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In this paper we study the bijection, introduced by Bercovici and Pata, between the classes of

infinitely divisible probability measures in classical and in free probability. We prove certain algebraic

and topological properties of that bijection (in the present paper denoted ¸), and those properties are

then used to show, in particular, that ¸ maps the class of classically self-decomposable probability

measures onto the natural free counterpart which we define here. Further, we study Lévy processes

in free probability and use the properties of ¸ to construct stochastic integrals with respect to

such processes. In particular, we derive the free analogue of the integral representation of self-

decomposable random variables.
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1. Introduction

The concept of self-decomposability of probability measures is due to Paul Lévy. In this

paper we study a free analogue of self-decomposability, i.e. a self-decomposability concept

formulated in the theory of non-commutative probability and free independence. In that

theory, free independence, which was introduced by Voiculescu in 1982 (see Voiculescu

1985), plays a role somewhat similar to that of independence in classical probability.

Voiculescu’s pioneering papers have led to an extensive body of work; see the papers

cited below and references given therein. For survey material, see Voiculescu et al. (1992),

Voiculescu (2000), Biane (1998b) and Hiai and Petz (2000). In particular, close analogies as

well as intriguing differences between infinite divisibility in the classical and in the non-

commutative sense have been uncovered, as we shall indicate.

The origin of the idea of free independence came from Voiculescu’s study of the free

group von Neumann factors, in which free independence may be naturally encountered.

Voiculescu later discovered that free independence also appears in the study of the

asymptotic behaviour of independent large (Gaussian) random matrices. The starting point

of the latter approach to free independence is Wigner’s semi-circle law, which occurs as a

limiting distribution of eigenvalue distributions of large self-adjoint random matrices with

complex entries. This law plays in the theory of free probability the same role as the
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normal or Gaussian law in classical probability. Wigner’s approach was through the study of

the asymptotic behaviour of the mean values Eftrn[(X (n)) p]g, where (X (n)) p is the pth

power of the n 3 n random matrix X (n), and trn is the normalized trace on the set Mn(C)

of complex n 3 n matrices. Voiculescu took the broader view of looking at mean values of

the form

Eftrn(X
(n)
i1

X
(n)
i2
� � � X

(n)
ip

)g,

where the X
(n)
i are independent n 3 n random matrices, with i ranging over a finite set

f1, 2, . . . , rg. Under suitable conditions these moments will, as in the case r ¼ 1, converge

and determine a limit object, and free independence expresses how the independence of X
(n)
1 ,

X
(n)
2 , . . . , X (n)

r is reflected in properties of that object; see Voiculescu (1991) for the precise

formulation. Since in general the matrices do not commute, free independence constitutes a

truly ‘non-commutative’ probabilistic concept. However, the most general and concise way to

define free independence is through operator algebra theory, and this links the theory of free

independence more closely to quantum mechanics. We refer, in passing, to recent related

work on random matrices: see Hiai and Petz (1999), Thorbjørnsen (2000), Geman (1980),

Silverstein (1985) and Haagerup and Thorbjørnsen (1998; 1999), and references given

therein.

Of key importance to the theory of classical infinite divisibility is the Lévy–Khinchine

formula for the logarithm of the characteristic function of an element of the class ID(�) of

infinitely divisible laws. There is a similar formula for free infinite divisibility, and the two

Lévy–Khinchine formulae are linked, in a natural way, by a bijection ¸ – which we shall

refer to as the Bercovici–Pata bijection – between the elements of ID(�) and the elements

of the free counterpart ID(uþ) of ID(�). In particular, under this bijection the Gaussian law

corresponds to the Wigner (or semi-circle) law, and, as was shown by Bercovici and Pata

(1999), the class S(�) of stable laws corresponds to the class S(uþ) of free stable laws.

In this paper we establish some basic properties of ¸. Further, we introduce a concept of

free self-decomposability, defined in operator algebraic terms, and show, using those

properties, that – with L(�) denoting the class of self-decomposable laws in the classical

sense – the subclass ¸(L(�)) of ID(uþ) corresponds exactly to free self-decomposability.

Infinite divisibility is intimately connected to the concept of Lévy processes, i.e. sto-

chastic processes with independent and identically distributed increments. A recent account

of the theory of infinite divisibility and Lévy processes is given by Sato (1999); see also

Bertoin (1996; 1997; 2000), Le Gall (1999) and Barndorff-Nielsen et al. (2001) for more

specialized aspects. The properties of ¸, which we derive, also provide the possibility of

translating from classical Lévy processes to free counterparts of those processes. We begin

an investigation of this. In particular, we establish the existence of stochastic integrals (of

functions) with respect to free Lévy processes, and we use this to prove the free analogue

of the integral representation of self-decomposable random variables (cf. Wolfe 1982; Jurek

and Verwaat 1983). (Stochastic integration (of processes) with respect to free Lévy pro-

cesses has also, in recent independent work, been introduced by Anshelevich (2001a), using

a quite different technique. The latter extends previous work by Biane and Speicher (1998)

which established stochastic integration with respect to free Brownian motion.)
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The paper is organized as follows. In Section 2 we provide background material from

classical probability, free probability and operator theory. Section 2.1 is a short summary of

the basic theory of self-decomposability in classical probability. In Section 2.2 we introduce

the notion of free independence, and in Section 2.3 we summarize the basic results on free

additive convolution and the main tool thereof: the Voiculescu transform. In Section 2.4 we

introduce the concept of free infinite divisibility and the free version of the Lévy–

Khinchine formula. In the first part of the main body of the paper (Sections 3–4), the

exposition is based on the analytical function tools described in Sections 2.3–2.4. In

particular, this avoids stating the results in terms of unbounded operators. However, the last

two sections of the paper (Sections 5–6) deal with free Lévy processes, which are by

definition processes of (generally) unbounded operators. Consequently, we give, in Section

2.5, a short account of the theory of unbounded operators affiliated with a finite von

Neumann algebra.

In Section 3 we introduce the Bercovici–Pata bijection ¸, and study its basic properties.

We prove that ¸ is a homomorphism, in the sense that it preserves the affine structure on

the set ID(�). We also prove that ¸ is a homeomorphism with respect to weak convergence

of probability measures. These properties of ¸ form the key tools for the results derived in

the following sections. In Section 4 we define self-decomposability in free probability, and

prove that this notion implies free infinite divisibility. Subsequently, we prove that free self-

decomposability corresponds exactly to classical self-decomposability via the mapping ¸. In

Section 5 we introduce the notion of Lévy processes in free probability, and we show how

the mapping ¸ gives rise in a natural way to a one-to-one (in law) correspondence between

classical and free Lévy processes. Finally, in Section 6, we use the properties of ¸ to carry

over the construction of stochastic integrals of continuous functions with respect to classical

Lévy processes to a corresponding integral with respect to free Lévy processes. We prove

then that the integral representation of a classically self-decomposable random variable also

holds, verbatim, in the free case. We end by mentioning the connection to Ornstein–

Uhlenbeck-type processes.

2. Preliminaries

The present section briefly reviews relevant background material on classical self-

decomposability, free independence and operator theory.

2.1. Self-decomposability in classical probability

Denoting, for the classical case, the classes of Gaussian, stable, self-decomposable and

infinitely divisible laws by G(�), S(�), L(�) and ID(�), we have the hierarchy

G(�) � S(�) � L(�) � ID(�): (2:1)

Briefly, the stable laws are those that occur as limiting distributions for n!1 of affine

transformations of sums X1 þ . . . þ Xn of independent and identically distributed random
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variables (subject to the assumption of uniform asymptotic neglibility). Dropping the

assumption of identical distribution, one arrives at the class L(�). Finally, the class ID(�) of

all infinitely divisible distributions consists of the limiting laws for sums of independent

random variables of the form Xn1 þ . . . þ Xnk n
(again subject to the assumption of uniform

asymptotic neglibility). An alternative characterization of self-decomposability says that (the

distribution of) a random variable Y is self-decomposable if and only if, for all c in ]0, 1[,

the characteristic function f of Y (i.e. the Fourier transform of the distribution of Y ) can be

factorized as

f (�) ¼ f (c�) f c(�), (2:2)

for some characteristic function f c (which then, as can be proved, necessarily corresponds to

an infinitely divisible random variable Yc). In other words, considering Yc as independent of

Y , we have a representation in law

Y ¼d cY þ Yc:

The latter formulation makes the idea of self-decomposability of immediate appeal from the

viewpoint of mathematical modelling. Yet another key characterization is given by the

following result which was first proved by Wolfe (1982) and later generalized and

strengthened by Jurek and Verwaat (1983; cf. also Jurek and Mason, 1993, Theorem 3.3.6): a

random variable Y has law in L(�) if and only if Y has a representation of the form

Y ¼d
ð1

0

e� t dX t, (2:3)

where X t is a Lévy process satisfying Eflog(1þ jX 1j)g ,1. The process X ¼ (Xt) t>0 is

termed the background driving Lévy process corresponding to Y .

We mention next how the self-decomposable measures on R are characterized in terms of

their Lévy–Khinchine representation. Recall that a probability measure � on R (with the

Borel � -algebra) is infinitely divisible if and only if its characteristic function f � has a

representation (the Lévy–Khinchine representation) of the form

log f �(u) ¼ iªuþ
ð
R

eiut � 1� iut

1þ t2

� �
1þ t2

t2
� (dt), u 2 R, (2:4)

where ª is a real constant and � is a finite measure on R. In that case, the pair (ª, � ) is

uniquely determined.

Definition 2.1. Let � be an infinitely divisible probability measure on R, and let ª and � be

respectively the (uniquely determined) real constant and finite measure on R appearing in

(2.4). We then say that the pair (ª, � ) is the generating pair for �.

In the literature, there are several alternative ways of writing the above representation. In

recent literature, the following version seems to be preferred (see, for example, Sato 1999):

log f �(u) ¼ iª9u� 1
2
au2 þ

ð
R

(eiut � 1� iut1[�1,1](t)) r(dt), u 2 R, (2:5)
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where ª9 is a real constant, a is a non-negative constant and r is a measure on R satisfying

the conditions

r(f0g) ¼ 0 and

ð
R

minf1, t2g r(dt) ,1,

i.e. r is a Lévy measure. The relationship between the two representations (2.4) and (2.5) is

as follows:

a ¼ � (f0g),

r(dt) ¼ 1þ t2

t2
� 1Rnf0g(t) � (dt),

ª9 ¼ ªþ
ð
R

t 1[�1,1](t)� 1

1þ t2

� �
r(dt):

Now, it follows from Sato (1999, Corollary 15.11) that a probability measure � on R is

self-decomposable if and only if its Lévy measure is of the form

r(dt) ¼ k(t)

jtj dt,

where k: R! R is a non-negative function which is increasing on ]�1, 0[ and decreasing

on ]0, 1[.

In this paper we shall use mostly the representation (2.4); however, we have also included

(2.5) since some of the results we refer to in Section 6 are formulated in terms of that

representation.

The class of classically self-decomposable distributions is wide and includes many special

cases of theoretical and applied interest. Among the probability laws on the positive half-

line, all those which are convolutions of gamma distributions and limit laws of such con-

volutions are self-decomposable. This group of distributions is referred to as generalized

gamma convolutions and it has been extensively studied by Bondesson (1992). (It is

noteworthy, in the present context, that Bondesson uses Pick functions, which are essentially

Cauchy transforms, as a major tool in his investigations.) An important class of generalized

Gamma convolutions are the generalized inverse Gaussian distributions. Assume that º 2 R

and ª, � 2 [0, 1[ satisfy the following conditions: º , 0) � . 0; º ¼ 0) ª, � . 0; and

º . 0) ª . 0. Then the generalized inverse Gaussian distribution GIG(º, �, ª) is the

distribution on Rþ with density (with respect to Lebesgue measure) given by

g(t; º, �, ª) ¼ (ª=�)º

2Kº(�ª)
t º�1 expf�1

2
(�2 t�1 þ ª2 t)g, t > 0,

where Kº is the modified Bessel function of the third kind and with index º. For all º, �, ª
(subject to the above restrictions) GIG(º, �, ª) is self-decomposable, and it is not stable

unless º ¼ �1
2

and ª ¼ 0. For special choices of the parameters, one obtains the gamma

distributions (and hence the exponential and �2 distributions), the inverse Gaussian
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distributions, the reciprocal inverse Gaussian distributions1 and the reciprocal gamma

distributions. As concerns distributions on the whole real line, a particularly important group

of examples are the marginal laws of subordinated Brownian motion with drift, when the

subordinator process is generated by one of the generalized gamma convolutions. The

induced self-decomposability of the marginals follows from a recent result due to Sato

(2000).

There is an extensive literature on the theory and applications of stable laws. A standard

reference for the theoretical properties is Samorodnitsky and Taqqu (1994), but see also

Feller (1971) and Barndorff-Nielsen et al. (2001). In comparison, work on self-

decomposability has until recently been somewhat limited. However, a comprehensive

account of the theoretical aspects of self-decomposability, and indeed of infinte divisibility

in general, is now available in Sato (1999). Applications of self-decomposability are

discussed, inter alia, in Brockwell et al. (1982), Barndorff-Nielsen (1998) and Barndorff-

Nielsen and Shephard (2001a; 2001b).

2.2. Free independence

Free probability is the term given to the combination of the concept of free independence

with non-commutative probability (see Voiculescu 2000). Non-commutative probability is a

field of study of probabilistic structures arising out of quantum mechanics. It is not necessary

for present purposes to delineate the field further. However, we do need the precise definition

of free independence.

