
Nonlinear kernel density estimation for

binned data: convergence in entropy

G O R D O N B L OW E R � and JULIA E. KELSALL��

Department of Mathematics and Statistics, Lancaster University, Lancaster LA1 4YF, UK.

E-mail: �g.blower@lancaster.ac.uk; ��julia.kelsall@mayo.edu

A method is proposed for creating a smooth kernel density estimate from a sample of binned data.

Simulations indicate that this method produces an estimate for relatively finely binned data which is

close to what one would obtain using the original unbinned data. The kernel density estimate f̂f is the

stationary distribution of a Markov process resembling the Ornstein–Uhlenbeck process. This f̂f may

be found by an iteration scheme which converges at a geometric rate in the entropy pseudo-metric,

and hence in L1 and transportation metrics. The proof uses a logarithmic Sobolev inequality

comparing relative Shannon entropy and relative Fisher information with respect to f̂f .
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1. Introduction

This paper proposes a variant of kernel density estimation for binned data. Let x1, x2, . . . , xN

be a random sample from a distribution with density f (x). Then the standard kernel density

estimate of f is

f̂f (x) ¼ 1

N

XN

j¼1

K(x � xj), (1:1)

where K is the kernel function which is positive, symmetric about zero and integrates to one.

Our choice of kernel is the Gaussian kernel

K(x � y) ¼ 1

(2�)1=2 h
exp � 1

2h2
(x � y)2

� �
, x, y 2 R: (1:2)

We refer to the standard deviation h as the smoothing parameter or bandwidth. The

appearance of the density estimate depends crucially on the choice of h. The choice of kernel

function is not so crucial in terms of asymptotic statistical properties.

For reasons of efficient data storage, large data sets are often binned to some degree. The

mildest form of binning may just amount to rounding to some fixed number of decimal

places. At the other extreme, data may be counts over relatively large intervals or spatial
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regions. In health and social research, for confidentiality reasons, there is often no access to

individual level data, and data must be aggregated to a sufficient level.

In this paper we introduce a nonlinear variant of the kernel density estimator for binned

data, which has the attractive property of reducing to standard kernel density estimation in

the limit as the bin size diminishes. We assume that the data have been pre-binned, and that

we have no control over the binning process. We consider binning as a nuisance, and aim

for a density estimate which is as close as possible to what we would have obtained if we

had the unbinned data. There are two approaches already available in this context. The first

is to use standard kernel density estimation, treating all observations as if they were equal

to the midpoint of their corresponding bins; this performs well when the binning is very

fine, and becomes a much poorer approximation as the binning becomes coarser (Scott and

Sheather 1985). Another approach is called ‘weighted average of rounded points’ (Härdle

and Scott 1992). This is an approximation to kernel density estimation which copes better

with relatively larger bin-widths than the simple estimator. Literature on these models is

focused on their relative efficiencies for computing kernel density estimates from huge sets

of data. In this scenario, the unbinned data are available yet, due to computational

considerations, binning is chosen. The investigator has control of the choice of bin-width as

well as the bandwidth.

The method that we propose performs well, at least qualitatively, even when the binning

is quite coarse. If the bin sizes are large, however, then any information about small-scale

fluctuations in the density will be lost irretrievably. The best we can hope for is an estimate

which is as close as possible to the true density using the data available. Our approach is

based upon similar ideas to Titterington (1983), who considers kernel density estimation for

situations in which only a small proportion of the data is binned.

The simplest density estimate from binned data is the histogram or the frequency

polygon, which is a trapezium with nodes above the midpoint of the bins. Minnotte (1996)

suggests a ‘bias-optimized frequency polygon’ that preserves the mass proportions within

bins. Most further improvements obtain a smooth density estimate from the histogram,

employing spline-based methods. Early examples include Boneva et al. (1971), and that of

Tobler (1979) who produces a smooth version of a bivariate histogram. More recently,

Minnotte (1998) extended this work by introducing his version of ‘histosplines’. These

estimate the density as a sum of splines of even order, and reduce to the bias-optimized

frequency polygon in the case of linear splines. Like the kernel estimates for binned data

described above, most of these methods assume that the investigator has control over the

choice of bins. In Minnotte’s approach, the estimator always preserves bin mass proportions,

which entails that the method will not work well when sample sizes or bin-widths are small,

in which case observed bin proportions cannot be relied upon.

