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We study the estimation of diffusion parameters for one-dimensional, ergodic diffusion processes that

are discretely observed. We discuss a method based on a functional relationship between the drift

function, the diffusion function and the invariant density and use empirical process theory to show that

the estimator is
ffiffiffi
n

p
-consistent and in certain cases weakly convergent. The Chan–Karolyi–Longstaff–

Sanders (CKLS) model is used as an example and a numerical example is presented.
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1. Introduction

There is a vast literature on inference for diffusion processes observed at discrete points in

time. Important early references are Dacunha-Castelle and Florens-Zmirou (1986) on the

effect of discretization and Florens-Zmirou (1989) on simple Gaussian approximations. Later

work includes Bibby and Sørensen (1995) on martingale estimating functions; Pedersen

(1995), Poulsen (1999) and Aı̈t-Sahalia (2002) on advanced approximations to the likelihood;

and Elerian et al. (2001) on Bayesian analysis.

One direction of research has been particularly concerned with estimation of the

diffusion coefficient, and this paper is yet another contribution to that area. Useful

references in parametric settings are Dohnal (1987) on the local asymptotic (mixed)

normality property of the model and lower bounds on the variance of estimators; and

Genon-Catalot and Jacod (1993), Jacod (1993) and Genon-Catalot and Jacod (1994) on the

LA(M)N property, contrast estimation and, in the case of the latter two, optimal random

sampling times. Estimation in nonparametric models (with the diffusion coefficient either

time- or state-dependent) has been considered by several authors as well: the estimators

are based on kernel methods (Florens-Zmirou 1993; Jiang and Knight 1997; Soulier 1998;

Jacod 2000) or wavelet methods (Genon-Catalot et al. 1992; Hoffmann 1997; 1999a;

1999b; Soulier 1998).

The asymptotic results in all the papers mentioned in the previous paragraph concern

sampling schemes where the final time-point of observation is fixed, say 1, and the process

is observed more and more frequently. As opposed to this, the method of this paper

provides consistent estimators for any fixed sampling frequency and final sampling time

increasing to infinity. This asymptotic scheme is appropriate if, say, daily or weakly

observations are available in a sampling period of increasing length.
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The set-up is parametric but the estimation method is very much inspired by a

nonparametric estimation procedure discussed by Aı̈t-Sahalia (1996). Both methods rely on

the following relation: if b is the drift function, � the diffusion function, and � the

invariant density for a one-dimensional ergodic diffusion process with state space (l, r),

then 2b� ¼ (� 2�)9, i.e.

b(x) ¼ 1

2
(� 2)9(x) þ � 2(x)

�9(x)

�(x)

� �
, x 2 (l, r), (1)

where a prime denotes differentiation with respect to the state variable.

Banon (1978) and Jiang and Knight (1997) use the relation for pointwise estimation of

the drift b, plugging in suitable (kernel) estimates of � 2 and its derivative. Aı̈t-Sahalia

(1996) uses the relation to estimate � 2 rather than b. He assumes that � 2(x)�(x) ! 0 as

x ! l, so that

� 2(x)�(x) ¼ 2

ðx

l

b(u)�(u)du, x 2 (l, r): (2)

For each x, � 2(x) is then estimated by dividing a kernel estimate of twice the integral in (2)

by a kernel estimate of �(x). The resulting nonparametric estimator of � 2 is asymptotically

well behaved, but it is bound to be quite variable in areas with only few observations.

If a nonparametric analysis indicates a certain form of � 2, then it is natural to specify

the diffusion term parametrically and estimate the parameters. For a particular specification

x ! � (x, Ł) of the diffusion term it is straightforward to verify for which parameter values

� 2(x, Ł)�(x, Ł) actually tends to zero as x ! l such that (2) holds.

The aim of the present paper is to use the relation (2) – and a similar relation involving

the integral
Ð r

x
b(u)�(u, Ł)du – for parametric estimation. Loosely speaking, the idea is as

follows. Let f ¼ � 2�. As we shall see, it is easy for each x to define a consistent estimator

f̂f (x) of f (x, Ł). We also have an analytical expression for f (x, Ł), and we estimate Ł such

that the ‘theoretical’ function f (", Ł) is close to the estimated version f̂f in the sense that

the uniform distance supx2( l,r)j f (x, Ł) � f̂f (x)j is minimal. The corresponding estimator is

consistent under relatively weak regularity conditions (Theorem 4.2) and weakly convergent

under somewhat stronger conditions (Theorem 4.7). The asymptotic results are proved by

means of empirical process theory. The Chan–Karolyi–Longstaff–Sanders (CKLS) model

(Chan et al. 1992) is used as an example, and the method seems to work well in a

numerical study.

The paper is organized as follows. The model and basic assumptions are presented in

Section 2. We discuss the estimation approach in Section 3 and prove asymptotic properties

in Section 4. The CKLS model is discussed in Section 5. Finally, conclusions are drawn in

Section 6.

2. Model and notation

In this section we define the diffusion model and introduce notation used throughout the

paper.
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We consider a one-dimensional, time-homogeneous stochastic differential equation

dX t ¼ b(X t)dt þ � (X t, Ł)dWt, (3)

where Ł is an unknown p-dimensional parameter in the parameter space ¨ * R p, W is a

one-dimensional Brownian motion, and b : R ! R and � : R3¨ ! (0, 1) are known

continuous functions. Note that the drift function b does not depend on the parameter. We

make the following assumptions.

Assumption 2.1. Assume that:

(i) the state space, denoted by I, is open and the same for all Ł 2 ¨;

(ii) for any Ł 2 ,̈ there is a distribution �Ł(dx) ¼ �(x, Ł)dx on I such that X is strictly

stationary and ergodic if X 0 � �Ł;

(iii) the drift function b is in L1( �Ł), for all Ł 2 ¨.