Let H be a (complex) Hilbert space and let B(H) denote the vector space of continuous

linear mappings (or operators) a: H ! H. Consider further a state on B(H), i.e. a positive

linear functional �: B(H)! C such that �(1) ¼ 1, where 1 is the identity mapping on H.2

Given any self-adjoint operator a in B(H), the spectrum sp(a) is contained in R, and there

exists a unique probability measure �a on R, concentrated on sp(a), satisfying

�( f (a)) ¼
ð
R

f (t) �a(dt), (2:6)

for all bounded Borel functions f on R. The measure �a is called the (spectral) distribution of

a with respect to �, and we shall also use the notation Lfag (the law of a) for �a.

We say that operators a1, . . . , ar in B(H) are freely independent with respect to � if they

satisfy the following condition: for any p in N and i1, . . . , ip in f1, . . . , rg with

i1 6¼ i2, . . . , ip�1 6¼ ip, we have that

�(Q1(ai1 ) � � � Qp(aip
)) ¼ 0,

for all polynomials Q1, . . . , Qp in one variable such that

1 The inverse Gaussian distributions and the reciprocal inverse Gaussian distributions are, respectively, the first and
last passage-time distributions to a constant level by Brownian motion with drift.
2 In quantum physics, � is of the form �(a) ¼ tr (ra), where r is a trace class self-adjoint operator on H with trace
1 which expresses the state of a quantum system, and a would be an observable, i.e. a self-adjoint operator on H,
the mean value of the outcome of observing a being �(a) ¼ tr frag:
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�(Q1(ai1 )) ¼ . . . ¼ �(Qp(aip
)) ¼ 0:

The relevance of this definition should be evident from the connection to the study of random

matrices mentioned in Section 1. In several respects, free independence is conceptually

similar to classical independence. For example, if a1, a2, . . . , ar are freely independent

operators and k 2 f1, 2, . . . , r � 1g, then any polynomial in a1, . . . , ak is freely independent

of any polynomial in akþ1, . . . , ar.

2.3. Free additive convolution and the Voiculescu transform

From a probabilistic point of view, free additive convolution may be considered merely as a

new type of convolution on the set of probability measures on R. Let a and b be self-adjoint

operators in B(H) and note that aþ b is also self-adjoint. Denote the (spectral) distributions

of a, b and aþ b by �a, �b and �aþb. If a and b are freely independent, it is not hard to see

that the moments of �aþb (and hence �aþb itself ) are uniquely determined by �a and �b.

Hence we may write �a uþ �b instead of �aþb, and we say that �a uþ �b is the free additive3

convolution of �a and �b.

Since the distribution �a of a self-adjoint operator a in B(H) is a compactly supported

probability measure on R, the definition of free additive convolution, stated above, works at

most for all compactly supported probability measures on R. On the other hand, given any

two compactly supported probability measures �1 and �2 on R, it follows from a free

product construction (see Voiculescu et al. 1992) that it is always possible to find a Hilbert

space H, a state � on B(H) and freely independent, self-adjoint operators a, b in B(H),

such that a and b have distributions �1 and �2, respectively. Thus, the operation uþ
introduced above is, in fact, defined on all compactly supported probability measures on R.

To extend this operation to all probability measures on R, one needs to consider unbounded

self-adjoint operators in a Hilbert space, and then to proceed with a construction similar to

that described above. We postpone a detailed discussion of this matter to Section 2.5 (see

Remark 2.14), since, for our present purposes, it is possible to study free additive

convolution by virtue of the Voiculescu transform, which we introduce next (in fact, one

may even define free additive convolution in terms of the Voiculescu transform; see

Voiculescu 2000).

By Cþ (C�) we denote the set of complex numbers with strictly positive (strictly nega-

tive) imaginary part.

Let � be a probability measure on R, and consider its Cauchy (or Stieltjes) transform

G�: Cþ ! C� given by

G�(z) ¼
ð
R

1

z� t
�(dt), z 2 Cþ:

Then define the mapping F�: Cþ ! Cþ by

3 The reason for the term ‘additive’ is that there exists another convolution operation called free multiplicative
convolution, which arises naturally out of the non-commutative setting (i.e. the non-commutative multiplication of
operators). In the present paper we do not consider free multiplicative convolution.
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F�(z) ¼ 1

G�(z)
, z 2 Cþ,

and note that F� is analytic on Cþ. It was proved by Bercovici and Voiculescu (1993,

Proposition 5.4 and Corollary 5.5) that there exist positive numbers � and M, such that F�

has an (analytic) right inverse F�1
� defined on the region

�̂,M :¼ fz 2 Cj jRe(z)j < � Im(z), Im(z) . Mg:

In other words, there exists an open subset G�,M of Cþ such that F� is injective on G�,M and

such that F�(G�,M ) ¼ �̂,M .

Now the Voiculescu transform �� of � is defined by

��(z) ¼ F�1
� (z)� z,

on any region of the form �̂,M , where F�1
� is defined. It follows from (Bercovici and

Voiculescu 1993, Corollary 5.3) that Im(F�1
� (z)) < Im(z) and hence Im(��(z)) < 0 for all z

in �̂,M .

The Voiculescu transform �� should be viewed as a modification of Voiculescu’s

R-transform (see, for example, Voiculescu et al. 1992), since we have the correspondence

��(z) ¼ R�
1

z

� �
:

A third variant, which seems worth considering (see Remark 4.3 below), is the free

cumulant tranform, given by

C�(z) ¼ zR�(z) ¼ z��
1

z

� �
: (2:7)

The key property of the Voiculescu transform is the following important result, which

shows that the Voiculescu transform can be viewed as a free analogue of the classical

cumulant function (the logarithm of the characteristic function); see also Remark 4.3 below.

The result was first proved by Voiculescu (1986) for probability measures with compact

support, and then by Maassen (1992) in the case where the measures have variance. Finally,

Bercovici and Voiculescu (1993) proved the general case.

Theorem 2.2. Let �1 and �2 be probability measures on R, and consider their free additive

convolution �1 uþ �2. Then

��1 uþ �2
(z) ¼ ��1

(z)þ ��2
(z),

for all z in any region �̂,M where all three functions are defined.

Remark 2.3. We shall need the fact that a probability measure on R is uniquely determined

by its Voiculescu transform. To see this, suppose � and �9 are probability measures on R,

such that �� ¼ ��9 on a region �̂,M . It follows then that F� ¼ F�9 on some open subset of

Cþ, and hence (by analytic continuation), F� ¼ F�9 on all of Cþ. Consequently, � and �9
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have the same Cauchy (or Stieltjes) transform, and by the Stieltjes inversion formula (see, for

example, Chihara 1978, p. 90), this means that � ¼ �9.

Bercovici and Voiculescu (1993, Proposition 5.6) proved the following characterization of

Voiculescu transforms:

Theorem 2.4. Let � be an analytic function defined on a region �̂,M , for some positive

numbers � and M. Then the following assertions are equivalent:

(i) There exists a probability measure � on R, such that �(z) ¼ ��(z) for all z in a

domain �̂,M9, where M9 > M .

(ii) There exists a number M9 greater than or equal to M, such that:

(a) Im(�(z)) < 0 for all z in �̂,M9;

(b) �(z)=z! 0, as jzj ! 1, z 2 �̂,M ;

(c) for any positive integer n and any points z1, . . . , zn in �̂,M , the n 3 n matrix

zj � zk

zj þ �(zj)� zk � �(zk))

" #
1< j,k<n

is positive definite.

Recall that a sequence (�n) of finite measures on R is said to converge weakly to a finite

measure � on R if ð
R

f (t) �n(dt)!
ð
R

f (t) � (dt), as n!1, (2:8)

for any bounded continuous function f : R! C. In that case, we write �n !
w

� , as n!1.

Remark 2.5. For later use, we note that since the convergence in (2.8) is with respect to a

metric, it follows immediately from the above definition that �n !
w

� if and only if any

subsequence (� n9) has a subsequence (�n 0) which converges weakly to � . This follows also

from the fact that weak convergence can be viewed as convergence with respect to certain

metric on the set of bounded measures on R (the Lévy metric).

The relationship between weak convergence of probability measures and the Voiculescu

transform was settled in (Bercovici and Voiculescu 1993, Proposition 5.7) and (Bercovici

and Pata 1996, Proposition 1):

Proposition 2.6. Let (�n) be a sequence of probability measures on R. Then the following

assertions are equivalent:

(i) The sequence (�n) converges weakly to a probability measure � on R.

(ii) There exist positive numbers � and M, and a function �, such that all the functions

�, ��n
are defined on �̂,M , and such that:
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(a) ��n
(z)! �(z), as n!1, uniformly on compact subsets of �̂,M ;

(b) supn2Nj��n
(z)=zj ! 0, as jzj ! 1, z 2 �̂,M .

(iii) There exist positive numbers � and M, such that all the functions ��n
are defined on

�̂,M , and such that:

(a) limn!1 ��n
(iy) exists for all y in [M , 1[;

(b) supn2Nj��n
(iy)=yj ! 0, as y!1.

If conditions (i)–(iii) are satisfied, then � ¼ �� on �̂,M .

Remark 2.7. Cumulants I. Under the assumption of finite moments of all orders, both

classical and free convolution can be handled completely by a combinatorial approach based

on cumulants. Suppose, for simplicity, that � is a compactly supported probability measure

on R. Then for n 2 N, the classical cumulant cn of � may be defined as the nth derivative at

0 of the cumulant transform log f �. In other words, we have the Taylor expansion

log f �(z) ¼
X1
n¼1

cn

n!
z n:

Consider further the sequence (mn)n2N0
of moments of �. Then the sequence (mn) is uniquely

determined by the sequence (cn) (and vice versa). The formulae determining mn from (cn) are

generally quite complicated. However, by viewing the sequences (mn) and (cn) as

multiplicative functions M and C on the lattice of all partitions of f1, 2, . . . , ng, n 2 N

(see, for example, Speicher 1997), the relationship between (mn) and (cn) can be elegantly

expressed by the formula

C ¼ M ? Moeb,

where Moeb denotes the Möbius transform and where ? denotes combinatorial convolution

of multiplicative functions on the lattice of all partitions (see Speicher 1997; Rota 1964; or

Barndorff-Nielsen and Cox 1989).

The free cumulants (kn) of � were introduced by Speicher (1994). They may similarly be

defined as the coefficients in the Taylor expansion of the free cumulant transform C�:

C�(z) ¼
X1
n¼1

knz n

(see (2.7)). Viewing (kn) and (mn) as multiplicative functions k and m on the lattice of all

non-crossing partitions of f1, 2, . . . , ng, n 2 N, the relationship between (kn) and (mn) is

expressed by exactly the same formula,

k ¼ m ? Moeb, (2:9)

where now ? denotes combinatorial convolution of multiplicative functions on the lattice of

all non-crossing partitions (see Speicher 1997).

For a family a1, a2, . . . , ar of self-adjoint operators in B(H) and a state � on B(H), it is

also possible to define generalized cumulants which are related to the family of all mixed

moments (with respect to �) of a1, a2, . . . , ar by a formula similar to (2.9) (see, for

example, Speicher 1997). In terms of these multivariate cumulants, free independence of
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a1, a2, . . . , ar has a rather simple formulation, and using this formulation, Speicher (1994)

gave a simple and completely combinatorial proof of the fact that the free cumulants (and

hence the free cumulant transform) linearize free convolution. A treatment of the theory of

classical multivariate cumulants can be found in Barndorff-Nielsen and Cox (1989).

2.4. Infinite divisibility with respect to free additive convolution

In this subsection we recall the definition and some basic facts about infinite divisibility with

respect to free additive convolution. By complete analogy with the classical case, a pro-

bability measure � on R is uþ-infinitely divisible if, for any n 2 N, there exists a probability

measure �n on R, such that

� ¼ �n uþ �n uþ � � � uþ �n|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
n terms

:

It was proved in Pata (1996) that the class ID(uþ) of uþ-infinitely divisible probability

measures on R is closed with respect to weak convergence. For the corresponding classical

result, see Gnedenko and Kolmogorov (1968, }17, Theorem 3). As in classical probability,

uþ-infinitely divisible probability measures are characterized as those probability measures

that have a (free) Lévy–Khinchine representation:

Theorem 2.8. (Voiculescu 1986; Maassen 1992; Bercovici and Voiculescu 1993). Let � be a

probability measure on R. Then � is uþ-infinitely divisible if and only if there exist a finite

measure � on R and a real constant ª, such that

��(z) ¼ ªþ
ð
R

1þ tz

z� t
� (dt) (2:10)

¼ ªþ
ð
R

1

z� t
þ t

1þ t2

� �

(dt), z 2 Cþ, (2:11)

where 
(dt) ¼ (1þ t2)� (dt). Moreover, for a uþ-infinitely divisible probability measure � on

R, ª and � are uniquely determined.

Proof. Note first that (2.11) follows from (2.10) and the elementary formula

1þ tz

(z� t)(1þ t2)
¼ 1

z� t
þ t

1þ t2
:

The equivalence between uþ-infinite divisibility and the existence of a representation in the

form (2.10) was proved (in the general case) by Bercovici and Voiculescu (1993, Theorem

5.10). They first proved that � is uþ-infinitely divisible if and only if �� has an extension to a

holomorphic function of the form �: Cþ ! C� [ R, i.e. a Pick function multiplied by �1.