Minnotte’s method can be considered as an alternative to kernel density estimation, which

has the bin-width as its smoothing parameter rather than the bandwidth of the kernel

function. In simulations it was found to perform well, compared to kernel approaches, for

large sample sizes and large bin-widths (Minnotte 1998). An unpleasant property of this

estimator is its tendency to produce estimates which are negative in places. The obvious

remedy, of truncating the estimates at zero, abandons the property of preserving mass

proportions within bins. Koo and Kooperberg (2000) extend ideas of logspline density
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estimation in an approach to be used for binned data (see Stone et al. 1997; Kooperberg

and Stone 1991). This approach, like ours, assumes that the data are pre-binned, and does

not insist upon preserving bin mass proportions exactly. The ‘smoothing parameter’ for this

approach is the number of knots assigned to the logspline. As estimation is on the log scale,

density estimates are non-negative.

The theoretical results of Minnotte (1998) and Barron and Sheu (1991), which ensure

convergence of the splines, are expressed in terms of the higher-order derivatives of the

densities, without an intuitive probabilistic interpretation. Tobler (1979) seeks to smooth

binned spatial point data by solving a discrete Dirichlet problem subject to mass-preserving

constraints on each bin. There does not seem to be any simple characterization of the

solution that minimizes the Dirichlet integral subject to both the mass-preserving constraints

and the positivity condition. Further, Tobler’s principal example concerned the population of

an isolated country, where it is natural to impose the Neumann (zero normal derivative)

boundary condition on the minimizer of the Dirichlet integral; but it is not clear that one

can assume this in other cases.

Our binned kernel estimator has attractive properties, including the following.

(i) As the ratio of bin-width of the histogram to the bandwidth of the kernel

diminishes, our method reduces to standard kernel density estimation.

(ii) In the limit as the smoothing parameter diminishes, we obtain a smooth estimate of

the density which preserves mass proportions, with results similar in appearance to

those of the cubic histospline estimator of Minnotte (1998).

(iii) The same method works for binned data in Rd , given any finite collection of

bounded and abutting bins.

(iv) No boundary conditions are required, and there are no smoothness assumptions on

the underlying density.

(v) Estimates are always non-negative.

To introduce our method, we let Aj (1 < j < m) be consecutive, abutting and bounded

intervals in R, with
Sm

j¼1 Aj ¼ A; and let nj . 0 be such that
Pm

j¼1 nj ¼ N . Now let

xj1, xj2, . . . , xjnj
denote the true (unknown) locations of the nj data points in Aj. Then,

referring to equation (1.1), the standard kernel density estimate is

f̂f (x) ¼ 1

N

Xm

j¼1

Xnj

k¼1

K(x � xjk): (1:3)

Since the true locations within the intervals Aj are unknown, we cannot construct this

density estimate. Suppose for a moment that we did know the underlying density f (x) on R.

Given that a particular observation is censored within the interval Aj, its location will be a

realization from the density

f j(x) ¼ f (x)

ð
A j

f (y)dy

( )�1
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on Aj. For given j and k, since we do not know the true value of K(x � xjk) in (1.3), we could

substitute it by its expectation

EfK(x � Xjk)g ¼
ð

A j

K(x � y) f j(y)dy:

Thus we obtain the revised estimator

~ff (x) ¼
Xm

j¼1

nj

N

ð
Aj

K(x � y) f (y)dyð
Aj

f (y)dy

, x 2 R: (1:4)

But we do not know f (y). For any positive and piecewise continuous function g, let us write

Tg(x) ¼
Xm

j¼1

nj

N

ð
Aj

K(x � y)g(y)dyð
Aj

g(y)dy

, x 2 R: (1:5)

