 = =55 (1 = A=
=~ 5 G() = g,
Similar calculations for x < 0 yield the desired result. U

4. Asymptotics for integrals with respect to dP;

Since the results in Sections 2 and 3 are only valid for fixed x # 0, they do not provide
enough information about the asymptotic behaviour of integrals with respect to dP;. In this
section we shall derive such an asymptotic result for functions which basically do not in-
crease too fast. The idea is again to split the integral in two parts, one with the small jumps
and one with big jumps.

For the purposes of this section, P denotes an infinitely divisible probability measure
with Lévy measure dG. The tail behaviour of the distribution for Lévy measures with
bounded support is estimated by the following result due to Sato (1973) which is used
throughout this section.

Theorem 3 (Sato 1973). Let A be the smallest non-negative number ( possibly 4+00) such that
the set {x : |x| < A} contains the support of G(x). Then, for every positive a < 1/A4,

J dP(x) = o(r ") (24)
|x|>r

as r — oo and P has finite e“*1°2_moment; for every a > 1/4,
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J dP(x)/r *" — oo (25)
|x|>r
as r — oo and P has infinite ¢ _moments.

Denote by S the class of functions f that can be decomposed into a submultiplicative
and subadditive component:

S ={f(x)|3H, K such that Vx, y € R: (26)

S+ p) = h(x+ »k(x+ y) < HK(h(x) + h(»)k(x)k()}

Functions belonging to S cannot increase faster than x¥e (Kruglov 1970). The tail be-
haviour of the transition distribution function is now formulated in terms of integrability
conditions with respect to the Lévy measure.

Theorem 4. For all functions ( such that |{| < f, f € S with [|y=f(x)dG(x) < oo and
J1xi=11k(x)|dG(x) < oo, we obtain [ {(x)dP(x) < co.

Proof. Theorem 4 is an extension of a theorem in Kruglov (1970) formulated for functions
which are either submultiplicative or subadditive. Kruglov’s proof can be extended to the
more general class. In the first step P is decomposed as P(x) = F| % F»(x), where F) is a
compound Poisson distribution and F, corresponds to the small jumps. We use the refined
estimate in Theorem 3 for the decay of F, with Lévy measure with bounded support.
Kruglov’s induction proof for the decay of F; can be extended to the more general class S to
yield the result. |

Lemma 5. Weak convergence of P¥:(dx) to €10y(dx) as t — 0 may be extended to functions
f € C" such that |f| < g and |f'| < g», for g1, @2 €S ie.

lim [ FC0dPi ) = 0. )

Remark. Actually the proof only requires that £ and |f’| do not increase faster than x*e* for
some k and c.

Proof. Integration by parts leads to
b

J:f’(x)J:C dPj(y)dx = [J’(}C)KO de(y)] +J:f(x)dpf(x),

0
which yields

00

ff’(x)f 4Pi)r = /0|

dPE(y) +J FAPER)
0 0

since f(b) [, dP%(x) — 0 for b — oo as |f| < g with gy € S by Lemma 2. Analogous
calculations for the negative part yield
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0 x 0 0
| ro| ariowr=rof arior-| rearie.
—00 —00 —00 o

Hence,

[reaapico =0+ |

00 00
0 x

Looking at the second term, we obtain, by using Lemma 2,

U:of’(x)Jochf(y)dx'

X

< jo £ — P

{o.¢]
< J |/ (x)|exp{—taxy + taxo logxo + ax — axlogx}+** dx
0

< exp{—taxy + taxo logxo}J |7 (x)|exp{ax — axlogx}dx < o0
0
as t <1 and x/t = xy. Hence, by dominated convergence,
lingj f’(x)J dP;(y)dx = 0.
=0 Jo X
Analogous calculations for the third term yield
0 X
limj f’(x)J dP;(y)dx = 0.
=0 ) —00

Therefore, we conclude that

im [ F0aPi o) = 0.

Lemma 6. If [|,=1/(x)dG(x) < oo, FO(xPAD) zo = 0, and f(x)(|x]* A1)~! € Cy, then

1
tim + [ 097 = [ r2aG.

S ’(x)J dP{(y)dx — JOOO f’(x)[oo dP¢(y)dx.