Equation (2.10) (and its uniqueness) then follows from the existence (and uniqueness) of the

integral representation of Pick functions (see Donoghue 1974, Chapter 2, Theorem I).

Compared to the general integral representation for Pick functions just referred to, there is a
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linear term missing on the right-hand side of (2.10), but this corresponds to the fact that

�(iy)=y! 0, as y!1, if � is a Voiculescu transform (cf. Theorem 2.4 above). h

Definition 2.9. Let � be a uþ-infinitely divisible probability measure on R, and let ª and � be

respectively the (uniquely determined) real constant and finite measure on R appearing in

(2.10). We then say that the pair (ª, � ) is the free generating pair for �.

The next result, due to Bercovici and Pata (2000), is the free analogue of Khinchine’s

characterization of classically infinitely divisible probability measures. It plays an important

role in Section 4 of the present paper.

Definition 2.10. Let (kn)n2N be a sequence of positive integers, and let

A ¼ f�njjn 2 N, j 2 f1, 2, . . . , kngg
be an array of probability measures on R. We say that A is a null array if the following

condition is fulfilled:

8E . 0: lim
n!1

max
1< j<kn

�nj(Rn[�E, E]) ¼ 0:

Theorem 2.11. Let f�njjn 2 N, j 2 f1, 2, . . . , kngg be a null array of probability measures

on R, and let (cn)n2N be a sequence of real numbers. Let �cn
denote the Dirac measure at cn.

If the probability measures �n ¼ �c n
uþ �n1 uþ �n2 uþ � � � uþ �nk n

converge weakly, as

n!1, to a probability measure � on R, then � has to be uþ-infinitely divisible.

We recall, finally, the definition of uþ-stable probability measures. For a probability

measure � on R, we denote by T (�) the type of �, i.e. the class of probability measures on

R given by

T (�) ¼ fł(�) jł: R! R is an increasing affine transformationg:
Exactly as in classical probability theory, a probability measure � on R is called uþ-stable if

the class T (�) is closed under uþ. We denote by S(uþ) the class of uþ-stable probability

measures on R.

As was noted in Bercovici and Voiculescu (1993, Section 7), uþ-stability implies uþ-

infinite divisibility, i.e. we have the inclusion S(uþ) � ID(uþ), just as in the classical case.

2.5. Unbounded operators affiliated with a W�-probability space

In this section we give, for the reader’s convenience, a brief account of the theory of closed,

densely defined operators affiliated with a finite von Neumann algebra. We start by

introducing von Neumann algebras. For a detailed introdution to von Neumann algebras, we

refer to Kadison and Ringrose (1983; 1986), but Nelson (1974) also has a nice short

introduction to the subject. For background material on unbounded operators, see Rudin

(1991).
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Let H be a Hilbert space, and consider, as in Section 2.3, the vector space B(H) of

bounded (or continuous) operators a: H ! H. Recall that composition of operators con-

stitutes a multiplication on B(H), and that the adjoint operation a 7! a� is an involution on

B(H) (i.e. (a�)� ¼ a). Altogether B(H) is a �-algebra. (Throughout this section, the � refers

to the adjoint operation and not to classical convolution.) For any subset S of B(H), we

denote by S9 the commutant of S, i.e.

S9 ¼ fb 2 B(H) j by ¼ yb for all y in Sg:

A von Neumann algebra acting on H is a subalgebra of B(H) which contains the

multiplicative unit 1 of B(H), and which is closed under the adjoint operation and closed in

the weak operator topology (see Kadison and Ringrose 1983, Definition 5.1.1). By von

Neumann’s fundamental double commutant theorem, a von Neumann algebra may also be

characterized as a subset A of B(H), which is closed under the adjoint operation and equals

the commutant of its commutant: A 0 ¼ A.

A trace (or tracial state) on a von Neumann algebra A is a postive linear functional

�: A ! C, satisfying �(1) ¼ 1 and �(ab) ¼ �(ba) for all a, b in A. We say that � is a

normal trace on A if, in addition, � is continuous with respect to the weak operator

topology on the unit ball of A. We say that � is faithful if �(a�a) . 0 for any non-zero

operator a in A.

Throughout this paper, we shall use the terminology W �- probability space for a pair

(A, �) where A is a von Neumann algebra acting on a Hilbert space H, and �: A ! C is a

faithful normal tracial state on A. In the remaining part of this subsection, (A, �) denotes a

W �-probability space acting on the Hilbert space H.

By a linear operator in H we shall mean a (not necessarily bounded) linear operator

a: D(a)! H, defined on a subspace D(a) of H. For an operator a in H, we say that:

• a is densely defined if D(a) is dense in H;

• a is closed if the graph G(a) ¼ f(h, ah) j h 2 D(a)g of a is a closed subspace of

H+H;

• a is preclosed if the norm closure G(a) is the graph of a (uniquely determined)

operator, denoted [a], in H;

• a is affiliated with A if au ¼ ua for any unitary operator u in the commutant A9.

If a is bounded, a is affiliated with A if and only if a 2 A. In general, a self-adjoint operator

a in H is affiliated with A if and only if f (a) 2 A for any bounded Borel function f : R! C

(here f (a) is defined in terms of spectral theory). As in the bounded case, if a is a self-

adjoint operator affiliated with A, there exists a unique probability measure �a on R,

concentrated on the spectrum sp(a), and satisfyingð
R

f (t) �a(dt) ¼ �( f (a)),

for any bounded Borel function f : R! C. We call �a the (spectral) distribution of a, and

we shall denote it also by Lfag. Unless a is bounded, sp(a) is an unbounded subset of R and,

in general, �a is not compactly supported.

By A we denote the set of closed, densely defined operators in H which are affiliated
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with A. In general, dealing with unbounded operators is somewhat unpleasant, compared to

the bounded case, since one needs constantly to take the domains into account. However,

the following two important propositions (cf. Nelson 1974) allow us to deal with operators

in A in a quite relaxed manner.

Proposition 2.12. Let (A, �) be a W�-probability space. If a, b 2 A, then aþ b and ab are

densely defined, preclosed operators affiliated with A, and their closures [aþ b] and [ab]

belong to A. Furthermore, a� 2 A.

By virtue of the proposition above, the adjoint operation may be restricted to an

involution on A, and we may define operations, the strong sum and the strong product, on

A, as follows:

(a, b) 7! [aþ b] and (a, b) 7! [ab], a, b 2 A:

Proposition 2.13. Let (A, �) be a W�-probability space. Equipped with the adjoint operation

and the strong sum and product, A is a �-algebra.

The effect of the above proposition is that, with respect to the adjoint operation and the

strong sum and product, we can work with operators in A without worrying about domains

etc. So, for example, we have rules like

[[aþ b]c] ¼ [[ac]þ [bc]], [aþ b]� ¼ [a� þ b�], [ab]� ¼ [b�a�],

for operators a, b, c in A. Note, in particular, that the strong sum of two self-adjoint

operators in A is again a self-adjoint operator. In the following, we shall omit the brackets in

the notation for the strong sum and product, and it will be understood that all sums and

products are formed in the strong sense.

Remark 2.14. If a1, a2, . . . , ar are self-adjoint operators in A, we say that a1, a2 . . . , ar are

freely independent if, for any bounded Borel functions f 1, f 2, . . . , f r: R! R, the bounded

operators f 1(a1), f2(a2), . . . , f r(ar) in A are freely independent in the sense defined in

Section 2.2. Given any two probability measures �1 and �2 on R, it follows from a free

product construction (see Voiculescu et al. 1992), that one can always find a W �-probability

space (A, �) and freely independent self-adjoint operators a and b affiliated with A, such that

�1 ¼ Lfag and �2 ¼ Lfbg. As noted above, for such operators aþ b is again a self-adjoint

operator in A, and, as was proved in Bercovici and Voiculescu 1993, Theorem 4.6), the

(spectral) distribution Lfaþ bg depends only on �1 and �2. We may thus define the free

additive convolution �1 uþ �2 of �1 and �2 to be Lfaþ bg.

Next, we shall equip A with a topology, the so-called measure topology, which was

introduced by Segal (1953) and later studied by Nelson (1974). For any positive numbers E,
�, we denote by N (E, �) the set of operators a 2 A for which there exists an orthogonal

projection p in A, satisfying

p(H) � D(a), kapk < E, �( p) > 1� �: (2:12)
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Definition 2.15. Let (A, �) be a W�-probability space. The measure topology on A is the

topology on A for which the sets N (E, �), E, � . 0, form a neighbourhood basis for 0.

It is clear from the definition of the sets N (E, �) that the measure topology satisfies the

first axiom of countability. In particular, all convergence statements can be expressed in

terms of sequences rather than nets.

Proposition 2.16. (cf. Nelson, 1974). Let (A, �) be a W�-probability space and consider the

�-algebra A.

(i) Scalar multiplication, the adjoint operation and strong sum and product are all

continuous operations with respect to the measure topology. Thus, A is a topological

�-algebra with respect to the measure topology.

(ii) The measure topology on A is a complete Hausdorff topology.

We shall note, next, that the measure topology on A is, in fact, the topology for

convergence in probability. Recall, first, that for a closed, densely defined operator a in H,

we put jaj ¼ (a�a)1=2. In particular, if a 2 A, then jaj is a self-adjoint operator in A (see

Kadison and Ringrose 1986, Theorem 6.1.11), and we may consider the probability measure

Lfjajg on R.

Definition 2.17. Let (A, �) be a W�-probability space and let a and an, n 2 N, be operators

in A. We say that an ! a in probability, as n!1, if jan � aj ! 0 in distribution, i.e. if

Lfjan � ajg ! �0 weakly.

If a and an, n 2 N, are self-adjoint operators in A, then, as noted above, an � a is self-

adjoint for each n, and Lfjan � ajg is the transformation of Lfan � ag by the mapping

t 7! jtj, t 2 R. In this case, it follows thus that an ! a in probability if and only if

an � a! 0 in distribution, i.e. if and only if Lfan � ag ! �0 weakly.

From the definition of Lfjan � ajg, it follows immediately that we have the following

characterization of convergence in probability:

Lemma 2.18. Let (A, �) be a W�-probability space and let a and an, n 2 N, be operators in

A. Then an ! a in probability if and only if

8E . 0: �[1]E,1[(jan � aj)]! 0, as n!1:

Proposition 2.19. (cf. Terp 1981). Let (A, �) be a W�-probability space. Then for any

positive numbers E, �, we have

N (E, �) ¼ fa 2 Aj � [1]E,1[(jaj)] < �g, (2:13)

where N (E, �) is defined via (2.12). In particular, a sequence an in A converges, in the

measure topology, to an operator a in A if and only if an ! a in probability.

Proof. The last statement of the proposition follows immediately from (2.13) and Lemma
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2.18. To prove (2.13), note first that by considering the polar decomposition of an operator a

in A (cf. Kadison and Ringrose 1986, Theorem 6.1.11), it follows that N (E, �) ¼
fa 2 A j jaj 2 N (E, �)g. From this, the inclusion , in (2.13) follows easily. Regarding the

reverse inclusion, suppose a 2 N (E, �), and let p be a projection in A, such that (2.12) is

satisfied with a replaced by jaj. Then, using spectral theory, it can be shown that the ranges

of the projections p and 1]E,1[(jaj) only have 0 in common. This implies that

�[1]E,1[(jaj)] < �(1� p) < �. We refer to Terp (1981) for further details. h

Finally, we shall need the fact that convergence in probability also implies convergence

in distribution in the non-commutative setting. The key point in the proof given below is

that weak convergence can be expressed in terms of the Cauchy transform (cf. Maassen

1992, Theorem 2.5).

Proposition 2.20. Let (an) be a sequence of self-adjoint operators affiliated with a

W�-probability space (A, �), and assume that an converges in probability, as n!1, to a

self-adjoint operator a affiliated with (A, �). Then an ! a in distribution too, i.e.

Lfang !
w Lfag, as n!1.

Proof. Let x, y be real numbers such that y . 0, and put z ¼ xþ iy. Then define the

function f z: R! C by

f z(t) ¼ 1

t � z
¼ 1

(t � x)� iy
, t 2 R,

and note that f z is continuous and bounded with sup t2Rj f z(t)j ¼ y�1. Thus, we may consider

the bounded operators f z(an), f z(a) 2 A. Note then that (using strong products and sums),

f z(an)� f z(a) ¼ (an � z1)�1 � (a� z1)�1

¼ (an � z1)�1((a� z1)� (an � z1))(a� z1)�1 (2:14)

¼ (an � z1)�1(a� an)(a� z1)�1:

Now, given any positive numbers E, �, we may choose N 2 N such that an � a 2 N (E, �),

whenever n > N. Moreover, since k f z(an)k, k f z(a)k < y�1, we have that f z(an), f z(a)

2 N (y�1, 0). Using the rule N (E1, �1)N (E2, �2) � N (E1E2, �1 þ �2), which holds for all E1, E2

in ]0, 1[ and �1, �2 in [0, 1[ (see Nelson 1974, formula 179), it follows from (2.14) that

f z(an)� f z(a) 2 N (Ey�2, �) whenever n > N. We may thus conclude that f z(an)! f z(a) in

the measure topology, i.e. that Lfj f z(an)� f z(a)jg !w �0, as n!1. Using the Cauchy–

Schwarz inequality for �, it now follows that

j�( f z(an)� f z(a))j2 < �(j f z(an)� f z(a)j2) � �(1) ¼
ð1

0

t2Lfj f z(an)� f z(a)jg(dt)! 0,

as n!1, since supp(Lfj f z(an)� f z(a)jg) � [0, 2y�1] for all n, and since t 7! t2 is a

continuous bounded function on [0, 2y�1].
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Finally, let Gn and G denote the Cauchy transforms for Lfang and Lfag, respectively.