Equation (1.4) suggests that a smooth estimate f̂f can be found as the limit of the iterative

scheme

f̂f kþ1 ¼ T f̂f k , k > 0; (1:6)

thus f̂f is a fixed point of T. The limit f̂f ¼ limk!1 f̂f k depends upon T; that is, upon h, the Aj

and nj=N . The natural choice of f̂f 0 is the density of the histogram of observed bin counts

f̂f0(x) ¼
Xm

j¼1

nj

N jAjj
IA j

(x), x 2 R,

where IA j
denotes the indicator function of Aj. Empirically, however, convergence is found to

be achieved faster by starting with a smooth estimate. In this paper we establish the

following.

Theorem 1.1. The operator T has fixed points f̂f ¼ T f̂f which are smooth and positive

probability density functions of rapid decay at infinity. For suitable nj=N, Aj and h, the

iteration scheme (1.6) with initial data f̂f 0 converges geometrically, so that, for some C,

� . 0, the iterates satisfyð1
�1

j f̂f k(x) � f̂f (x)jdx < C exp(��k), k > 0:

More precise statements of the technical hypotheses will be given in Theorem 7.1 below.

The probabilistic interpretation of the iteration scheme is as follows.

Let X be a random variable with density g, and Y a random variable with bin quotas

P[Y 2 Aj] ¼ nj=N , and which has the same conditional distribution on Aj as X, so

Y j[Y2A j] � X j[X2A j] for each j. Let Y evolve to Z ¼ Y þ B� by addition of an independent

426 G. Blower and J. Kelsall



Brownian motion with B0 ¼ 0. Then Tg is the density of Z. The density g ¼ f̂f is a fixed

point for T when X and Z have the same distribution.

Exploiting special properties of the fixed point, we shall deduce the following.

Corollary 1.2. Let f̂f and f̂f k (k > 1) be probability density functions generated by the above

scheme. Then there exist random variables X and Xk (k > 1) on a common probability space

such that X has density f̂f , Xk has density f̂f k and their joint distribution satisfies

EjX � X k j2 < C exp(��k), k > 1:

The remainder of this paper is arranged as follows. The practical performance of the

estimator is investigated in Section 2. In Section 3 we establish the existence of fixed points

for T. In Section 4 we review the basic properties of entropy and information. The main

technical result needed to prove Theorem 1.1 is a logarithmic Sobolev inequality comparing

relative entropy and information with respect to a fixed point of T; this is obtained

in Section 5. The proof of Theorem 1.1 also requires detailed analysis of the binning

operation, which is presented in Sections 6 and 7.

An important feature of certain logarithmic Sobolev inequalities, such as Gross’s theorem

(Gross 1975), is that they hold in spaces of arbitrarily high dimension, typically with

constants which do not depend directly upon dimension. The results of Sections 3, 4 and 5

extend in the obvious way to bounded and abutting rectangular regions in higher

dimensions.

2. Implementation

Figure 1 shows a kernel density estimate produced from binned data. In this case there are

only ten observations, with a bin size of 0.5, and bandwidth h ¼ 0:2: Also shown is the

histogram and the kernel density estimate produced from the original data values. The binned

kernel estimator produces a sensible estimate, given the extremely limited form of the data.

Changing the bandwidth has much the same effect as in standard kernel density

estimation, as can be seen in Figure 2. A sample of size 200 was obtained from an equal

mixture of two Gaussian densities (with standard deviation 1.2, and means 2.5 and 7.5), and

the data binned. We see that as the bandwidth diminishes, the bin integrals of the density

estimate follow more closely those of the histogram. In the limit h ! 0, the bin integrals of

the histogram are preserved. This binned kernel estimator with ‘h ¼ 0’ can be compared

with Minnotte’s cubic histospline method, as shown in Figure 3. The two estimates are

much the same, except that the cubic histospline has the tendency to be negative in some

places.

As with standard kernel density estimation, it is vital to consider carefully the issue of

choice of the bandwidth. Since the method simplifies to standard kernel density estimation

as the bin-width tends to zero, we can use established methods of bandwidth selection for

small bin sizes, and versions of them for larger bin-widths. We consider two approaches.