Since X is continuous, the state space I is an interval and we write I ¼ (l, r), where

�1 < l , r < þ1. Simple integral conditions ensure stationarity – see Karlin and Taylor

(1981, Section 15.6) or Karatzas and Shreve (1991, Section 5.5), for example. Define the

scale density s(", Ł) by log s(x, Ł) ¼ �2
Ð x

x0
b(u)=� 2(u, Ł)du, where x0 2 I is fixed but

arbitrary. If 1=K0(Ł) ¼
Ð r

l
(s(x, Ł)� 2(x, Ł))�1 dx , þ1 andðx0

l

s(x, Ł)dx ¼
ð r

x0

s(x, Ł)dx ¼ þ1, (4)

then Assumption 2.1(ii) holds with

�(x, Ł) ¼ K0(Ł) s(x, Ł)� 2(x)
� ��1, (x, Ł) 2 I 3¨: (5)

In the following we let PŁ denote the distribution of X when X0 � �Ł and EŁ the expectation

with respect to PŁ. Under PŁ all Xt � �Ł.

The objective of the paper is the estimation of the parameter Ł from observations

X˜, . . . , X n˜ at discrete, equidistant time-points. The estimation method described below is

based on the function f ¼ � 2� : I 3¨ ! (0, 1), which by (5) is given by

fŁ(x) ¼ f (x, Ł) ¼ K0(Ł)

s(x, Ł)
¼ K0(Ł)exp 2

ðx

x0

b(u)

� 2(u, Ł)
du

 !
:

For Ł fixed we will often write fŁ for the function f (", Ł) : I ! (0, 1). Differentiation of f

with respect to x yields

@ f

@x
¼ 2 f

b

� 2
¼ 2� 2�

b

� 2
¼ 2b�, (6)

and f (x0, Ł) ¼ K0(Ł) so f (x, Ł) ¼ K0(Ł) þ 2
Ð x

x0
b(u)�(u, Ł)du for x 2 I and Ł 2 ¨. In par-

ticular, for Ł fixed, fŁ is bounded by K0(Ł) þ 2EŁjb(X 0)j; the limits fŁ(l ) ¼ f (l, Ł) ¼
limx& l f (x, Ł) and fŁ(r) ¼ f (r, Ł) ¼ limx%r f (x, Ł) are well defined and finite; and
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f (x, Ł) ¼ f (l, Ł) þ 2

ðx

l

b(u)�(u, Ł)du, x 2 I (7)

f (x, Ł) ¼ f (r, Ł) � 2

ð r

x

b(u)�(u, Ł)du, x 2 I : (8)

The limits f (l, Ł) and f (r, Ł) are non-negative for all Ł 2 ¨. For the estimation method

below to work at least one of the limits must be zero for all Ł 2 ¨. Then fŁ is bounded by

2EŁjb(X 0)j. Note that (7) is identical to (2) if f (l, Ł) ¼ 0.

We conclude this section with some comments. First, if the integral conditions (4) hold

then f (l, Ł) ¼ 0 ( f (r, Ł) ¼ 0) holds automatically if l . �1 (r , þ1). In particular,

f (l, Ł) ¼ 0 for models with state space (0, 1). Second, if I ¼ (�1, 1) and b - 0 so X is

on the natural scale, then fŁ is constant and the above integral assumption is not satisfied.

Third, if b(x) ¼ Æþ �x where � , 0 and if the locale martingale part of X is a genuine

martingale then x ! x þ Æ=� is an eigenfunction for the conditional expectation operator

and f (l, Ł) ¼ f (r, Ł) ¼ 0 holds automatically (Hansen et al. 1998, p. 10). In particular,

f (l, Ł) ¼ f (r, Ł) ¼ 0 holds for the Ornstein–Uhlenbeck process and the Cox–Ingersoll–

Ross model. Finally, one must generally check that
Ð x0

l
b(x)=� 2(x, Ł)dx ¼ þ1 for all Ł 2 ¨

and/or
Ð r

x0
b(x)=� 2(x, Ł)dx ¼ �1 for all Ł 2 ¨. But this is straightforward as these integral

conditions only involve the drift and the diffusion functions.

3. Estimation

In this section we discuss how to define pointwise consistent estimators of fŁ ¼ f (", Ł) and

how to use them for estimation of Ł. Asymptotic results for the estimators are proved in

Section 4.

3.1. Basic ideas

If f (l, Ł) ¼ 0, we see from (7) that

f (x, Ł) ¼ 2

ðx

l

b(u)�(u, Ł)du ¼ 2EŁ b(X 0)1fX0<xg
� �

, x 2 I , Ł 2 ¨:

From the right-hand side and Assumption 2.1 it follows that

f̂f 1,n(x) ¼ 2

n

Xn

i¼1

b(Xi˜)1fX i˜<xg
� �

(9)

is an unbiased and (strongly) consistent estimator of f (x, Ł) with respect to PŁ for all x 2 I :

EŁ f̂f 1,n(x) ¼ f (x, Ł) and f̂f 1,n(x) ! f (x, Ł) almost surely as n ! 1. Also note that

f̂f 1,n(x) ¼ 0 ¼ f (l, Ł) for x , minfXi˜ : i ¼ 1, . . . , ng, hence we write f̂f 1,n(l ) ¼ 0.

Similarly, if f (r, Ł) ¼ 0, then
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f̂f 2,n(x) ¼ � 2

n

Xn

i¼1

b(Xi˜)1fX i˜.xg
� �

(10)

is unbiased and (strongly) consistent for f (x, Ł) under PŁ for all x 2 I . We write f̂f 2,n(r) ¼ 0

since f̂f2,n(x) ¼ 0 for x > maxfXi˜ : i ¼ 1, . . . , ng.
The estimated functions f̂f 1,n and f̂f2,n are piecewise constant with jumps at each data

point Xk˜; the jump size is 2b(Xk˜)=n. In particular, f̂f 1,n and f̂f 2,n are increasing

(decreasing) at Xk˜ if fŁ is increasing (decreasing) at Xk˜; cf. (6). Note that

f̂f 1,n(x) � f̂f 2,n(x) ¼ (2=n)
Pn

i¼1b(Xi˜), so the deviation between f̂f 1,n(x) and f̂f 2,n(x) is the

same for all x 2 I .