From what we have established above, it follows that

Gn(z) ¼ ��( f z(an))! ��( f z(a)) ¼ G(z), as n!1,

for any complex number z ¼ xþ iy for which y . 0. By Maassen (1992, Theorem 2.5), this

means that Lfang !
w Lfag, as desired. h

3. The Bercovici–Pata bijection

The bijection defined next was introduced by Bercovici and Pata (1999).

Definition 3.1. By the Bercovici–Pata bijection ¸: ID(�)! ID(uþ) we denote the mapping

defined as follows. Let � be a measure in ID(�), and consider its generating pair (ª, �) (see

Definition 2.1). Then ¸(�) is the measure in ID(uþ) that has (ª, �) as free generating pair

(see Definition 2.9).

Since the �-infinitely divisible (uþ-infinitely divisible) probability measures on R are

exactly those measures that have a unique Lévy–Khinchine representation (unique free

Lévy–Khinchine representation), it follows immediately that ¸ is a well-defined bijection

between ID(�) and ID(uþ). In this section we shall study some of the algebraic and

topological properties of ¸.

Let 
 be a measure on R. Then for any constant c in Rnf0g, we denote by Dc
 the

measure on R given by

Dc
(B) ¼ 
(c�1 B),

for any Borel set B. Moreover, we put D0
 ¼ �0, the Dirac measure at 0. Thus, using

integration terminology, we have Dc
(dt) ¼ 
(c�1dt), whenever c 6¼ 0.

The following lemma is contained (implicitly) in Feller (1971, Section XVII.8). Since the

lemma plays an important role in the proof of Theorem 3.5 below, and for the sake of

completeness, we include a proof.

Lemma 3.2. Let � be a �-infinitely divisible probability measure on R with Lévy–Khinchine

representation given by

log f �(u) ¼ iªuþ
ð
R

eiut � 1� iut

1þ t2

� �
1þ t2

t2
� (dt)

¼ iªuþ
ð
R

eiut � 1� iut

1þ t2

� �
1

t2

(dt), u 2 R,

where ª is a real constant, � is a finite measure on R and (1þ t2)� (dt) ¼ 
(dt). Then for

any c in R the Lévy–Khinchine representation for Dc� is given by
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log f Dc�(u) ¼ ircuþ c2

ð
R

eiut � 1� iut

1þ t2

� �
1

t2
Dc
(dt)

¼ ircuþ
ð
R

eiut � 1� iut

1þ t2

� �
c2 þ t2

t2
Dc� (dt), u 2 R, (3:1)

where

rc ¼ ªcþ c(1� c2)

ð
R

t

1þ (ct)2
� (dt):

Proof. We note first that the second equality in (3.1) follows from the first by a standard

calculation. To prove the first equality in (3.1), note that for any u in R,

log f Dc�(u) ¼ log

ð
R

eiut Dc�(dt)

� �
¼ log

ð
R

eicut�(dt)

� �
¼ log f �(cu)

¼ iª(cu)þ
ð
R

ei(cu) t � 1� i(cu)t

1þ t2

� �
1

t2

(dt),

and that

c2

ð
R

eiut � 1� iut

1þ t2

� �
1

t2
Dc
(dt) ¼ c2

ð
R

eiu(ct) � 1� iu(ct)

1þ (ct)2

� �
1

(ct)2

(dt)

¼
ð
R

eicut � 1� icut

1þ (ct)2

� �
1

t2

(dt):

Therefore,

log f Dc�(u)� c2

ð
R

eiut � 1� iut

1þ t2

� �
1

t2
Dc
(dt)

¼ iªcuþ
ð
R

eicut � 1� icut

1þ t2

� �
� eicut � 1� icut

1þ (ct)2

� �" #
1

t2

(dt)

¼ iu ªcþ c

ð
R

t

1þ (ct)2
� t

1þ t2

� �
1

t2

(dt)

� �

¼ ircu,

where rc is a constant (not depending on u). Since

t

1þ (ct)2
� t

1þ t2
¼ (1� c2)t3

(1þ (ct)2)(1þ t2)
,

we find that
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rc ¼ ªcþ c

ð
R

(1� c2)t3

(1þ (ct)2)(1þ t2)

 !
1

t2

(dt) ¼ ªcþ c(1� c2)

ð
R

t

1þ (ct)2
� (dt),

and this completes the proof. h

Our next objective is to prove the free analogue of Lemma 3.2. We start with the

following:

Lemma 3.3. Let � be a probability measure on R, and let � and M be positive numbers such

that the Voiculescu transform �u is defined on �̂,M (see Section 2.3). Then, for any constant

c in Rnf0g, �Dc� is defined on jcj �̂,M ¼ �̂,jcjM , and:

(i) if c . 0, then �Dc�(z) ¼ c��(c�1z) for all z in c �̂,M ;

(ii) if c , 0, then �Dc�(z) ¼ c��(c�1z) for all z in jcj �̂,M .

In particular, for a constant c in [�1, 1], the domain of �Dc� contains the domain of ��.

Proof. (i) This is a special case of Bercovici and Voiculescu (1993, Lemma 7.1).

(ii) Note first that, by virute of (i), it suffices to prove (ii) in the case c ¼ �1. We start

by noting that the Cauchy transform G� (see Section 2.3) is actually well defined for all z

in CnR (even for all z outside supp( �)), and that G�(z) ¼ G�(z), for all such z. Similarly,

F� is defined for all z in CnR, and F�(z) ¼ F�(z), for such z.

Note next that, for any z in CnR, GD�1�
(z) ¼ �G�(�z), and consequently

FD�1�
(z) ¼ �F�(�z) ¼ �F�(�z):

Now, since � �̂,M ¼ �̂,M , it follows from the equation above, that FD�1�
has a right inverse

on �̂,M , given by F�1
D�1�

(z) ¼ �F�1
� (�z), for all z in �̂,M . Consequently, for z in �̂,M , we

have

�D�1�
(z) ¼ F�1

D�1�
(z)� z ¼ �F�1

� (�z)� z ¼ �(F�1
� (�z)� (�z)) ¼ ���(�z),

as desired. h

Lemma 3.4. Let � be a uþ-infinitely divisible probability measure on R with free Lévy–

Khinchine representation given by

��(z) ¼ ªþ
ð
R

1þ tz

z� t
� (dt) ¼ ªþ

ð
R

1

z� t
þ t

1þ t2

� �

(dt), z 2 Cþ,

where ª is a real constant, � is a finite measure on R and 
(dt) ¼ (1þ t2)� (dt). Then, for

any c in R, the free Lévy–Khinchine representation for Dc� is given by

�Dc�(z) ¼ rc þ c2

ð
R

1

z� t
þ t

1þ t2

� �
Dc
(dt)

¼ rc þ
ð
R

1þ tz

z� t

� �
c2 þ t2

1þ t2

� �
Dc� (dt), (3:2)
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where

rc ¼ ªcþ c(1� c2)

ð
R

t

1þ (ct)2
� (dt):

Proof. Note first that the second equality in (3.2) follows easily from the first by a standard

calculation.

We start by proving the first equality in (3.2) in the case where c . 0. Note for this case

that by Lemma 3.3,

�Dc�(z) ¼ c��(c�1z) ¼ cªþ c

ð
R

1

c�1z� t
þ t

1þ t2

� �

(dt)

¼ cªþ
ð
R

c2

z� ct
þ ct

1þ t2

� �

(dt):

Note next that

c2

ð
R

1

z� t
þ t

1þ t2

� �
Dc
(dt) ¼ c2

ð
R

1

z� ct
þ ct

1þ (ct)2

� �

(dt)

¼
ð
R

c2

z� ct
þ c3 t

1þ (ct)2

 !

(dt):

From the two calculations above, it follows that

�Dc�(z)� c2

ð
R

1

z� t
þ t

1þ t2

� �
Dc
(dt) ¼ cªþ

ð
R

ct

1þ t2
� c3 t

1þ (ct)2

 !

(dt) ¼ rc,

where rc is a constant (not depending on z). Using the equality

ct

1þ t2
� c3 t

1þ (ct)2
¼ c(1� c2)t

(1þ t2)(1þ (ct)2)
,

it now follows that

rc ¼ ªcþ
ð
R

c(1� c2)t

(1þ t2)(1þ (ct)2)

(dt) ¼ ªcþ c(1� c2)

ð
R

t

1þ (ct)2
� (dt): (3:3)

This completes the proof in the case c . 0.

It remains to consider the case where c 2 ]�1, 0]. Note here that the case c ¼ 0

follows trivially. We proceed to the case c ¼ �1. By Lemma 3.3, we obtain that
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�D�1�
(z) ¼ ���(�z) ¼ �ª�

ð
R

1

�z� t
þ t

1þ t2

� �

(dt)

¼ �ª�
ð
R

1

�z� t
þ t

1þ t2

� �

(dt)

¼ �ªþ
ð
R

1

z� (�t)
þ �t

1þ (�t)2

� �

(dt)

¼ �ªþ
ð
R

1

z� t
þ t

1þ t2

� �
D�1
(dt),

where we have used the fact that ª is real. The above calculation shows that the lemma holds

for c ¼ �1. Finally, for general c in ]�1, 0[, note that Dc� ¼ DjcjD�1�, and therefore, by

virtue of the cases c ¼ �1 and c . 0, it follows that

�Dc�(z) ¼ rc þ jcj2
ð
R

1

z� t
þ t

1þ t2

� �
DjcjD�1
(dt)

¼ rc þ c2

ð
R

1

z� t
þ t

1þ t2

� �
Dc
(t),

where (cf. (3.3)),

rc ¼ (�ª)jcj þ
ð
R

jcj(1� jcj2)t

(1þ t2)(1þ (jcjt)2)
D�1
(dt) ¼ ªcþ

ð
R

c(1� c2)t

(1þ t2)(1þ (ct)2)

(dt)

¼ ªcþ c(1� c2)

ð
R

t

1þ (ct)2
� (dt):

This concludes the proof. h

Theorem 3.5. The Bercovici–Pata bijection ¸: ID(�)! ID(uþ), has the following

(algebraic) properties:

(i) If �1, �2 2 ID(�), then ¸(�1 � �2) ¼ ¸(�1)uþ¸(�2).

(ii) If � 2 ID(�) and c 2 R, then ¸(Dc�) ¼ Dc¸(�).

(iii) For any constant c in R, we have ¸(�c) ¼ �c.

Proof. (i) For j in f1, 2g, let (ª j, � j) be the generating pair for � j (so that ª j is a real

constant and � j is a finite measure on R). Then since

log f �
1
��

2
(u) ¼ log f �

1
(u)þ log f �

2
(u),

it follows readily that the generating pair for �1 � �2 is (ª1 þ ª2, �1 þ �2). Similarly, since

the free generating pair for ¸(� j) is (ª j, � j), and since

�¸( �
1
)uþ¸( �

2
)(z) ¼ �¸( �

1
)(z)þ �¸( �

2
)(z),
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it follows that the free generating pair for ¸(�1)uþ¸(�2) is (ª1 þ ª2, �1 þ �2). By the

definition of ¸, it thus follows that ¸(�1 � �2) ¼ ¸(�1)uþ¸(�2), as desired.

(ii) Suppose � has generating pair (ª, � ). Then (ª, � ) is the free generating pair for

¸(�). Now, by Lemma 3.2, the generating pair for Dc� is (rc, (c2 þ t2)=(1þ t2) � Dc� (dt)),

where

rc ¼ ªcþ c(1� c2)

ð
R

t

1þ (ct)2
� (dt):

According to Lemma 3.4, that same pair is also the free generating pair for Dc¸(�). Hence,

by definition of ¸, ¸(Dc�) ¼ Dc¸(�), as desired.

(iii) This follows from the fact that (c, 0) is both the generating pair and the free

generating pair for �c. h

Corollary 3.6. The bijection ¸: ID(�)! ID(uþ) is invariant under affine transformations,

i.e. if � 2 ID(�) and ł: R! R is an affine transformation, then

¸(ł(�)) ¼ ł(¸(�)):

Proof. Let ł: R! R be an affine transformation, i.e. ł(t) ¼ ct þ d, t 2 R, for some

constants c, d in R. Then for a probability measure � on R, ł(�) ¼ Dc� � �d , and also

ł(�) ¼ Dc�uþ �d . Assume now that � 2 ID(�). Then by Theorem 3.5,

¸(ł(�)) ¼ ¸(Dc� � �d) ¼ Dc¸(�)uþ¸(�d) ¼ Dc¸(�)uþ �d ¼ ł(¸(�)),

as desired. h

As a consequence of the above corollary, we obtain a short proof of the following result,

which was proved by Bercovici and Pata (1999).

Corollary 3.7. The bijection ¸: ID(�)! ID(uþ) maps the �-stable probability measures on

R onto the uþ-stable probability measures on R.