The first is the ‘plug-in’ method of Sheather and Jones (1991), designed by attempting to
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minimize an asymptotic form of the mean integrated squared error. (We use the version

implemented in the library of S-PLUS functions accompanying Azzalini and Bowman

(1997).) The second approach is least-squares cross-validation which attempts to minimize

the data-specific integrated squared error (see Bowman 1984). The first of these methods is

more stable than the second; yet cross-validation approaches can be generalized more

readily. See Wand and Jones (1995) for a fuller discussion of bandwidth choice.

For binned data, a simple approach for choosing the bandwidth is to simulate the

locations of observations uniformly within bins and use any of the standard methods on

these pseudo-data. To minimize the variability that the random simulation may induce, we

can repeat this procedure and take the median of the values of smoothing parameter that are

obtained. When the density is approximately uniform within bins, we can expect this

approach to work. Where the amount of data is very large, this strategy may not be feasible

in terms of the computational time involved, and an alternative approach is required.

The least-squares cross-validation method for standard kernel density estimation (as in

Bowman 1984) seeks to minimize the integrated squared error (ISE), which amounts to

minimizing the following expression when the kernel is Gaussian:

0 1 2 3 4 5 6
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0
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4

0.
5

0.
6

Figure 1. Illustration of kernel density estimates produced with Gaussian kernel and smoothing

parameter h ¼ 0:2. The dotted line shows the standard kernel density estimate produced from the

original data. The solid line shows the estimate created from the histogram of the data with bin-width

0.5 (finer solid line).
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CV(h) ¼
ð

f̂f (x)2 dx � 2

N � 1

XN

j¼1

f̂f (xj) � (2�)�1=2 h�1

8<:
9=;:

For estimation with binned data, we propose using a similar expression, replacing the

summation term with the approximation

XN

j¼1

f̂f (xj) �
Xm

k¼1

nk

jAk j

ð
A k

f̂f (x)dx:

For the purposes of this paper, we call this ‘binned cross-validation’.

We conduct a simulation study to compare the three methods of choosing the smoothing

parameter that we have outlined. In all cases we simulate from a density that is a 1:4

mixture of a normal density with mean 2 and standard deviation 0.17, and a lognormal

density with mean 0 and standard deviation 0.5 on the log scale. This density is considered

by Koo and Kooperberg (2000) to investigate their logspline approach.
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Figure 2. Smooth density estimates constructed from a histogram, using four different values of the

smoothing parameter h. The histogram was constructed from a sample of size 200 from a mixture of

two Gaussian densities shown on the plots as the dotted line.
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We consider four different sample sizes, n ¼ 100, 300, 1000 and 3000; and compare

ISEs attained in 50 simulations for each combination of sample size, possible bin-widths

and methods of choosing smoothing parameters. Median ISEs for the binned CV method

are shown in Table 1, with the corresponding median smoothing parameters in Table 2; and

in each case we show the gold standard values obtained by finding smoothing parameters

that exactly minimize the ISE.

In Figure 4 are boxplots of the ISEs and smoothing parameter values obtained for the

three methods of choosing the smoothing parameter for sample sizes of 100 and 1000.

Qualitatively similar results were obtained for sample sizes of 300 and 3000. One can

compare these results for medians with the corresponding results for mean ISEs from Table

1 of Koo and Kooperberg (2000) with � ¼ 0:17. Although we cannot directly compare

means and medians since the distribution of ISEs tend to be positively skewed (see, for

example, Figure 4(a)), it is clear that the ISEs obtained using the two approaches tend to be

similar in magnitude.