As indicated, the idea is to estimate Ł by the value that makes the function fŁ closest to

its estimator, f̂f 1,n or f̂f2,n. To be specific, we define the uniform distances

Ui,n(Ł) ¼ sup
x2 I

���� f̂f i,n(x) � fŁ(x)

����, i ¼ 1, 2,

and estimate Ł by the value Ł̂Ł1,n that minimizes U1,n if f (l, Ł) ¼ 0 and by the value Ł̂Ł2,n that

minimizes U2,n if f (r, Ł) ¼ 0. Note that Ui,n(Ł) is finite since Ui,n(Ł) <

(2=n)
Pn

j¼1jb(X j˜)j þ 2EŁjb(X 0)j. One could, of course, use other measures of distance

between f̂f i,n and fŁ, such as (an approximation to) the L2-distance. This will, however, not be

discussed any further in this paper.

Now, what if both f (l, Ł) and f (r, Ł) are zero? Then (9) and (10) are both unbiased,

consistent estimators of f (x, Ł). Note that EŁ b(X 0) ¼ 0 so f̂f 1,n and f̂f 2,n are close for large

n; when n is of moderate size, say 500, it might, however, make a difference whether we

use f̂f 1,n or f̂f 2,n. Also note that either f̂f 1,n or f̂f 2,n becomes negative (close to r or l)

whereas fŁ is positive on (l, r).

Instead of using either f̂f 1,n or f̂f2,n we use a convex combination of the two. For

º(x) ¼ (º1(x), º2(x)) with º1(x) þ º2(x) ¼ 1, define f̂f º,n by

f̂f º,n(x) ¼ º1(x) f̂f 1,n(x) þ º2(x) f̂f 2,n(x)

¼ f̂f 1,n(x) � 2

n
º2(x)

Xn

i¼1

b(Xi˜):

With this notation f̂f º,n ¼ f̂f 1,n for º - (1, 0) and f̂fº,n ¼ f̂f 2,n for º - (0, 1).

If º(x) is deterministic, then f̂f º,n(x) is unbiased for f (x, Ł) and it makes sense to choose

º(x) such that the variance of f̂f º,n(x) is minimal. In general it is not possible to calculate

the variance of f̂f º,n(x) since it involves the joint distribution of Xi˜ and X j˜ for i 6¼ j,

which we typically do not know. It is easy, however, to minimize an approximation to the

variance: straightforward calculations show that if the observations X˜, . . . , X n˜ were

independent and identically �Ł-distributed, then the smallest possible value of varŁ f̂f º,n

would be obtained for
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ºŁ,1(x) ¼
EŁ b2(X0)1fX0.xg

EŁ b2(X 0)
,

ºŁ,2(x) ¼ 1 � ºŁ,1(x) ¼
EŁ b2(X 0)1fX0<xg

EŁ b2(X 0)
:

Of course, the observations are not independent so these weights are only approximately

optimal. Moreover, we do not know the expectations above, but we can use their empirical

counterparts and consider

º̂º1,n(x) ¼

Xn

i¼1

b2(Xi˜)1fX i.xg

Xn

i¼1

b2(Xi˜)

and º̂º2,n(x) ¼

Xn

i¼1

b2(Xi˜)1fX i<xg

Xn

i¼1

b2(Xi˜)

:

In the following we write f̂f n(x) ¼ f̂f º̂ºn,n
(x) for the corresponding estimator.

For x close to l we have º̂º1(x) close to 1 and hence f̂f n(x) close to f̂f 1,n(x). Similarly,

f̂f n(x) is close to f̂f 2(x) when x is close to r. In particular, f̂f n(x) ¼ 0 for x outside the range

of the observations. Note that f̂f n(x) is consistent for f (x, Ł) – even if b is not in L2(�Ł),

because º̂º1,n and º̂º2,n are bounded (by 1). However, f̂f n(x) can be biased even though f̂f1,n(x)

and f̂f 2,n(x) are both unbiased.

For estimation of Ł the idea is, of course, to minimize the uniform distance

Un(Ł) ¼ sup
x2 I

���� f̂f n(x) � fŁ(x)

���� (11)

between f̂f n and fŁ. We let Ł̂Łn denote the corresponding estimator.

3.2. Important comments

We now make some important remarks on the three estimators of fŁ and the corresponding

U -distances.

First, we illustrate the difference between the three estimators of fŁ. Figure 1 shows

graphs of f̂f 1,n, f̂f 2,n and f̂f n for 100 hypothetical data points. The data are simulated from

the model dX t ¼ (0:04 � 0:6Xt)dt þ 0:2X
ª
t dW t with true parameter value ª0 ¼ 0:75 and

˜ ¼ 1. This model is discussed in detail in Section 5. For this particular simulationPn
i¼1b(Xi˜) . 0 so the graph of f̂f 1,n lies above the graph of f̂f 2,n. The graph of f̂f n is in

between; close to f̂f 1,n for small data values and close to f̂f 2,n for large data values. The

figure also shows the graph of f corresponding to the true parameter value.

Second, note that neither f̂f 1,n, f̂f 2,n nor f̂f n would change if the order of the observations

was changed. In other words, the observations are treated as if they were independent. This

is, of course, unfortunate since they come from a diffusion model with built-in dependence.

For ‘large’ values of ˜ the dependence between observations is minor and we would thus

expect the method to perform better for ‘large’ values of ˜ than for ‘small’ values of ˜.
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Still, it turns out that the proposed estimators are consistent as n ! 1 for any fixed value

of ˜ . 0 (Section 4.1).