Proof. Assume that � is a �-stable probability measure on R, and let ł1, ł2: R! R be

increasing affine transformations on R. Then ł1(�) � ł2(�) ¼ ł3(�), for yet another

increasing affine transformation ł3: R! R. Now by Corollary 3.6 and Theorem 3.5(i),

ł1(¸(�))uþł2(¸(�)) ¼ ¸(ł1(�))uþ¸(ł2(�)) ¼ ¸(ł1(�) � ł2(�))

¼ ¸(ł3(�)) ¼ ł3(¸(�)),

which shows that ¸(�) is uþ-stable.

The same line of argument shows that � is �-stable if ¸(�) is uþ-stable. h

We end this section by studying some topological properties of ¸. The key result is the

following theorem, which is the free analogue of a result due to B.V. Gnedenko (see

Gnedenko and Kolmogorov 1968, }19, Theorem 1).
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Theorem 3.8. Let � be a measure in ID(uþ), and let (�n) be a sequence of measures in

ID(uþ). For each n, let (ªn, � n) be the free generating pair for �n, and let (ª, � ) be the free

generating pair for �. Then the following two conditions are equivalent:

(i) �n!
w
�, as n!1.

(ii) ªn ! ª and � n!
w
� , as n!1.

Proof. First, assume that (ii) holds. By Theorem 2.6 it is sufficient to show that

(a) ��n
(iy)! �(iy), as n!1, for all y in ]0, 1[;

(b) supn2Nj��n
(iy)=yj ! 0, as y!1.

Regarding (a), note that for any y in ]0, 1[, the function t 7! (1þ tiy)=(iy� t), t 2 R, is

continuous and bounded. Therefore, by the assumptions in (ii),

��n
(iy) ¼ ªn þ

ð
R

1þ tiy

iy� t
� n(dt) �!

n!1
ªþ

ð
R

1þ tiy

iy� t
� (dt) ¼ ��(iy):

Turning to (b), note that for n 2 N and y 2 ]0, 1[,

��n
(iy)

y
¼ ªn

y
þ
ð
R

1þ tiy

y(iy� t)
� n(dt):

Since the sequence (ªn) is, in particular, bounded, it suffices to show that

sup
n2N

$$$$
ð
R

1þ tiy

y(iy� t)
� n(dt)

$$$$! 0, y!1: (3:4)

For this, note first that since � n!
w
� , as n!1, and since � (R) ,1, it follows by standard

techniques that the family f� njn 2 Ng is tight (cf. Breiman 1992, Corollary 8.11).

Note, next, that for any t in R and any y in ]0, 1[,$$$$ 1þ tiy

y(iy� t)

$$$$ < 1

y(y2 þ t2)1=2
þ jtj

(y2 þ t2)1=2
:

From this estimate it follows that

sup
y2[1,1[, t2R

$$$$ 1þ tiy

y(iy� t)

$$$$ < 2,

and that for any N 2 N and y 2 [1, 1[,

sup
t2[�N ,N ]

$$$$ 1þ tiy

y(iy� t)

$$$$ < N þ 1

y
:

From the two estimates above, it follows that for any N 2 N, and any y 2 [1, 1[, we have
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sup
n2N

$$$$
ð
R

1þ tiy

y(iy� t)
� n(dt)

$$$$ < N þ 1

y
sup
n2N

� n([�N , N ])þ 2 � sup
n2N

� n([�N , N ]c)

<
N þ 1

y
sup
n2N

� n(R)þ 2 � sup
n2N

� n([�N , N ]c): (3:5)

Now, given E in ]0, 1[, we may, since f� njn 2 Ng is tight, choose N 2 N, such that

supn2N� n([�N , N ]c) < E=4. Moreover, since � n!
w
� and � (R) ,1, the sequence

f� n(R)jn 2 Ng is, in particular, bounded, and hence, for the chosen N , we may sub-

sequently choose y0 2 [1, 1[ such that ((N þ 1)=y0) supn2N� n(R) < E=2. Using then the

estimate in (3.5), it follows that

sup
n2N

$$$$
ð
R

1þ tiy

y(iy� t)
� n(dt)

$$$$ < E,

whenever y > y0. This verifies (3.4).

Now suppose that (i) holds. Then by Theorem 2.6, there exists a number M 2 ]0, 1[,

such that:

(c) 8y 2 [M , 1[: ��n
(iy)! ��(iy), as n!1;

(d) supn2Nj��n
(iy)=yj ! 0, as y!1.

We show first that the family f� njn 2 Ng is conditionally compact with respect to weak

convergence, i.e. that any subsequence (ªn9) has a subsequence (� n 0) which converges weakly

to some finite measure �� on R. By Gnedenko and Kolmogorov (1968, }9, Theorem 3 bis), it

suffices to show that f� njn 2 Ng is tight, and that f� n(R)jn 2 Ng is bounded. They key step

in the argument is the observation that, for any n 2 N and any y 2 ]0, 1[, we have

�Im��n
(iy) ¼ �Im ªn þ

ð
R

1þ tiy

iy� t
� n(dt)

� �

¼ �Im

ð
R

1þ tiy

iy� t
� n(dt)

� �
¼ y

ð
R

1þ t2

y2 þ t2
� n(dt): (3:6)

We now show that f� njn 2 Ng is tight. For fixed y 2 ]0, 1[, note that

ft 2 Rj jtj > yg � t 2 Rj 1þ t2

y2 þ t2
>

1

2

( )
,

so that, for any n in N,

� n(ft 2 Rj jtj > yg) < 2

ð
R

1þ t2

y2 þ t2
� n(dt) ¼ �2Im

��n
(iy)

y

� �
< 2

$$$$��n
(iy)

y

$$$$:
Combining this estimate with (d), it follows immediately that f� njn 2 Ng is tight.

We next show that the sequence f� n(R)jn 2 Ng is bounded. Note first that, with M as in

(c), there exists a constant c 2 ]0, 1[, such that
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c <
M(1þ t2)

M2 þ t2
, for all t in R:

It follows, by (3.6), that, for any n in N,

c� n(R) <

ð
R

M(1þ t2)

M2 þ t2
� n(dt) ¼ �Im��n

(iM),

and therefore, by (c),

lim sup
n!1

� n(R) < lim sup
n!1

f�c�1 � Im��n
(iM)g ¼ �c�1 � Im��(iM) ,1,

which shows that f� n(R)jn 2 Ng is bounded.

Having established that the family f� njn 2 Ng is conditionally compact, recall next from

Remark 2.5 that in order to show that � n!
w
� , it suffices to show that any subsequence

(� n9) has a subsequence which converges weakly to � . A similar argument works, of

course, to show that ªn ! ª. So consider any subsequence (ªn9, � n9) of the sequence of

generating pairs. Since f� njn 2 Ng is conditionally compact, there is a subsequence (n 0)

of (n9), such that the sequence (� n 0) is weakly convergent to some finite measure �� on R.

Since the function t 7! (1þ tiy)=(iy� t) is continuous and bounded for any y 2 ]0, 1[, we

know that ð
R

1þ tiy

iy� t
� n 0(dt) �!

n!1

ð
R

1þ tiy

iy� t
��(dt),

for any y 2 ]0, 1[. At the same time, we know from (c) that

ªn 0 þ
ð
R

1þ tiy

iy� t
� n 0(dt) ¼ ��

n 0
(iy) �!

n!1
��(iy) ¼ ªþ

ð
R

1þ tiy

iy� t
� (dt),

for any y 2 [M , 1[. From these observations, it follows that the sequence (ªn 0) must

converge to some real number ª�, which then has to satisfy the identity

ª� þ
ð
R

1þ tiy

iy� t
��(dt) ¼ ��(iy) ¼ ªþ

ð
R

1þ tiy

iy� t
� (dt),

for all y 2 [M , 1[. By uniqueness of the free Lévy–Khinchine representation (cf. Theorem

2.8) and uniqueness of analytic continuation, it follows that we must have �� ¼ � and

ª� ¼ ª. We have thus verified the existence of a subsequence (ªn 0, � n 0) which converges

(coordinatewise) to (ª, � ) which was our objective. h

As an immediate consequence of Theorem 3.8 and the corresponding result in classical

probability, we obtain the following:

Corollary 3.9. The Bercovici–Pata bijection ¸: ID(�)! ID(uþ) is a homeomorphism with

respect to weak convergence. In other words, if � is a measure in ID(�) and (�n) is a

sequence of measures in ID(�), then �n!
w
�, as n!1, if and only if ¸(�n)!w ¸(�), as

n!1.
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Proof. Let (ª, � ) be the generating pair for � and, for each n, let (ªn, � n) be the generating

pair for �n.

Assume first that �n!
w
�. Then by Gnedenko and Kolmogorov (1968, }19, Theorem 1),

ªn ! ª and � n!
w
� . Since (ªn, � n) ((ª, � )) is the free generating pair for ¸(�n) (¸(�)), it

follows from Theorem 3.8 that ¸(�n)!w ¸(�).

The same argument applies to the converse implication. h

Remark 3.10. Cumulants II. Let � be a probability measure in ID(�) with moments of any

order, and consider its sequence (cn) of classical cumulants (cf. Remark 2.7). Then the

Bercovici–Pata bijection ¸ may also be defined as the mapping that sends � to the

probability measure on R with free cumulants (cn). In other words, the free cumulants for

¸(�) are the classical cumulants for �. This fact has recently been noted by Anshelevich

(2001b, Lemma 6.5). In view of the theory of free cumulants for several variables (cf.

Remark 2.7), this point of view might be used to generalize the Bercovici–Pata bijection to

multidimensional probability measures.

4. Self-decomposability in free probability

Recall from Section 2.1 that a probability measure � on R is �-self-decomposable if and only

if any (classical) random variable Y with distribution � has, for any c in ]0, 1[, a de-

composition in law of the form Y ¼d cY þ Yc, where Yc is a random variable which is

independent of Y . In view of this definition of �-self-decomposability, the natural definition

of the free counterpart must be as follows: � is uþ-self-decomposable if any self-adjoint

operator y with (spectral) distribution � admits, for any c in ]0, 1[, a decomposition in law of

the form y¼d cyþ yc, where yc is a self-adjoint operator which is freely independent of y. If

� has unbounded support, the self-adjoint operator y would have to be unbounded. We prefer,

at this point, to avoid dealing with unbounded operators, and instead to define uþ-self-

decomposability in terms of the measures themselves, rather than in terms of corresponding

operators. However, our definition of uþ-self-decomposability, to be given next, is equivalent

to the algebraic formulation stated above. Note that with the notation used in Section 3, a

probability measure � on R is �-self-decomposable if and only if it has, for any c in ]0, 1[, a

decomposition of the form � ¼ Dc� � �c, for some probability measure �c on R.

Definition 4.1. Let � be a probability measure on R. We say that � is self-decomposable with

respect to free additive convolution (or just uþ-self-decomposable) if, for any c in ]0, 1[, there

exists a probability measure �c on R such that

� ¼ Dc�uþ �c: (4:1)

We denote by L(uþ) the class of uþ-self-decomposable probability measures on R.

Note that, for a probability measure � on R and a constant c in ]0, 1[, there can be only

one probability measure �c such that � ¼ Dc�uþ �c. Indeed, choose positive numbers � and

M such that all three Voiculescu transforms ��, �Dc� and ��c
are defined on the region
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�̂,M . Then by Theorem 2.2, ��c
is uniquely determined on �̂,M , and hence, by Remark

2.3, �c is uniquely determined too.

Remark 4.2. Let � be a probability measure on R. It follows from Theorem 2.2, Lemma 3.3

and Remark 2.3 that � is uþ-self-decomposable if and only if there exists, for each c in ]0, 1[,

a probability measure �c on R such that

��(z) ¼ c��(c�1z)þ ��c
(z),

for all z in a region �̂,M .

Remark 4.3. Free cumulant transform. As mentioned previously, besides the R-transform

and the Voiculescu transform, there is a third variant, C�, which seems worth taking into

account. So far it has been studied, in particular, by Nica (1996) and Speicher, but it is also

used in Hiai and Petz (2000). For a probability measure � on R, C� is given by the equation

C�(z) ¼ zR(z) ¼ z��
1

z

� �
,

and is thus defined on a region of the form ˆ�1
�,M , for suitable positive numbers � and M . Of

course the transformation � 7! C� has a property similar to that of the Voiculescu transform

stated in Theorem 2.2. In fact, C� resembles the classical cumulant function more closely

than the Voiculescu transform and the R-transform do. In particular, with respect to dilation

it behaves exactly as the classical cumulant function, i.e.

CDc�(z) ¼ C�(cz), (4:2)

for any probability measure � on R and any positive constant c. This follows easily from

Lemma 3.3. As a consequence of (4.2), it follows, as in Remark 4.2, that a probability

measure � on R is uþ-self-decomposable if and only if there exists, for any c in ]0, 1[, a

probability measure �c on R such that

C�(z) ¼ C�(cz)þ C�c
(z):

In terms of the function C�, the condition for uþ-self-decomposability is thus exactly the same

as the condition for �-self-decomposibility expressed in terms of the (classical) cumulant

function (cf. (2.2)). We note, finally, that the free Lévy–Khinchine represenation of C� takes

the form

C�(z) ¼ ªzþ
ð
R

z2 þ tz

1� tz
� (dt) ¼ ªzþ

ð
R

tz

1þ t2
þ z2

1� tz

� �

(dt), (4:3)

where ª, � and 
 are the same as in Theorem 2.8. Thus, by analogy with the classical case,

the free Lévy–Khinchine representation of C� includes a linear term, rather than a constant

one. Furthermore, if we put a ¼ � (f0g), then we may rewrite (4.3) as

C�(z) ¼ ªzþ az2 þ
ð
R

z2 þ tz

1� tz
� 9(dt) ¼ ªzþ az2 þ

ð
R

tz

1þ t2
þ z2

1� tz

� �

9(dt), (4:4)

where � 9 and 
9 have no mass at zero. The representation (4.4) is analogous to the classical
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representation (2.5); in particular the quadratic term az2 corresponds to the Gaussian (i.e.

semi-circular) part of �.