The simulations show that, with optimal choice of smoothing parameter, the binned

kernel estimator produces estimates which are hardly any worse, in terms of ISE, than

�4 �2 0 2 4

0.
0

0.
2

0.
4

0.
6

Figure 3. Illustration of the Minnotte (1998) histospline estimator (dotted line) compared with our

binned kernel estimator in the limit as h ! 0 (solid line). The data were obtained as a sample of size

100 from a standard Gaussian density, and binned with bin-width 0.25.
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kernel density estimation on unbinned data, even for relatively large bin-widths. The

Sheather–Jones method for choosing the smoothing parameter works well, so long as the bin

size and sample size are relatively small. It does not seem to work well, however, when the

sample size is large relative to the bin-width. In this scenario, the fact that the pseudo-data

actually follow a piecewise constant version of the true density is likely to be detectable.

This will cause ‘plug-in’ methods, which rely on estimates of the second derivative, to

choose values of the smoothing parameter that may be appropriate for estimating the

discontinuous density, yet not for the underlying smooth density. Least-squares cross-

validation is more variable in its choice of smoothing parameter, and tends to produce

larger ISEs than the Sheather–Jones method (a feature well known), yet does not appear to

suffer to the same extent the problems associated with having a large sample size relative to

the bin-width. The binned cross-validation method performs similarly to cross-validation,

yet it tends to choose larger smoothing parameters, with this being most obvious as the

sample size increases relative to the bin-width. On the whole, binned cross-validation does

not appear appreciably worse than the other methods. It is also computationally much

Table 1. Mean integrated squared errors (31000) of kernel density estimates constructed from binned

data. Smoothing parameters were chosen according to the binned cross-validation method. In

parentheses are mean integrated squared errors corresponding to use of the smoothing parameter that

minimizes the integrated squared error in each case

Bin-width

Sample size Not binned 0.03 0.1 0.3

100 25.1 (18.1) 23.7 (21.5) 20.7 (17.7) 27.8 (19.6)

300 10.4 (9.1) 10.9 (8.3) 9.6 (8.2) 12.0 (10.4)

1000 3.9 (3.8) 4.2 (3.7) 4.1 (3.6) 5.3 (3.5)

3000 1.8 (1.5) 1.6 (1.6) 1.8 (1.9) 2.7 (2.3)

Table 2. Median values of smoothing parameters (3100) chosen using the binned cross-validation

method. In parentheses are the medians of smoothing parameters that minimize the integrated squared

error. These smoothing parameters correspond to the results in Table 1

Bin-width

Sample size Not binned 0.03 0.1 0.3

100 14.5 (14.7) 15.9 (14.5) 18.2 (14.2) 21.0 (12.8)

300 11.3 (11.1) 12.1 (11.1) 12.7 (10.6) 14.9 (7.4)

1000 7.7 (8.7) 8.6 (8.5) 9.9 (8.3) 8.8 (3.9)

3000 6.3 (6.8) 6.7 (6.7) 7.7 (5.8) 6.2 (2.4)
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faster; time depends on the number of bins, rather than the sample size. In conclusion, we

recommend the Sheather–Jones method for choosing the bandwidth when the sample size is

small (i.e. less than 300), and the binned cross-validation method for larger sample sizes.

When the sample size is excessively large relative to the size of the bins such that the

density bin proportions are accurately represented, we can effectively fix the smoothing

parameter to be the limiting case of ‘h ¼ 0’.

In practice, we find that convergence is slower for smaller smoothing parameter values. It

is thus wise to start with a relatively large smoothing parameter and progressively to reduce

this, as iterations proceed, to the desired value. This applies especially in the case where we

require ‘h ¼ 0’; here we continue until h becomes negligible in value, and convergence of

the density estimate is achieved.

The binned kernel density estimation can also be applied to two-dimensional data, and

Figure 4. (a) Integrated squared errors of density estimates for three different methods of choosing

the smoothing parameter for binned data, for four bin-widths and for sample sizes (i) n ¼ 100 and (ii)

n ¼ 1000. The methods are compared with the optimal possible, where the smoothing parameter is

chosen to minimize the integrated squared error for each sample. (b) Corresponding smoothing

parameters (i) n ¼ 100 and (ii) n ¼ 1000.
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Figure 5 demonstrates the implementation of our method for spatial data. There is no need

for the bins to be rectangular, which implies that the method has potential applicability in

producing density estimates from counts over arbitrarily defined adjoining geographical

areas. The binned cross-validation approach is applicable for choosing smoothing

parameter(s) for spatial data as it is for one-dimensional data.