Third, a practical remark. Despite the definition of Un(Ł) as a supremum over all of I ,

we can calculate Un(Ł) from the values of fŁ and f̂f n at data points and at points where b is

zero. To be specific, let ~XX 1 < . . . < ~XX n be the observations ordered according to size and
~XX 0 ¼ l. Then, because fŁ is continuous and has a derivative with same sign as b, and

because f̂f n is piecewise constant, Un(Ł) ¼ max(N0, N1, N2), where

N1 ¼ max
k¼1,:::,n

���� f̂f n( ~XX k) � fŁ( ~XX k)

����,
N2 ¼ max

k¼1,:::,n

���� f̂f n( ~XX k�1) � fŁ( ~XX k)

����,
N0 ¼ sup

x0:b(x0)¼0

���� f̂f n( ~XX (x0)) � fŁ(x0)

����:
In the latter expression ~XX (x0) ¼ maxk¼0,:::,nf ~XX k : ~XX k < x0g is the largest observation smaller

0.0 0.05 0.10 0.15

0.
0

0.
00

5
0.

01
0

fhat_1
fhat_2
fhat
f (true)

Figure 1. Graphs for the estimators f̂f1,n, f̂f2,n and f̂f n for 100 simulated data from the model

dX t ¼ (0:04 � 0:6X t)dt þ 0:2X
ª
t dW t with true value ª0 ¼ 0:75, together with the graph of f

corresponding to the true parameter value. The value of ˜ is 1.
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than x0 (or l if all observations are larger than x0). For the most commonly used models b is

zero at very few points. Of course, similar formulae apply to U1,n(Ł) (U2,n(Ł)) as long as

f (l, Ł) ¼ 0 ( f (r, Ł) ¼ 0) for all Ł 2 ¨; simply substitute f̂f n by f̂f 1,n ( f̂f 2,n) and remember

also to compare f̂f1,n ( f̂f 2,n) with fŁ at the end-point r (l ).

4. Asymptotic results

In this section we prove asymptotic results for the estimators Ł̂Ł1,n, Ł̂Ł2,n and Ł̂Łn obtained by

minimizing the uniform distances U1,n, U2,n and Un, respectively. It is implicitly assumed

that the estimators exist (for n large enough).

4.1. Consistency

We first prove consistency. Let Ł0 be the true parameter value and let U (Ł) ¼
supx2 I j fŁ(x) � fŁ0

(x)j denote the uniform distance between fŁ and fŁ0
. Then U (Ł) ¼ 0 if

and only if Ł ¼ Ł0 because fŁ and fŁ9 are identical if and only if � (", Ł) and � (", Ł9) are

identical and because we do not allow parametrizations where � (", Ł) ¼ � (", Ł9) for Ł 6¼ Ł9.
We shall assume that Ł0 is well separated as a minimum of U in following sense.

Assumption 4.1. For all � . 0,

C(�) ¼ inffU (Ł) : kŁ� Ł0k . �g . 0:

This assumption is, for example, satisfied (i) if Ł ! fŁ(x) is increasing or decreasing for all

x 2 I , which will often be the case (this makes sense for one-dimensional parameters only);

or (ii) if U is continuous and ¨ is compact; or (iii) if U is continuous and ¨ is open with U

bounded away from zero at the boundary.

Theorem 4.2. Assume that Assumptions 2.1 and 4.1 hold, and that b changes sign only

finitely many times on I. If f (l, Ł) ¼ 0 ( f (r, Ł) ¼ 0) for all Ł 2 ¨ then Ł̂Ł1,n (Ł̂Ł2,n) is

consistent for Ł, and if f (l, Ł) ¼ f (r, Ł) ¼ 0 for all Ł 2 ¨ then Ł̂Łn is consistent for Ł as well.

Proof. It is sufficient to show that the uniform distances converge in PŁ0
-probability (or

almost surely with respect to PŁ0
) to U (Ł), uniformly in Ł (van der Vaart and Wellner 1996,

Corollary 3.2.2).

First, assume that f (l, Ł) ¼ 0 for all Ł 2 ¨. By the triangle inequality for the uniform

metric, jU1,n(Ł) � U (Ł)j < U1,n(Ł0) for all Ł 2 ¨, so it suffices to show that

U1,n(Ł0) ¼ sup
x2 I

���� f̂f 1,n(x) � fŁ0
(x)

����! 0 (12)

PŁ0
-almost surely. Pointwise convergence follows from the ergodic theorem and Assumption

2.1(ii). Recall that @ fŁ0
=@x has same sign as b and that f̂f 1,n is piecewise constant with jump

size b(Xk˜) at Xk˜. Uniform convergence on each of the finitely many subintervals where fŁ0
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and f̂f 1,n are either non-increasing or non-decreasing now follows exactly as in the proof of

the classical Glivenko–Cantelli theorem (Loève 1963, p. 20). Similarly if f (r, Ł) ¼ 0 for all

Ł 2 ¨. See Sørensen (2000, Section II.4) for more details.

Finally, assume that f (l, Ł) ¼ f (r, Ł) ¼ 0 for all Ł 2 ¨. Recall that f̂f n(x) ¼
f̂f 1,n(x) � (2=n)º̂º2,n(x)

Pn
i¼1b(Xi˜) and 0 < º̂º2,n(x) < 1. By the triangle inequality for the

uniform metric, ����Un(Ł) � U (Ł)

���� < supx2 I

���� f̂f n(x) � fŁ0
(x)

����
< supx2 I

���� f̂f 1,n(x) � fŁ0
(x)

����þ 2
1

n

Xn

i¼1

b(Xi˜)

�����
�����,

which converges uniformly in Ł to zero PŁ0
-almost surely since EŁ0

b(X 0) ¼ 0. This proves

consistency of Ł̂Łn. h

4.2. Rate of convergence of Ł̂Ł1,n and Ł̂Ł2,n

We now show that
ffiffiffi
n

p
(Ł̂Ł1,n � Ł0) and

ffiffiffi
n

p
(Ł̂Ł2,n � Ł0) are stochastically bounded (Theorem

4.5). The similar result for Ł̂Łn is proved in Section 4.3.

For simplicity we only list the assumptions for a one-dimensional parameter, but the

convergence results hold for multidimensional parameters under similar conditions. One of

the conditions concerns the temporal dependence of X , expressed in terms of the �-mixing

coefficients �k , k > 1. As usual, for stationary Markov processes �k is defined by

�k ¼
ð

sup
A

j pk˜,Ł0
(x, A) � �Ł0

(A)jd�Ł0
(x),

where pk˜,Ł0
is the transition probability from time 0 to time k˜ and the supremum is taken

over all Borel subsets of I .