Lemma 4.4. Let � be a uþ-self-decomposable probability measure on R, let c be a number in

]0, 1[, and let �c be the probability measure on R determined by the equation

� ¼ Dc�uþ �c:

Let � and M be positive numbers such that �� is defined on �̂,M . Then ��c
is defined on

�̂,M as well.

Proof. Choose positive numbers �9 and M9 such that �̂9,M9 � �̂,M and such that �� and ��c

are both defined on �̂9,M9. For z in �̂9,M9, we then have (cf. Lemma 3.3)

��(z) ¼ c��(c�1z)þ ��c
(z):

Recalling the definition of the Voiculescu transform, the above equation means that

F�1
� (z)� z ¼ c��(c�1z)þ F�1

�c
(z)� z, z 2 �̂9,M9,

so that

F�1
�c

(z) ¼ F�1
� (z)� c��(c�1z), z 2 �̂9,M9:

Now put ł(z) ¼ F�1
� (z)� c��(c�1z) and note that ł is defined and holomorphic on all of

�̂,M (cf. Lemma 3.3), and that

F�c
(ł(z)) ¼ z, z 2 �̂9,M9: (4:5)

We note next that ł takes values in Cþ. Indeed, since F� is defined on Cþ, we have that

Im(F�1
� (z)) . 0, for any z in �̂,M , and furthermore, for all such z, Im(��(c�1z)) < 0, as

noted in Section 2.3.

Now, since F�c
is defined and holomorphic on all of Cþ, both sides of (4.5) are

holomorphic on �̂,M . Since �̂9,M9 has an accumulation point in �̂,M , it follows, by uni-

queness of analytic continuation, that the equality in (4.5) actually holds for all z in �̂,M .

Thus, F�c
has a right inverse on �̂,M , which means that ��c

is defined on �̂,M , as

desired. h

Lemma 4.5. Let � be a uþ-self-decomposable probability measure on R, and let (cn) be a

sequence of numbers in ]0, 1[. For each n, let �cn
be the probability measure on R satisfying

� ¼ Dcn
�uþ �c n

:

Then, if cn ! 1, as n!1, we have �c n
!w �0, as n!1.

Proof. Choose positive numbers � and M such that �� is defined on �̂,M . Note then that, by

Lemma 4.4, ��c n
is also defined on �̂,M for each n 2 N and, moreover,

��c n
(z) ¼ ��(z)� cn��(c�1

n z), z 2 �̂,M , n 2 N: (4:6)

Assume now that cn ! 1 as n!1. From (4.6) and continuity of �� it is then
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straightforward that ��c n
(z)! 0 ¼ ��0

(z), as n!1, uniformly on compact subsets of �̂,M .

Note, furthermore, that

sup
n2N

$$$$��c n
(z)

z

$$$$ ¼ sup
n2N

$$$$��(z)

z
� ��(c�1

n z)

c�1
n z

$$$$! 0, as jzj ! 1, z 2 �̂,M ,

since ��(z)=z! 0 as jzj ! 1, z 2 �̂,M , and since c�1
n > 1 for all n. It follows from Pro-

position 2.6 that �c!
w

�0, for n!1, as desired. h

Theorem 4.6. Let � be a probability measure on R. If � is uþ-self-decomposable, then � is

uþ-infinitely divisible.

Proof. Assume that � is uþ-self-decomposable. Then by successive applications on (4.1), we

obtain for any c 2 ]0, 1[ and any n 2 N that

� ¼ Dcn�uþ Dc n�1�c uþ Dcn�2�c uþ � � � uþ Dc�c uþ �c: (4:7)

The idea now is to show that for a suitable choice of c ¼ cn, the probability measures

Dc n
n
�, Dcn�1

n
�c n

, Dcn�2
n

�c n
, . . . , Dcn

�cn
, �cn

, n 2 N, (4:8)

form a null array (cf. Theorem 2.11). Note that, for any choice of cn 2 ]0, 1[, we have that

D
c

j
n
�cn

(Rn[�E, E]) < �cn
(Rn[�E, E]),

for any j 2 N and any E 2 ]0, 1[. Therefore, in order for the probability measures in (4.8) to

form a null array, it suffices to choose cn in such a way that

Dcn
n
�!w �0 and �cn

!w �0, as n!1:

We claim that this will be the case if we put (for example)

cn ¼ e�1=
ffiffiffi
n
p

, n 2 N: (4:9)

To see this, note that with the above choice of cn, we have

cn ! 1 and cn
n ! 0, as n!1:

Thus, it follows immediately from Lemma 4.5 that �c n
!w �0, as n!1. Moreover, if we

choose a (classical) real-valued random variable X with distribution �, then, for each n, Dc n
n
�

is the distribution of cn
n X . Now, cn

n X ! 0 almost surely, as n!1, and this implies that

cn
n X ! 0, in distribution, as n!1.

We have verified, that if we choose cn according to (4.9), then the probability measures

in (4.8) form a null array. Hence, by (4.7) (with c ¼ cn) and Theorem 2.11, � is uþ-

infinitely divisible. h

Proposition 4.7. Let � be a uþ-self-decomposable probability measure on R, let c be a

number in ]0, 1[ and let �c be the probability measure on R satisfying the condition

� ¼ Dc�uþ �c:
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Then �c is uþ-infinitely divisible.

Proof. As noted in the proof of Theorem 4.6, for any d 2 ]0, 1[ and any n 2 N we have

� ¼ Dd n�uþ Dd n�1�d uþ Dd n�2�d uþ � � � uþ Dd�d uþ �d ,

where �d is defined by the case n ¼ 1. Using the above equation with d ¼ c1=n, we obtain

for each n 2 N that

Dc�uþ �c ¼ � ¼ Dc�uþ Dc( n�1)=n�c1=n uþ Dc( n�2)=n�c1=n uþ � � � uþ Dc1=n�c1=n uþ �c1=n : (4:10)

From this it follows that

�c ¼ Dc( n�1)=n�c1=n uþ Dc( n�2)=n�c1=n uþ � � � uþ Dc1=n�c1=n uþ �c1=n , n 2 N: (4:11)

Indeed, by taking Voiculescu transforms in (4.10) and using Theorem 2.2, it follows that the

Voiculescu transforms of the right- and left-hand sides of (4.11) coincide on some region

�̂,M . By Remark 2.3, this implies the validity of (4.11).

By (4.11) and Theorem 2.11, it remains now to show that the probability measures

Dc( n�1)=n�c1=n , Dc( n�2)=n�c1= n , . . . , Dc1=n�c1=n , �c1=n

form a null array. Since c j=n 2 ]0, 1[ for any j 2 f1, 2, . . . , n� 1g, this is the case if and

only if �c1=n!w �0 as n!1. But since c1=n ! 1 as n!1, Lemma 4.5 guarantees the

validity of the latter assertion. h

Theorem 4.8. Let � be a �-self-decomposable probability measure on R and let (�c)c2]0,1[ be

the family of probability measures on R defined by the equation

� ¼ Dc� � �c:

Then, for any c 2 ]0, 1[, we have the decomposition

¸(�) ¼ Dc¸(�)uþ¸(�c): (4:12)

Consequently, a probability measure � on R is �-self-decomposable if and only if ¸(�) is

uþ-self-decomposable, and thus the bijection ¸: ID(�)! ID(uþ) maps the class L(�) of

�-self-decomposable probability measures onto the class L(uþ) of uþ-self-decomposable

probability measures.

Proof. For any c in ]0, 1[, the measures Dc� and �c are both �-infinitely divisible (see

Section 2.1), and hence, by (i) and (ii) of Theorem 3.5,

¸(�) ¼ ¸(Dc� � �c) ¼ Dc¸(�)uþ¸(�c):

Since this holds for all c 2 ]0, 1[, it follows that ¸(�) is uþ-self-decomposable.

Assume, conversely, that �9 is a uþ-self-decomposable probability measure on R, and let

(�9c)c2]0,1[ be the family of probability measures on R defined by

�9 ¼ Dc�9uþ �9c:

By Theorem 4.6 and Proposition 4.7, �9, �9c 2 ID(uþ), so we may consider the �-infinitely
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divisible probability measures � :¼ ¸�1(�9) and �c :¼ ¸�1(�9c). Then by (i) and (ii) of

Theorem 3.5,

� ¼ ¸�1(�9) ¼ ¸�1(Dc(�9)uþ �9c) ¼ ¸�1(Dc¸(�)uþ¸(�c))

¼ ¸�1(¸(Dc� � �c)) ¼ Dc� � �c:

Since this holds for any c 2 ]0, 1[, � is �-self-decomposable. h

The corollary below can be proved directly by using, for example, Bercovici and Voi-

culescu (1993, Corollary 7.2). However, by using the corresponding classical result as well

as Theorem 4.8 and Corollary 3.7, we can argue without doing any computations.

Corollary 4.9. Let � be a uþ-stable probability measure on R. Then � is necessarily uþ-self-

decomposable.

Proof. Since � is uþ-stable, � is also uþ-infinitely divisible, so we may consider the

�-infinitely divisible probability measure �9 ¼ ¸�1(�). By Corollary 3.7, �9 is �-stable and

since �-stability implies �-self-decomposability (cf. Sato 1999, Example 15.2), �9 is also

�-self-decomposable. Hence, by Theorem 4.8, � ¼ ¸(�9) is uþ-self-decomposable. h

To summarize, we note that it follows from Theorem 4.6 and Corollary 4.9 that we have

the following free counterpart to the hierarchy (2.1):

G(uþ) � S(uþ) � L(uþ) � ID(uþ), (4:13)

where G(uþ) denotes the class of semi-circle distributions. Furthermore, the Bercovici–Pata

bijection ¸ maps each of the classes of probability measures in (2.1) onto the corresponding

free class in (4.13).

5. Free Lévy processes

In this section we introduce and study some basic properties of Lévy processes in free

probability. We start by recalling the definition of classical Lévy processes.

Definition 5.1. A real-valued stochastic process (X t) t>0, defined on a probability space

(�, F , P), is called a Lévy process if it satisfies the following conditions:

(i) Whenever n 2 N and 0 < t0 , t1 , . . . , t n, the increments

X t
0
, X t

1
� X t

0
, X t

2
� X t

1
, . . . , X t n

� X t
n�1

are independent random variables.

(ii) X 0 ¼ 0 almost surely.

(iii) For any s, t 2 ]0, 1[, the distribution of X sþ t � X s does not depend on s.
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(iv) (X t) is stochastically continuous, i.e. for any s in [0, 1[ and any positive E, we

have lim t!0 P(jX sþ t � X sj . E) ¼ 0.

(v) For almost all ø in �, the sample path t 7! X t(ø) is right-continuous (in t > 0)

and has left limits (in t . 0).

If a stochastic process (X t) t>0 satisfies conditions (i)–(iv) in Definition 5.1, we say that

(X t) is a Lévy process in law. If (X t) satisfies conditions (i), (ii), (iv) and (v) ((i), (ii), and

(iv)) it is called an additive process (an additive process in law). Any Lévy process in law

(X t) has a modification which is a Lévy process, i.e. there exists a Lévy process (Yt),

defined on the same probability space as (X t), and such that X t ¼ Yt with probability one,

for all t. Similarly, any additive process in law has a modification which is a genuine

additive process. These assertions can be found in Sato (1999, Theorem 11.5).

Note that condition (iv) is equivalent to the condition that X sþ t � X s ! 0 in distribution

as t! 0. Note also that under the assumption of (ii) and (iii), this condition is equivalent

to saying that X t ! 0 in distribution as t& 0.

We turn now to the non-cummutative setting. Let (A, �) be a W �-probability space

acting on a Hilbert space H (cf. Section 2.5). By a (stochastic) process affiliated with A,

we shall simply mean a family (Z t) t2[0,1[ of self-adjoint operators in A, which is indexed

by the non-negative reals. For such a process (Z t), we let � t denotes the (spectral)

distribution of Z t, i.e. � t ¼ LfZ tg. We refer to the family (� t) of probability measures on

R as the family of marginal distributions of (Z t). Moreover, if s, t 2 [0, 1[, such that

s , t, then, as was noted in Section 2.5, Z t � Zs is again a self-adjoint operator in A, and

we may consider its distribution �s, t ¼ LfZ t � Zsg. We refer to the family (�s, t)0<s, t as

the family of increment distributions of (Z t).

Definition 5.2. A free Lévy process (in law), affiliated with a W �- probability space (A, �), is

a process (Z t) t>0 of self-adjoint operators in A, which satisfies the following conditions:

(i) Whenever n 2 N and 0 < t0 , t1 , . . . , t n, the increments

Z t
0
, Z t

1
� Z t

0
, Z t

2
� Z t

1
, . . . , Z t n

� Z t
n�1

are freely independent random variables.

(ii) Z0 ¼ 0.

(iii) For any s, t 2 [0, 1[, the (spectral) distribution of Zsþ t � Zs does not depend on

s.

(iv) For any s 2 [0, 1[, Zsþ t � Zs ! 0 in distribution as t! 0, i.e. the spectral

distributions LfZsþ t � Zsg converge weakly to �0 as t! 0.