3. Existence of the fixed point

In this section we establish the existence of smooth densities that satisfy Tf ¼ f for kernels

K such as the Gaussian kernel of (1.2). The kernel function is required to satisfy:

(i) smoothness, so that K : R ! R is continuously differentiable;

(ii) positivity, K(x) . 0, for all x;

(iii) symmetry, K(x) ¼ K(�x);

(iv) decreasing on [0, 1); and

(v) normalization, so
Ð1
�1 K(x)dx ¼ 1.

The Gaussian kernel satisfies all these conditions, whereas the Epanechnikov kernel fails (ii)

as it is of compact support.

By (i), (ii) and compactness of A, we can introduce a strictly positive constant

� ¼ inf
nj

N
K(x � y) j x, y 2 Aj; 1 < j < m

� �
:

Let us also introduce the non-empty set of continuous functions

S ¼ g 2 C(A; R) j g(x) > �, (1 � �) 1 � n1 þ nm

2N

� �
<

ð
A

g(y)dy < 1

� �
,

Figure 5. (a) Two-dimensional (scaled) histogram with (b) corresponding smooth density estimate

constructed using a smoothing parameter of h ¼ 0:1.
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where 1 . � . 0 is selected in (3.1) and depends upon the Aj and the kernel K only. This S

is a closed and convex set of continuous (deficient) probability density functions.

Theorem 3.1. The operator T of (1.5) maps S to itself, and has some fixed point in S. Such a

fixed point is a continuously differentiable function which extends to define a probability

density function.

Proof. Since g(x) > �, the denominators are positive and the operator is well defined; clearly

Tg(x) is continuous. By the definition of � we have Tg(x) > � for all x 2 A. We can take

1 . � . 0 with ð
A j�1[A j[A jþ1

K(x � y)dy > 1 � �, (3:1)

for all x 2 Aj and 2 < j < m � 1; we can make � as small as we please by shrinking the

bandwidth h of K. Hence,

ð
A

Tg(x)dx >
Xm�1

j¼2

nj

N

ð
A j

ð
A j�1[A j[A jþ1

K(x � y)dx g(y)dyð
A j

g(y)dy

:

On estimating the inner integrals, we see that this is

>
Xm�1

j¼2

nj

N
(1 � �) ¼ 1 � n1 þ nm

N

� �
(1 � �):

By making a slight adjustment to the definition of �, we can incorporate the terms j ¼ 1 and

j ¼ m, and replace N by 2N. Hence T maps S to itself.

The operator T is completely continuous (compact), in the sense that T (S) is a relatively

compact set for the standard supremum-norm topology on S, viewed as a subset of

C(A; R). By the Arzelà–Ascoli theorem, compact subsets of C(A; R) are characterized by

the properties of uniform boundedness and equicontinuity.

To verify the first, we note that 0 < K(x) < K(0) and hence by convexity

0 < Tg(x) < K(0) for all x 2 A and g 2 S. A standard application of the mean value

theorem shows that uniform equicontinuity is implied by a uniform bound on the derivative.

Here by (i) we have M such that jK9(x � y)j < M for all x, y 2 A; whence

j(Tg)9(x) ¼
Xm

j¼1

nj

N

ð
A j

K9(x � y)g(y)dyð
A j

g(y)dy

���������
��������� < M

by the triangle inequality, for all x 2 A and f 2 S.