Assumption 4.3. The true parameter value Ł0 is an inner point of ¨ * R, and for any x 2 I

the function Ł ! fŁ(x) ¼ f (x, Ł) is continuously differentiable in a neighbourhood ¨0 of Ł0

with first derivative _ffŁ ¼ @ fŁ=@Ł satisfying the following conditions:

(i) _ffŁ0
is continuous;

(ii) _ffŁ0
is bounded, i.e. supx2 I j _ffŁ0

(x)j , 1;

(iii) supx2 I j _ffŁ(x) � _ffŁ0
(x)j ! 0 as Ł ! Ł0.

Furthermore,

(iv) b 2 L p(�Ł0
) for some p . 2;

(v) there exist constants c1 . 0 and 0 , c2 , 1 such that the �-mixing coefficients for

X satisfy �k < c1ck
2 for all k > 1.

Note that conditions (ii) and (iii) of Assumption 4.3 imply continuity of U at Ł0.

We first prove uniform weak convergence of
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M i,n(h) ¼ sup
x2 I

����n1=2( f̂f i,n(x) � fŁ0þh=
ffiffiffi
n

p (x))

����, h 2 H ,

for any compact subset H of R (Proposition 4.4). We write M i,n(h) ¼
supx2 I jM9i,n(x) � M 0n(h, x)j, where

M9i,n(x) ¼ n1=2( f̂f i,n(x) � fŁ0
(x)),

M 0n(h, x) ¼ n1=2 fŁ0þh=
ffiffiffi
n

p (x) � fŁ0
(x)

� �
,

and note that the processes M 0n and M i,n are well defined for n large enough.

Recall that j f̂f i,n(x)j < (2=n)
Pn

j¼1jb(X j˜)j for all x 2 I , and that j fŁ(x)j < 2EŁjb(X 0)j for

all (x, Ł) 2 I 3¨. Hence, M 0n takes values in l1(H 3 I) (since H is compact), M9i,n in

l1(I), and thus M i,n in l1(H). Here we have used the notation l1(T ) for the set of

uniformly bounded, real functions on T; l1(T ) ¼ fg : sup t2T jg(t)j , 1g.

The process M 0n is non-stochastic and clearly M 0n(h, x) ! _ffŁ0
(x)h pointwise as n ! 1.

Under Assumption 4.3(iii) the convergence is suitably uniform. Moreover, it is well known

that the finite-dimensional marginals of M9n converge in distribution to Gaussian limits

(with quite complicated variance structure, however); see Florens-Zmirou (1989). As will be

clear from below, Assumptions 4.3(iv) and 4.3(v) ensure that the convergence is uniform,

implying uniform weak convergence of M i,n(h):

Proposition 4.4. Let H be an arbitrary compact subset of R. Under Assumptions 2.1 and 4.3,

fM1,n(h)gh2H converges weakly if f (l, Ł) ¼ 0 for all Ł 2 ¨, and fM2,n(h)gh2H converges

weakly if f (r, Ł) ¼ 0 for all Ł 2 ¨.

Proof. Assume, first, that f (l, Ł) ¼ 0 for all Ł 2 ¨. We will use Theorem 2.1 from

Arcones and Yu (1994) to show that fM91,n(x)gx2 I converges weakly to a Gaussian

process. By Assumption 4.3(v) the required mixing condition is satisfied: k p=( p�2)

(log k)2( p�1)=( p�2)�k ! 0 as k ! 1, with p from Assumption 4.3(iv).

Define for x 2 I the function Fx : I ! R by Fx(y) ¼ 2b(y)1f y<xg and let F ¼ fFxgx2 I .

Then EŁ Fx(X 0) ¼ fŁ(x) and, by definition of f̂f 1,n,

M91,n(x) ¼ n�1=2
Xn

i¼1

(Fx(Xi˜) � EŁ0
Fx(X0)):

The function Fx(y) is jointly measurable in (x, y) and the envelope function

supx2 I jFxj ¼ 2jbj of F has finite pth moment by Assumption 4.3(iv). Furthermore, F is a

so-called Vapnik–Červonenkis subgraph class of functions. This follows from lemmas in van

der Vaart and Wellner (1996): the indicator functions Hx(y) ¼ 1f y<xg ¼ 1f(�1,0]g(y � x) form

a Vapnik–Červonenkis subgraph class of functions (Lemma 2.6.16) and Fx ¼ bHx; now use

Lemma 2.6.18.

We conclude (Arcones and Yu 1994) that M91,n converges weakly in l1(I) to a tight

Gaussian process with PŁ0
-almost all paths uniformly bounded and uniformly continuous

(with respect to the metric d on I given by d(x, y)2 ¼
Ð

(Fx � Fy)2 d�Ł0
).

Uniform convergence of M 0n follows from Assumption 4.3(iii), and the limit process M 0
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given by M 0(h, x) ¼ _ffŁ0
(x)h is in l1(H 3 I) by Assumption 4.3(ii) (since H is compact).

It now follows by Slutsky’s theorem that M91,n � M 0n converges weakly in l1(H 3 I), and

finally by the continuous mapping theorem that M1,n converges in l1(H).

Similarly for M2,n if f (r, Ł) ¼ 0 for all Ł 2 ¨. h

Theorem 4.5. Assume that Assumptions 2.1, 4.1 and 4.3 hold and that _ffŁ0
(x0) 6¼ 0 for an

x0 2 I . Then
ffiffiffi
n

p
(Ł̂Ł1,n � Ł0) is O p(1) if f (l, Ł) ¼ 0 for all Ł 2 ¨, and

ffiffiffi
n

p
(Ł̂Ł2,n � Ł0) is O p(1)

if f (r, Ł) ¼ 0 for all Ł 2 ¨.