Note that under the assumption of (ii) and (iii) in Definition 5.2, condition (iv) is equivalent

to saying that Z t ! 0 in distribution as t& 0.

Remark 5.3. Free additive processes I. A process (Z t) of self-adjoint operators in A which

satisfies conditions (i), (ii) and (iv) of Definition 5.2, is called a free additive process (in

law). Given such a process (Z t), let, as above, �s ¼ LfZsg and �s, t ¼ LfZ t � Zsg, whenever

0 < s , t. It follows that whenever 0 < r , s , t, we have
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�s ¼ �r uþ �r,s and �r, t ¼ �r,s uþ �s, t, (5:1)

and furthermore

�sþ t,s�!
w

�0, as t! 0, (5:2)

for any s 2 [0, 1[.

Conversely, given any family f� tjt > 0g [ f�s, tj0 < s , tg of probability measures on R,

such that (5.1) and (5.2) are satisfied, there exists a free additive process (in law) (Z t)

affiliated with a W �-probability space (A, �), such that �s ¼ LfZsg and

�s, t ¼ LfZ t � Zsg, whenever 0 < s , t. In fact, for any families (� t) and (�s, t) satisfying

(5.1), there exists a process (Z t) affiliated with some W �-probability space (A, �), such that

conditions (i) and (ii) in Definition 5.2 are satisfied, and such that �s ¼ LfZsg and

�s, t ¼ LfZ t � Zsg.
This was noted in Biane (1998a) and Voiculescu (2000). Note that with the notation

introduced above, the free Lévy processes (in law) are exactly those free additive processes

(in law) for which �s, t ¼ � t�s for all s, t such that 0 < s , t. In this case (5.1) simplifies

to

� t ¼ �s uþ � t�s, 0 < s , t: (5:3)

In particular, for any family (� t) of probability measures on R such that (5.3) is satisfied, and

such that � t!
w
�0 as t& 0, there exists a free Lévy process (in law) (Z t) such that

� t ¼ LfZ tg for all t.

Consider now a free Lévy process (Z t) t>0, with marginal distributions (� t). As For

(classical) Lévy processes, it follows that each � t is necessarily uþ-infinitely divisible.

Indeed, for any n 2 N we have Z t ¼
Pn

j¼1(Z jt=n � Z( j�1) t=n), and thus, in view of

conditions (i) and (iii) in Definition 5.2, � t ¼ � t=n uþ � � � uþ � t=n (n terms). From the ob-

servation just made, it follows that the Bercovici–Pata bijection ¸: ID(�)! ID(uþ) gives

rise to a correspondence between classical and free Lévy processes:

Proposition 5.4. Let (Z t) t>0 be a free Lévy process (in law) affiliated with a W �- probability

space (A, �), and with marginal distributions (� t). Then there exists a (classical) Lévy

process (X t) t>0 with marginal distributions (¸�1(� t)).

Conversely, for any (classical) Lévy process (X t) with marginal distributions (� t), there

exists a free Lévy process (in law) (Z t) with marginal distributions (¸(� t)).

Proof. Consider a free Lévy process (in law) (Z t) with marginal distributions (� t). Then, as

noted above, � t 2 ID(uþ) for all t, and hence we may define �9t ¼ ¸�1(� t), t > 0. Then,

whenever 0 < s , t,

�9t ¼ ¸�1(�s uþ � t�s) ¼ ¸�1(�s) �¸�1(� t�s) ¼ �9s � �9t�s:

Hence, by the Kolmogorov extension theorem, there exists a (classical) stochastic process

(X t) (defined on some probability space (�, F , P)), with marginal distributions (�9t), which
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satisfies conditions (i)–(iii) of Definition 5.1. Regarding condition (iv), note that since (Z t) is

a free Lévy process, � t!
w
�0 as t& 0, and hence, by continuity of ¸�1 (cf. Corollary 3.9),

�9t ¼ ¸�1(� t)!
w
¸�1(�0) ¼ �0, as t& 0:

Thus (X t) is a (classical) Lévy process in law, and hence we can find a modification of (X t)

which is a genuine Lévy process.

The second statement of the proposition follows by a similar argument, using ¸ rather

than ¸�1, and the fact that the marginal distributions of a classical Lévy process are

necessarily �-infinitely divisible. Furthermore, we have to call upon the existence statement

for free Lévy processes (in law) in Remark 5.3. h

Remark 5.5. Free additive processes II. Though our main objectives in this section are free

Lévy processes, we mention, for completeness, that the Bercovici–Pata bijection ¸ also gives

rise to a correspondence between classical and free additive processes (in law). Thus, to any

classical additive process (in law), with corresponding marginal distributions (� t) and

increment distributions (�s, t)0<s, t, there corresponds a free additive process (in law), with

marginal distributions (¸(� t)) and increment distributions (¸(�s, t))0<s, t – and vice versa.

This follows by the same method as used in the proof of Proposition 5.4 above, once it

has been established that for a free additive process (in law) (Z t), the distributions

� t ¼ LfZ tg and �s, t ¼ LfZ t � Zsg, 0 < s , t, are necessarily uþ-infinitely divisible (for

the corresponding classical result, see Sato (1999, Theorem 9.1). The key to this result is

Theorem 2.11, together with the fact that (Z t) is actually uniformly stochastically

continuous on compact intervals, in the following sence: for any compact interval [0, b] in

[0, 1[, and for any positive numbers E, r, there exists a positive number � such that

�s, t(Rn[�E, E]) , r, for any s, t in [0, b] for which s , t , sþ �. As in the classical case,

this follows from condition (iv) in Definition 5.2, by a standard compactness argument (see

Sato 1999, Lemma 9.6). Now for any t 2 [0, 1[ and any n 2 N, we have (cf. (5.1))

� t ¼ �0, t=n uþ � t=n,2 t=n uþ �2 t=n,3 t=n uþ � � � uþ �(n�1) t=n, t: (5:4)

Since (Z t) is uniformly stochastically continous on [0, t], it follows that the family

f�( j�1) t=n, jt=njn 2 N, 1 < j < ng is a null array, and hence, by Theorem 2.11, (5.4) implies

that � t is uþ-infinitely divisible. Applying this fact to the free additive process (in law)

(Z t � Zs) t>s, it also follows that �s, t is uþ-infinitely divisible whenever 0 < s , t.

Remark 5.6. An alternative concept of free Lévy processes. For a classical Lévy process

(X t), condition (iii) of Definition 5.1 is equivalent to the condition that whenever 0 < s , t,

the conditional distribution P(X tjX s) depends only on t � s. Conditional probabilities in free

probability were studied by Biane (1998a), who noted, in particular, that in the free case the

condition just stated is not equivalent to condition (iii) of Definition 5.2. Consequently, in

free probability there are two classes of stochastic processes that may naturally be called

Lévy processes: the ones we defined in Definition 5.2 and the ones for which condition (iii)

of Definition 5.2 is replaced by the condition on the conditional distributions, mentioned

above. In Biane (1998a) these two types of processes were denoted FAL1 and FAL2,
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respectively. We should mention, here, that in Biane (1998a) the assumption of stochastic

continuity (condition (iv) of Definition 5.2) was not included in the definitions of either FAL1

or FAL2. We have included that condition primarily because it is crucial for the definition of

the stochastic integral to be constructed in the next section.

6. Free stochastic integrals and uþ-self-decomposable variates

As mentioned in Section 2.1, a (classical) random variable Y has distribution in L(�) if and

only if it has a representation in law of the form

Y ¼d
ð1

0

e� tdX t, (6:1)

where (X t) t>0 is a (classical) Lévy process satisfying the condition E[log(1þ jX 1j)] ,1.

The main aim of this section is to establish a similar correspondence between self-adjoint

operators with (spectral) distribution in L(uþ) and free Lévy processes (in law).

The stochastic integral in (6.1) is the limit, in probability, as R!1, of the stochastic

integrals
Ð R

0
e�t dX t, i.e. we haveð R

0

e� t dX t!
p
ð1

0

e� t dX t, as R!1

(the convergence actually holds almost surely; see Proposition 6.3 below). The stochastic

integral
Ð R

0
e� t dX t is, in turn, defined as the limit of approximating Riemann sums. More

precisely, consider a compact interval [A, B] in [0, 1[, and, for each n 2 N, let Dn ¼
ftn,0, tn,1, . . . , tn,ng be a subdivision of [A, B], i.e.

A ¼ t n,0 , tn,1 , . . . , t n,n ¼ B:

Assume that

lim
n!1

max
j¼1,2,...,n

(tn, j � tn, j�1) ¼ 0: (6:2)

Moreover, for each n, choose intermediate points

t
#
n, j 2 [tn, j�1, tn, j], j ¼ 1, 2, . . . , n: (6:3)

Then, for any continuous function f : [A, B]! R, the Riemann sums

Sn ¼
Xn

j¼1

f (t
#
n, j) � (X t

n, j
� X t

n, j�1
)

converge in probability, as n!1, to a random variable S. Moreover, this random variable S

does not depend on the choice of subdivisions Dn (satisfying (6.2)) or on the choice of

intermediate points t
#
n, j. Hence, it makes sense to call S the stochastic integral of f over

[A, B] with respect to (X t), and we denote S by
Ð B

A
f (t) dX t.

The construction just sketched depends, of course, heavily on the stochastic continuity of

the Lévy process in law (X t) (condition (iv) of Definition 5.1). A proof of the assertions
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made above can be found in Lukacs (1975, Theorem 6.2.3). We show next how the above

construction carries over, via the Bercovici–Pata bijection, to a corresponding stochastic

integral with respect to free Lévy processes (in law).

Theorem 6.1. Let (Z t) be a free Lévy process (in law), affiliated with a W �- probability

space (A, �). Then, for any compact interval [A, B] in [0, 1[ and any continuous function

f : [A, B]! R, the stochastic integral
Ð B

A
f (t) dZ t exists as the limit in probability (see

Definition 2.17) of approximating Riemann sums. More precisely, there exists a (unique) self-

adjoint operator T, affiliated with (A, �), such that, for any sequence (Dn)n2N of sub-divisions

of [A, B] satisfying (6.2), and for any choice of intermediate points t
#
n, j as in (6.3), the

corresponding Riemann sums

Tn ¼
Xn

j¼1

f t
#
n, j

� �
� Z t

n, j
� Z t

n, j�1

� �

converge in probability to T as n!1. We call T the stochastic integral of f over [A, B] with

respect to (Z t), and denote it by
Ð B

A
f (t) dZ t.

In the proof below, we shall use the notation

�r
j¼1

� j :¼ �1� � � � ��r and uþ
r

j¼1
� j :¼ �1 uþ � � � uþ �r,

for probability measures �1, . . . , �r on R.

Proof. Let (Dn)n2N be a sequence of subdivisions of [A, B] satisfying (6.2), let t
#
n, j be a

family of intermediate points as in (6.3), and consider, for each n, the corresponding

Riemann sum:

T n ¼
Xn

j¼1

f t
#
n, j

� �
� Z t

n, j
� Z t

n, j�1

� �
2 A:

We show that (Tn) is a Cauchy sequence with respect to convergence in probability or,

equivalently, with respect to the measure topology (see Section 2.5). Given any n, m in N, we

form the subdivision

A ¼ s0 , s1 , . . . , s p(n,m) ¼ B,

which consists of the points in Dn [ Dm (so that p(n, m) < nþ m). Then, for each j in

f1, 2, . . . , p(n, m)g, we choose (in the obvious way) s
#
n, j in ft

#
n,k jk ¼ 1, 2, . . . , ng and s

#
m, j

in ft
#
m,k jk ¼ 1, 2, . . . , mg such that

T n ¼
Xp(n,m)

j¼1

f s
#
n, j

� �
� Zs

j
� Zs

j�1

� �
and Tm ¼

Xp(n,m)

j¼1

f s
#
m, j

� �
� Zs

j
� Zs

j�1

� �
:

It follows that
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Tn � Tm ¼
Xp(n,m)

j¼1

f s
#
n, j

� �
� f s

#
m, j

� �� �
� Zs

j
� Zs

j�1

� �
:

Let (� t) denote the family of marginal distributions of (Z t), and then consider a classical

Lévy process (X t) with marginal distributions (¸�1(� t)) (cf. Proposition 5.4). For each n,

form the Riemann sum

Sn ¼
Xn

j¼1

f f t
#
n, j

� �
� X t

n, j
� X t

n, j�1

� �
corresponding to the same Dn and t

#
n, j as above. Then for any n, m in N, we also have that

Sn � Sm ¼
Xp(n,m)

j¼1

f s
#
n, j

� �
� f s

#
m, j

� �� �
� X s

j
� X s

j�1

� �
:

From this expression, it follows that

LfSn � Smg ¼ �
p(n, m)

j¼1
D

f (s
#
n, j

)� f (s
#
m, j

)
LfX s

j
� X s

j�1
g

¼ �p(n, m)

j¼1
D

f (s
#
n, j

)� f (s
#
m, j

)
¸�1(�s

j
�s

j�1
),

so that (by Theorem 3.5)

¸(LfSn � Smg) ¼ uþ
p(n, m)

j¼1
D

f (s
#
n, j

)� f (s
#
m, j

)
�s

j
�s

j�1

¼ L
Xp(n,m)

j¼1

( f (s
#
n, j)� f (s

#
m, j)) � (Zs

j
� Zs

j�1
)

8<
:

9=
;

¼ LfTn � T mg:

We know from the classical theory (cf. Lukacs 1975, Theorem 6.2.3), that (Sn) is a Cauchy

sequence with respect to convergence in probability, i.e. that LfSn � Smg!
w
�0, as n,

m!1. By continuity of ¸, it follows that

LfTn � Tmg ¼ ¸(LfSn � Smg)!
w
¸(�0) ¼ �0, as n, m!1:

By Proposition 2.19, this means that (Tn) is a Cauchy sequence with respect to the measure

topology, and since A is complete in the measure topology (Proposition 2.16), there exists an

operator T in A such that Tn ! T in the measure topology, i.e. in probability. Since Tn is

self-adjoint for each n (see Section 2.5) and since the adjoint operation is continuous with

respect to the measure topology (Proposition 2.16), T is necessarily a self-adjoint operator.