93

(28)

Proof. The proof is analogous to those of Theorems 8.1, 8.7 and 8.9 in Sato (1999). Let {¢,}
be any sequence such that 7,0, and 4 = P; a given infinitely divisible probability measure.

Define u, by
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fin(z) = exp[t, (f(z)"" — 1)]

= exp t;lj (™ — 1)dP,, (x)|.
R\{0}

Hence u, is compound Poisson and, for each z as n — oo,
fin(2) = explt,," (exp(t, log i(2)) — 1)]
= expl[7, (1, 1og fi(z) + O(1}))].

.. . R N D
This implies fi,(z) — f(z) and thus u, — u.

Now define p,(dx) = (|x|> A 1)v,(dx), where v,(dx) denotes the Lévy measure of un(dx)
Then, from Sato (1999, Theorem 8.7), we obtain that {p,} is tight, i.e. sup, p,(R? )< 00
and limy_ ., sup, f‘x|>gpn(dx) = (0. So there exists a subsequence {pn,} such that p,, —>p,
where p is a finite measure. Define v(dx) = (|x|> A 1)"!p(dx) on {|x| > 0} and v»({0}) = 0.
As f(x)(Jx]* A1)~! € C} we obtain

lim Jf(xm(dx) = lim jf(x)(|x|2 A D) p ()
— Jf(x)(\xlz A1) p(dn)

~ | remean.

This implies the result since v(dx) is unique by Sato (1999, p. 43) and noting that
vu(dx) = 1,1 d P, (x). O

Theorem 5. Let f be any function in C'. Suppose that the following assumptions can be
made:

Q) |fI < g and |f'| < g for g1, g2 €S;
(i) 1< f)(xPAD € Cp and f(x)(|xPA1) ! —o = 0;

(i) | [ f(x+ »AGe(y)| < g3, |(0/0x) [ f(x + y)dGe(»)| < g4 for g3, g4 €S. Then we
have that

lim — ! j F)dP,(x) = J F(0)dG(). (29)

Remark. For the case where [(|x| A 1)dG(x) < oo it is sufficient to postulate 1< f(x)
(x| A1)™' € Cp, and when [ dG(x) < oo to assume that 1</ € Cj.

Proof. We again use the technique of splitting the process into a compound Poisson process
and a process with small jumps,
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P(x)= exp{—tJdGE(x)} (Pf(x) + ij—:Gé* * Pf(x)) ,
= b

where G = 1;>,G and P{ denotes the distribution function belonging to the jumps less than
or equal to ¢, i.e. with Lévy measure 1|,<, dG(x). For the limit we then only have to consider
the first two terms of the sum. The second leads to

tim [ F00G, « P = tim | [ x-+ 4G 0aPi o)
- |G

- J /94600,

which follows immediately from Lemma 5 and assumption (iii).

For the first summand we split the integral into two parts, one pertaining to the integral
over |x| <e¢ and one to the integral over |x| > &. From the preceding lemma we already
know that

lim 1J|xss FE)AP(x) = J

t—0

_ f)4G().

xl=

For the other part of the first summand we use the same technique as in Lemma 5. By
assumption (i) we have

J S)APi @ =10+ J:Cf '(X)J:O dP{(y)dx - J:Of ’(x)[oo dPE(y)dx,
hence
me (0)dPE(x) = LS f’(x)fdpf(y)dx - Lis 1) J ; 4P (y)dx.

For the first term on the right-hand side we then obtain, by Lemma 2,

! L»f’(x)fc ap: (y)dx‘

t X

1
=4[] vrela - P
x>e
< J |f"(x)| exp{—taxo + taxologxy + ax — axlogx} ™! dx
x>e

< exp{—taxy + taxy log xo}J

x>

|/ (x)| exp{ax — axlog x}dx < oo
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for t <1, x/t = xp and a < 1/¢. Hence by dominated convergence we may interchange limit
and integration and obtain

lim lJ f’(x)J dPi(y)dx = 0.
=0 1 Ji>e x

Analogous calculations for the second term yield

i [ ] arioa=o.

t—0
and hence
1 :
lim —J f(x)dPi(x) =0.
t—0 ¢ |x|>¢
Piecing together the three estimates, we obtain the desired result. O
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