Proof. Recall that Ł̂Łi,n minimizes Ui,n(Ł) ¼ supx2 I j f̂f i,n(x) � fŁ(x)j and that Ui,n(Ł) !
U (Ł) ¼ supx2 I j fŁ0

(x) � fŁ(x)j PŁ0
-almost surely as n ! 1. We first show that

ffiffiffi
n

p
U (Ł̂Łi,n)

is O p(1). By the triangle inequality,ffiffiffi
n

p
U (Ł̂Łi,n) <

ffiffiffi
n

p
Ui,n(Ł̂Łi,n) þ

ffiffiffi
n

p
Ui,n(Ł0) < 2

ffiffiffi
n

p
Ui,n(Ł0)

and
ffiffiffi
n

p
Ui,n(Ł0) ¼ M i,n(0) converges weakly and is hence O p(1).

Recall C(�) from Assumption 4.1 and note that P(
ffiffiffi
n

p jŁ̂Łi,n � Ł0j . �) < P(
ffiffiffi
n

p
U (Ł̂Łi,n) >ffiffiffi

n
p

C(�=
ffiffiffi
n

p
)) for all � . 0. Hence, ifffiffiffi

n
p

C(�=
ffiffiffi
n

p
) . c�, (13)

for all � . 0, some constant c . 0 not depending on � and n large enough, thenffiffiffi
n

p
(Ł̂Łi,n � Ł0) is O p(1).

To prove (13), choose c, � . 0 such that U (Ł) . cjŁ� Ł0j for all Ł with jŁ� Ł0j < �.

This is possible by differentiability of Ł ! fŁ(x0) (use, for example, c ¼ j _ffŁ0
(x0)j=2). For

n . �2=�2,

C(�=
ffiffiffi
n

p
) ¼ inffU (Ł) : jŁ� Ł0j . �=

ffiffiffi
n

p
g

¼ min(inffU (Ł) : �=
ffiffiffi
n

p
, jŁ� Ł0j < �g, inffU (Ł) : jŁ� Ł0j . �g)

¼ min(inffU (Ł) : �=
ffiffiffi
n

p
, jŁ� Ł0j < �g, C(�)):

Now, C(�) . 0 by Assumption 4.1 and inffU (Ł) : �=
ffiffiffi
n

p
, jŁ� Ł0j , �g ! 0 as n ! 1

since U (Ł0) ¼ 0 and U is continuous at Ł0. Hence, for n large enough,

C(�=
ffiffiffi
n

p
) ¼ inffU (Ł) : �=

ffiffiffi
n

p
, jŁ� Ł0j , �g . c�=

ffiffiffi
n

p
,

which proves (13) and thus the theorem. h

4.3. Convergence in distribution of
ffiffiffi
n

p
Ł̂Łn � Ł0

� �
We finally show that

ffiffiffi
n

p
(Ł̂Łn � Ł0) is O p(1) and even converges weakly (Theorem 4.7). Let

M9n(x) ¼ n1=2( f̂f n(x) � fŁ0
(x)) and M n(h) ¼ supx2 I jM9n(x) � M 0n(h, x)j. We first give a

uniform convergence result for M n similar to Proposition 4.4.

Proposition 4.6. Assume that Assumptions 2.1 and 4.3 hold and f (l, Ł) ¼ f (r, Ł) ¼ 0 for all

Ł 2 ¨. Then fM n(h)gh2H converges weakly for any compact set H * R.
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Proof. Recall that f̂f n ¼ º̂º1,n f̂f 1,n þ º̂º2,n f̂f 2,n, where º̂º j,n converges pointwise PŁ0
-almost surely

to º j :¼ ºŁ0, j, j ¼ 1, 2 (see Section 3.1 for definitions of the various ºs). The convergence is

even uniform: indeed, note that º1 is continuous and decreasing and argue as in the proof of

the classical Glivenko–Cantelli theorem (Loève 1963, p. 20).

We first argue that it suffices to consider º1 f̂f 1,n þ º2 f̂f2,n instead of f̂f n. By adding and

subtracting º1 f̂f 1,n and º2 f̂f 2,n, we obtain

f̂f n ¼ (º̂º1,n � º1) f̂f 1,n þ (º̂º2,n � º2) f̂f 2,n þ º1 f̂f 1,n þ º2 f̂f 2,n

¼ (º̂º1,n � º1)( f̂f 1,n � fŁ0
) þ (º̂º2,n � º2)( f̂f 2,n � fŁ0

) þ º1 f̂f 1,n þ º2 f̂f 2,n

and hence

M9n ¼ (º̂º1,n � º1)M91,n þ (º̂º2,n � º2)M92,n þ M9º,n, (14)

where M9º,n(x) ¼ n1=2(º1(x) f̂f 1,n(x) þ º2(x) f̂f2,n(x) � fŁ0
(x)): In the proof of Proposition 4.4 we

showed that M91,n and M92,n converge weakly, and it now follows from Slutsky’s theorem that

M9n converges in l1(I) if M9º,n does.

Now, let F ¼ fFxgx2 I , where Fx : I ! R is defined by

Fx(y) ¼ 2º1(x)b(y)1f y<xg � 2º2(x)b(y)1f y.xg

¼ 2b(y) º1(x) � 1f y.xg
� �

, y 2 I :

Then EŁ Fx(X0) ¼ fŁ(x) and M9º,n(x) ¼ n�1=2
Pn

i¼1(Fx(Xi˜) � fŁ0
(x)). The function Fx(y) is

jointly measurable in (x, y) and the envelope function supx2 I jFxj < 4jbj of F has finite pth

moment by Assumption 4.3(iv).

Let Q be an arbitrary probability measure on I with b 2 L2(Q) and let k " kQ be the

L2(Q)-norm. By continuity and boundedness of º1 and x !
Ð x

l
b2 dQ it easily follows that

the k " kQ-covering number N (�, F , k " kQ), that is, the minimal number of k " kQ-balls of

radius � needed to cover F , is at most 32
Ð r

l
b2 dQ=�2 (at least for small �). For further

details, see the proof of Proposition II.8 in Sørensen (2000). Similar arguments show that

N (�, F , k " k p) < C=� p, where k " k p is the L p-norm with respect to �Ł0
( p being the

number from Assumption 4.3(iv)) and C . 0 is a constant not depending on �. This impliesÐ1
0

(log N (�, F , k " k p))1=2 d� , 1.