It remains to show that the operator T, found above, does not depend on the choice of

subdivisions (Dn) or intermediate points t
#
n, j. Thus, suppose that (Tn) and (T 9n) are two

sequences of Riemann sums of the kind considered above. Then by the argument given
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above, there exist operators T and T 9 in A such that Tn ! T and T 9n ! T 9 in probability.

Furthermore, if we consider the ‘mixed sequence’ T1, T 92, T3, T 94, . . . , then the cor-

responding sequence of subdivisions also satisfies (6.2), and hence this mixed sequence also

converges in probability to an operator T 0 in A. Since the mixed sequence has sub-

sequences converging in probability to T and T 9 respectively, and since the measure

topology is a Hausdorff topology (cf. Proposition 2.16), we may thus conclude that

T ¼ T 0 ¼ T 9, as desired. h

The stochastic integral
Ð B

A
f (t) dZ t, introduced above, extends to continuous functions

f : [A, B]! C in the usual way (the result being non-self-adjoint in general). From the

construction of
Ð B

A
f (t) dZ t as the limit of approximating Riemann sums, it follows im-

mediately that whenever 0 < A , B , C, we haveðC

A

f (t) dZ t ¼
ðB

A

f (t) dZ t þ
ðC

B

f (t) dZ t,

for any continuous function f : [A, C]! C. Another consequence of the construction, given

in the proof above, is the following correspondence between stochastic integrals with respect

to classical and free Lévy processes (in law).

Corollary 6.2. Let (X t) be a classical Lévy process with marginal distributions (� t), and let

(Z t) be a corresponding free Lévy process (in law) with marginal distributions (¸(� t))

(cf. Proposition 5.4). Then, for any compact interval [A, B] in [0, 1[ and any continuous

function f : [A, B]! R, the distributions Lf
Ð B

A
f (t) dX tg and Lf

Ð B

A
f (t) dZ tg are

�-infinitely divisible and uþ-infinitely divisible respectively; moreover,

L
ðB

A

f (t) dZ t

( )
¼ ¸ L

ðB

A

f (t) dX t

( )" #
:

Proof. Let (Dn)n2N be a sequence of subdivisions of [A, B] satisfying (6.2), let t
#
n, j be a

family of intermediate points as in (6.3), and consider, for each n, the corresponding

Riemann sums:

Sn ¼
Xn

j¼1

f t
#
n, j

� �
� X t

n, j
� X t

n, j�1

� �
and Tn ¼

Xn

j¼1

f t
#
n, j

� �
� Z t

n, j
� Z t

n, j�1

� �
:

Since convergence in probability implies convergence in distribution (Proposition 2.20), it

follows from Lukacs (1975, Theorem 6.2.3) and from Theorem 6.1 above that

LfSng!
w f
Ð B

A
f (t) dX tg and LfTng!

w Lf
Ð B

A
f (t) dZ tg. Since ID(�) and ID(uþ) are closed

with respect to weak convergence (as noted in Section 2.4), it follows that

Lf
Ð B

A
f (t) dX tg 2 ID(�) and Lf

Ð B

A
f (t) dZ tg 2 ID(uþ). Moreover, by Theorem 3.5,

LfTng ¼ ¸(LfSng), for each n in N, and hence the last assertion follows by continuity

of ¸. h

We next determine the conditions under which the stochastic integral
Ð1

0
e� tdZ t makes

360 O.E. Barndorff-Nielsen and S. Thorbjørnsen



sense as the limit of
Ð R

0
e� tdZ t, for R!1. Again, the result we obtain is derived by virtue

of the mapping ¸ and the following corresponding classical result:

Proposition 6.3. Let (X t) be a classical Lévy process defined on some probability space

(�, F , P), and let (ª, � ) be the generating pair for the �-infinitely divisible probability

measure LfX 1g. Then the following conditions are equivalent:

(i)
Ð
Rn]�1,1[

log(1þ jtj) � (dt) ,1.

(ii)
Ð R

0
e� tdX t converges almost surely, as R!1.

(iii)
Ð R

0
e� tdX t converges in distribution, as R!1.

(iv) E[log(1þ jX1j)] ,1.

Proof. This was proved in Jurek and Verwaat (1983, Theorem 3.6.6). We note, though, that

in that paper the measure � in condition (i) is replaced by the Lévy measure r appearing in

the alternative Lévy–Khinchine representation (2.5) for L(X 1g. However, since

r(dt) ¼ 1þ t2

t2
� 1Rnf0g(t) � (dt),

it is clear that the integrals
Ð
Rn]�1,1[

log(1þ jtj) r(dt) and
Ð
Rn]�1,1[

log(1þ jtj) � (dt) are finite

simultaneously. h

Proposition 6.4. Let (Z t) be a free Lévy process (in law) affiliated with a W �- probability

space (A, �), and let (ª, � ) be the free generating pair for the uþ-infinitely divisible

probability measure LfZ1g. Then the following statements are equivalent:

(i)
Ð
Rn]�1,1[

log(1þ jtj) � (dt) ,1.

(ii)
Ð R

0
e� tdZ t converges in probability, as R!1.

(iii)
Ð R

0
e� tdZ t converges in distribution, as R!1.

Proof. Let (� t) be the family of marginal distributions of (Z t), and consider a classical Lévy

process (X t) with marginal distributions (¸�1(� t)) (cf. Proposition 5.4). By the definition of

¸, it follows that (ª, � ) is the generating pair for the �-infinitely divisible probability

measure LfX 1g.
(i)) (ii). Assume that (i) holds. Then condition (i) of Proposition 6.3 is satisfied for the

classical Lévy process (X t). Hence by (ii) of that proposition,
Ð R

0
e� tdX t converges almost

surely, and hence in probability, as R!1. Consider now any increasing sequence (Rn) of

positive numbers, such that Rn %1 as n!1. Then for any m, n in N such that m . n,

we have by Corollary 6.2,
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L
ðRm

0

e� tdZ t �
ðRn

0

e� tdZ t

( )
¼ L

ð Rm

Rn

e� tdZ t

( )
¼ ¸ L

ðRm

Rn

e� tdX t

( )" #

¼ ¸ L
ðRm

0

e� tdX t �
ðRn

0

e� tdX t

( )" #
: (6:4)

Since the sequence (
Ð Rn

0
e� tdX t)n2N is a Cauchy sequence with respect to convergence in

probability, it follows, by continuity of ¸, that so is the sequence (
Ð Rn

0
e� tdZ t)n2N. Hence, by

Proposition 2.16, there exists a self-adjoint operator W affiliated with (A, �), such thatÐ Rn

0
e� tdZ t ! W in probability. It remains to argue that W does not depend on the sequence

(Rn). This follows, for example as in the proof of Theorem 6.1, by considering, for two given

sequences (Rn) and (R9n), a third increasing sequence (R 0n) containing infinitely many

elements from both of the original sequences.

(ii)) (i). Assume that (ii) holds. It follows by (6.4) and continuity of ¸�1 that for any

increasing sequence (Rn), as above, (
Ð Rn

0
e� tdX t) is a Cauchy sequence with respect to

convergence in probability. We deduce that (iii) of Proposition 6.3 is satisfied for (X t), and

hence so is (i) of that proposition. By definition of (X t), this means precisely that (i) of

Proposition 6.4 is satisfied for (Z t).

(ii)) (iii). This follows from Proposition 2.20.

(iii)) (i). Suppose (iii) holds, and note that the limit distribution is necessarily uþ-

infinitely divisible. Now by Corollary 6.2 and continuity of ¸�1, condition (iii) of

Proposition 6.3 is satisifed for (X t), and hence so is (i) of that proposition. This means

again that (i) in Proposition 6.4 is satisfied for (Z t). h

If (Z t) is a free Lévy process (in law) affiliated with (A, �), such that (i) of Proposition

6.4 is satisfied, then we denote by
Ð1

0
e� tdZ t the self-adjoint operator affiliated with (A, �),

to which
Ð R

0
e� tdZ t converges in probability as R!1. We note that Lf

Ð1
0

e� tdZ tg is

uþ-infinitely divisible, and that Corollary 6.2 and Proposition 2.20 yield the relation

L
ð1

0

e� tdZ t

� �
¼ ¸ L

ð1
0

e� tdX t

� �� �
, (6:5)

where (X t) is a classical Lévy process corresponding to (Z t) as in Proposition 5.4.

Theorem 6.5. Let y be a self-adjoint operator affiliated with a W �- probability space (A, �).

Then the distribution of y is uþ-self-decomposable if and only if y has a representation in law

in the form

y¼d
ð1

0

e� tdZ t, (6:6)

for some free Lévy process (in law) (Z t) affiliated with some W�- probability space (B, ł),

and satisfying condition (i) of Proposition 6.4.

Proof. Put � ¼ Lfyg. Suppose first that � is uþ-self-decomposable and put �9 ¼ ¸�1(�).
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Then, by Theorem 4.8, �9 is �-self-decomposable, and hence by the classical version of this

theorem (cf. Jurek and Verwaat 1983, Theorem 3.2), there exists a classical Lévy proces (X t),

defined on some probability space (�, F , P), such that condition (i) of Proposition 6.3 is

satisfied, and such that ¸�1(�) ¼ Lf
Ð1

0
e� tdX tg. Let (Z t) be a free Lévy process (in law)

affiliated with some W �-probability space (B, ł), and corresponding to (X t) as in Pro-

position 5.4. Then, by definition of ¸, condition (i) of Proposition 6.4 is satisfied for (Z t)

and, by formula (6.5), Lf
Ð1

0
e� tdZ tg ¼ �.

Assume, conversely, that there exists a free Lévy process (in law) (Z t) affiliated with

some W �-probability space (B, ł), such that condition (i) of Proposition 6.4 is satisfied,

and such that � ¼ Lf
Ð1

0
e� tdZ tg. Then consider a classical Lévy process (X t) defined on

some probability space (�, F , P), and corresponding to (Z t) as in Proposition 5.4. Con-

dition (i) in Proposition 6.3 is then satisfied for (X t) and, by (6.5), ¸�1(�) ¼
Lf
Ð1

0
e� tdX tg. Thus, by the classical version of this theorem, ¸�1(�) is �-self-

decomposable, and hence � is uþ-self-decomposable. h

Remark 6.6. Free Ornstein–Uhlenbeck processes. Let y be a self-adjoint operator affiliated

with some W �-probability space (A, �), and assume that there exists a free Lévy process (in

law) (Z t) affiliated with some W �-probability space (B, ł), such that condition (i) of

Proposition 6.4 is satisfied, and such that y¼d
Ð1

0
e� tdZ t. Note that, for any positive numbers

s, º, we have ð1
0

e� tdZ t ¼
ð1

0

e�º tdZº t ¼
ð1

s

e�º tdZº t þ
ð s

0

e�º tdZº t

¼ e�ºs

ð1
0

e�º tdZº(sþ t) þ
ðºs

0

e� tdZ t, (6:7)

where we have introduced integration with respect to the processes Vt ¼ Zº t and W t ¼
Zº(sþ t), t > 0. The rules of transformation for stochastic integrals, used above, are easily

verified by considering the integrals as limits of Riemann sums. That same point of view,

together with the fact that (Z t) has freely independent stationary increments (conditions (i)

and (iii) of Definition 5.2), implies, furthermore, that
Ð1

0
e�º tdZº(sþ t)¼

d Ð1
0

e�º tdZº t ¼
d

y.

Note also that the two terms in the last expression of (6.7) are freely independent. Thus (6.7)

shows that, for any positive numbers s, º, we have a decomposition of the form y¼d
e�ºs y(º, s)þ u(º, s), where y(º, s) and u(º, s) are freely independent, and where y(º, s)¼d y.

In particular, we have verified directly that Lfyg is uþ-self-decomposable. Moreover, if we

choose a self-adjoint operator Y0 affiliated with (B, ł), which is freely independent of (Z t),

and such that LfY0g ¼ Lfyg (extend (B, ł) if necessary), then the expression

Ys ¼ e�ºsY0 þ
ðºs

0

e� tdZ t, s > 0,

defines an operator-valued stochastic process (Ys) affiliated with (B, ł), satisfying Ys¼d y for

all s. If we replace (Z t) above by a classical Lévy process (X t) satisfying condition (i) of

Proposition 6.3, and let Y0 be a (classical) random variable which is independent of (X t),

then the corresponding process (Ys) is a solution to the stochastic differential equation
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dYs ¼ �ºYs dsþ dXºs,

and (Ys) is said to be a process of Ornstein–Uhlenbeck type; cf. Barndorff-Nielsen and

Shephard (2001a; 2001b) and references therein.
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