It follows (Arcones and Yu 1994, Lemma 2.1) that M9º,n converges in l1(I)1 and hence

from (14) that M9n converges in l1(I). Finally, weak convergence of M 0n and M n follows as

in the proof of Proposition 4.4. h

Theorem 4.7. Assume that Assumptions 2.1, 4.1, and 4.3 hold and that f (l, Ł) ¼ f (r, Ł) ¼ 0

for all Ł 2 ¨. If, in addition, _ffŁ0
(x0) 6¼ 0 for some x0 2 I , then

ffiffiffi
n

p
(Ł̂Łn � Ł0) is O p(1); and if,

furthermore, _ffŁ0
(x) 6¼ 0 for all x 2 I , then

ffiffiffi
n

p
(Ł̂Łn � Ł0) converges weakly.

1This also follows from F being a Vapnik–Červonenkis subgraph class of functions; a quite tedious proof may be
found in Sørensen (2000, Lemma II.12).
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Proof. The stochastic boundedness of
ffiffiffi
n

p
(Ł̂Łn � Ł0) follows exactly as in the proof of

Theorem 4.5. For the weak convergence it then suffices to show that PŁ0
-almost all paths of

the limit M of M n have a unique minimum (van der Vaart and Wellner 1996, Theorem

3.2.2).

The limit process M has the form M(h) ¼ supx2 I jM9(x) � _ffŁ0
(x)hj, where M9 is the

Gaussian limit of M9n. All paths h ! M(h) satisfy M(h) ! 1 as h ! �1 since M(h) >

jM9(x) � _ffŁ0
(x)hj and _ffŁ0

(x) 6¼ 0 for any fixed x 2 I (for this it suffices that _ffŁ0
(x0) 6¼ 0 for

some x0 2 I). All paths are continuous since jM(h2) � M(h1)j < jh2 � h1j supx2 I j _ffŁ0
(x)j

for all h1, h2 2 R and hence have a minimum. We must show that the minimum is unique

for almost all paths.

Now, it holds PŁ0
-almost surely that M9 is continuous and satisfies M9(x) ! 0 as x & l

and x % r (by Portmanteau’s theorem). Consider a path h ! M(h) for which this is the

case and assume that h1 , h2 both minimize M . Let m ¼ M(h1) ¼ M(h2) be the minimum

value. All paths of M are obviously weakly convex so M(h) ¼ m where h ¼ (h1 þ h2)=2 is

the midpoint between h1 and h2.

By definition, M(h) ¼ supx2 I jM9(x) � _ffŁ0
(x)hj. Choose a sequence (xn) from I such that

jM9(xn) � _ffŁ0
(xn)hj > m � 1=n for each n > 1. For j ¼ 1, 2 and all n > 1,

m ¼ M(h j) > jM9(xn) � _ffŁ0
(xn)h jj,

implying that j _ffŁ0
(xn)j(h2 � h1)=2 < 1=n (due to the special form of the graph of

x ! jM9(x) � _ffŁ0
(x)h jj). Hence, j _ffŁ0

(xn)j ! 0 as n ! 1.

Since _ffŁ0
is continuous and _ffŁ0

(x) 6¼ 0 for all x 2 I , it thus holds for any

l , x1 , x2 , r that xn =2 [x1, x2] for n large enough and hence M9(xn) ! 0 as n ! 1.

It follows that

m ¼ M(h) ¼ lim
n!1

����M9(xn) � _ffŁ0
(xn)h

���� ¼ 0 (15)

so M(h1) ¼ M(h2) ¼ m ¼ 0. This is not possible, though, since for any x 2 I at least one of

the values jM9(x) � _ffŁ0
(x)h1j and jM9(x) � _ffŁ0

(x)h2j is strictly positive.

We conclude that M has a unique minimum PŁ0
-almost surely and hence thatffiffiffi

n
p

(Ł̂Łn � Ł0) converges weakly. h

Parts of the above proof could be repeated with M1 or M2 substituted for M. If h and

(xn) are as above with M replaced by M1, say, then xn could still be made arbitrarily close

to l or r by choosing n large enough. But M91(x) does not converge to zero as x ! r so

limn!1 jM91(xn) � _ffŁ0
(xn)hj, corresponding to (15), need not be zero and cannot be rejected

as the minimum value of M1. That is, we cannot rule out the possibility that M1 has

several minimum points. Similarly for M2.

The distribution of
ffiffiffi
n

p
(Ł̂Łn � Ł0) converges to the distribution of the minimum of the

process M(h) ¼ supx2 I jM9(x) � _ffŁ0
(x)hj, where M9 is the limit of M9n (which has a quite

complicated variance structure due to the temporal dependence in X ). The limit distribution

cannot easily be described more explicitly than that. In particular, there is no reason to

believe that the limit distribution is Gaussian (a small simulation study indicates, however,

that the limit distribution might be close to Gaussian; see Section 5.1).
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5. Example: the CKLS model

Consider now the so-called CKLS model

dX t ¼ (Æþ �X t)dt þ � X
ª
t dW t, (16)

named after Chan et al. (1992) who first discussed it in this generality. The geometric

Brownian motion, the Ornstein–Uhlenback process and the Cox–Ingersoll–Ross model all

occur as special cases.

Let Æ . 0, � , 0 and � . 0. If 1
2
, ª , 1 then Assumption 2.1 holds with I ¼ (0, 1)

and the value f (ª,� )(x) is for fixed Æ and � given by

K0(Æ, �, ª, � )exp
2Æ

� 2(1 � 2ª)
x1�2ª þ �

� 2(1 � ª)
x2�2ª

� �
, x . 0,

which converges to zero as x ! 0 and x !1. Hence, the appropriate estimator of f is f̂f n.

There is no explicit expression for the normalizing constant K0, but we can calculate it

numerically.

In the following we apply the estimation technique of Section 3 to simulated data from

the above model. Related studies may be found in Honoré (1997), Poulsen (1999) and

Elerian et al. (2001), all investigating estimation techniques far more computationally

demanding than those considered here.

5.1. Investigation of the limit distribution in a simple case

First, consider the simple (and unrealistic) case where Æ, � and � are known and only ª need

be estimated. From Section 4 we know that the estimator ª̂ªn obtained by minimizing Un is

consistent and converges weakly (when centred and scaled properly).

Figure 2 shows a histogram and a quantile–quantile (QQ) plot for 1000 simulated values

of
ffiffiffi
n

p
(ª̂ªn � ª0). Each value of ª̂ªn was computed as follows: a path of X was simulated

from time zero to time 1000 (by means of the Euler scheme with time-step 1/1000); the

values at time-points 1, 2, . . . , 1000 (corresponding to ˜ ¼ 1) were recorded; and ª̂ªn was

calculated based on these 1000 observations. The true value of ª was ª0 ¼ 0:75 and the

known parameters were fixed at (Æ, �, � ) ¼ (0:04, �0:6, 0:2).

The histogram and the QQ plot both indicate that the asymptotic distribution offfiffiffi
n

p
(ª̂ªn � ª0) is quite close to Gaussian.

5.2. Comparison with two other methods

Consider now the more realistic case where Æ, �, ª and � are all unknown. The method of

Section 3 does not apply immediately (as the drift is no longer known). Instead we use the

following adjusted strategy.

First, the drift parameters, Æ and �, are estimated by a least-squares (LS) approach as

suggested by Aı̈t-Sahalia (1996). Specifically, estimators Æ̂Æn and �̂�n are obtained by

minimization of
Pn

i¼2(Xi˜ � j(X (i�1)˜, Æ, �))2, where
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j(x, Æ, �) ¼ EÆ,�,ª,� (X˜jX 0 ¼ x) ¼ e�˜ x þ Æ

�

� �
� Æ

�
(17)

is the conditional expectation one step ahead (which does not depend on ª and � ). This is

equivalent to estimation via a martingale estimating function (Bibby and Sørensen 1995).

Next, the diffusion parameters, ª and � , are estimated as described in Section 3 – except that

the true drift function is now replaced by the estimated version Æ̂Æn þ �̂�nx (in both f̂f n and f ).

Note that we have no evidence that these estimators for ª and � have nice asymptotic

properties since the proofs in Section 4 do not take into account the errors introduced by

estimation of the drift parameters.

In the following we compare the above estimation technique with two other simple

methods in a small simulation study. In the first approach Æ and � are estimated as above,

and ª and � are then estimated by maximizing l n(ª, � ) ¼
Pn

i¼1 log �(Xi˜, Æ̂Æn, �̂�n, ª, � ),

which would be the log-likelihood if the observations were independent and identically

distributed with density �(", Æ̂Æn, �̂�n, ª, � ).

The second method is the one suggested by Chan et al. (1992) themselves – based on

rough approximations of the conditional moments one step ahead. To be specific, define

�i ¼ Xi˜ � X (i�1)˜ � (Æþ �X (i�1)˜)˜ and solve the equation

Xn

i¼2

�i, �i X (i�1)˜, �2
i � ˜� 2 X

2ª
(i�1)˜, �2

i X (i�1)˜ � ˜� 2 X
1þ2ª
(i�1)˜

� �
¼ 0

with respect to (Æ, �, ª, � ). The estimating function – and thus the estimators – can be very

biased when ˜ is not ‘small’.

Table 1 reports empirical means and standard errors of simulated values of the above-

mentioned estimators (with obvious names). The estimators have been computed for 100

simulated data sets, each of length 500 and with the same parameter values as in Section

Figure 2. (a) Histogram and (b) QQ plot for 1000 simulated values of
ffiffiffi
n

p
(ª̂ªn � ª0). The values of Æ,

� and � are taken as known. The curve in (a) is the density for the normal distribution with mean and

standard error equal to those of the empirical distribution of the estimates (0.0716 and 0.4071,

respectively).
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5.1. The CKLS estimates are clearly biased (in fact, half the ª estimates are less than 1
2

and

should strictly speaking have been excluded). Of course, 100 simulations are far too few to

draw any final conclusions on the two remaining estimators, but the study indicates that

they are both quite reasonable. See Sørensen (2000, Section II.7) for further details on the

study and, in particular, for a discussion on some numerical problems related to the

optimizations.

Informal studies indicate that the nonparametric procedure suggested by Aı̈t-Sahalia

(1996) yields quite reasonable estimators of the diffusion function in the central area of

the distribution, but the estimator is of course extremely variable in areas with few

observations.

6. Concluding remarks

In this paper we have discussed a method for the estimation of parameters in the diffusion

function. It provides consistent and in some cases also weakly convergent estimators. The

usual limit theory does not apply; instead we have used empirical process theory to prove the

asymptotic results. We have applied (an adjusted version of) the method to simulated data

from the difficult CKLS model and obtained satisfactory (though presumably not efficient)

estimators. From a theoretical point of view, the application of empirical process theory is

perhaps of most interest.
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Table 1. Empirical means and standard errors of various estimators for 100 realizations of the CKLS

model. The true parameters are Æ ¼ 0:04, � ¼ �0:60, ª ¼ 0:75 and � ¼ 0:20; n ¼ 500 and ˜ ¼ 1.

For the first two methods ‘Failures’ reports the number of simulations for which the optimization

problem did not have a solution; for the last method it reports the number of ª estimates less than 1
2

(note that we have averaged over all 100 values anyway)

Æ̂Æn �̂�n ª̂ªn �̂� n

Method Failures Mean S.E. Mean S.E. Mean S.E. Mean S.E.

LS-min Un 6 0.0411 0.0050 �0.6166 0.0785 0.7386 0.0958 0.2009 0.0531

LS-IID 7 0.0411 0.0050 �0.6166 0.0785 0.7467 0.0800 0.2039 0.0439

CKLS (49) 0.0306 0.0027 �0.4586 0.0422 0.5076 0.1328 0.0862 0.0352
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