By the theorem of Schauder, T has a fixed point; that is, T f̂f (x) ¼ f̂f (x) (x 2 A) for some

f̂f 2 S (see Heuser 1982). It follows from the previous step that T f̂f , and hence f̂f , is
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continuously differentiable. Indeed, f̂f inherits the same degree of smoothness as the kernel

function K. Our solution f̂f is defined only for x 2 A; however, we can use the formula

f̂f (x) ¼ T f̂f (x), in which the right-hand side depends only upon f̂f restricted to A, to extend f̂f

to a genuine probability density function on R. Since f̂f 2 S, most of the probability is

concentrated on A. By choosing K to be sharply peaked, so that � diminishes to zero, we

can ensure that less than (n1 þ nm)(1 þ �)=(2N ) of the probability lies outside the histogram

region A. Further, f̂f , so extended, is continuously differentiable and decreases to zero at

infinity. h

The preceding proof does not ensure uniqueness of the fixed point. In applications one

has a computationally effective means of estimating bin quotas, so the following partial

result is adequate for establishing uniqueness (see also Proposition 6.4 below).

Proposition 3.2. Let f̂f be a fixed point of T, and let Æ j ¼
Ð

A j
f̂f . If q is any fixed point of T

with
Ð

A j
q ¼ Æ j, then f̂f ¼ q on A.

Proof. Let w(x) ¼
Pm

j¼1 nj=(NÆ j)IA j
(x) and let

~KK(x, y) ¼ w(x)1=2 K(x � y)w(y)1=2, x, y 2 A,

which defines a square-integrable, symmetric and uniformly positive function on A 3 A.

Hence the linear operator ~TT : L2(A) ! L2(A) given by ~TT g ¼
Ð

A
~KK(x, y)g(y)dy is compact

and self-adjoint, and its norm M coincides with its numerical radius. We deduce that there

exists a unique normalized positive eigenfunction fM corresponding to eigenvalue M. It

follows from the fixed-point equation that w(x)1=2 f̂f (x) and w(x)1=2q(x) are eigenfunctions

corresponding to eigenvalue 1. If M . 1, then w(x)1=2 f̂f (x) and fM would be orthogonal; but

this contradicts their positivity. We deduce that M ¼ 1, and so w(x)1=2 f̂f (x) and w(x)1=2q(x)

are multiples of fM (x); and since w(x) . 0 on A, we see f̂f and q are equal. h

4. Entropy and information

Given probability density functions p and q on the real line, we define the entropy of q

relative to p by

S(qj p) ¼
ð1
�1

q(x)log q(x)=p(x)dx:

By Jensen’s inequality, S(qjp) > 0; so we can always define the relative entropy if we

admit infinity as a possible value. The relative entropy S(qj p) is jointly convex in (q, p)

since U (s, t) ¼ s log s=t is a biconvex function of s, t . 0. In information theory, S(qj p) is

called informational divergence.

We can interpret S(qj p) as a measure of the distance from the probability density q to p,

where p is regarded as an equilibrium configuration. Csiszár’s inequality (see Barron 1986)

shows that
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ð1
�1

jq(x) � p(x)jdx < f2S(qjp)g1=2: (4:1)

Consequently, the sets Gq(�) ¼ fpjS( pjq) , �g (� . 0) give a sub-basis for a topology on

the densities which is finer than the total variation topology associated with the L1 metric. In

Proposition 4.2 we shall show that, when q ¼ f̂f , such sub-basic open neighbourhoods are

contained in sets which are bounded for the Wasserstein metric.

Let = denote the distributional gradient operator in L2(R), and W 1,2(R) the space of

functions g 2 L2(R) for which =g also belongs to L2(R). When p and q are probability

density functions with p1=2 and q1=2 in W 1,2(R), we can define the Fisher information of p

by

I( p) ¼
ð1
�1

j= log p(x)j2 p(x)dx ¼ 4

ð1
�1

j=fp(x)1=2gj2 dx,

and the relative Fisher information of q with respect to p by

I(qjp) ¼
ð1
�1

j= logfq(x)=p(x)gj2q(x)dx:

This defines a convex function of q. A density p has finite information if and only if

p1=2 2 W 1,2(R).

Henceforth we take K to be the Gaussian kernel of (1.2), and write K ¼ K� with � ¼ h2.

In our iteration scheme we work with densities of the form p ¼ K� � g, for some density g;

the information of such satisfies by convexity the uniform bound

I( p) < I(K�) ¼ 1=� ¼ 1=h2:

Barron (1986) noted a relationship between relative entropy and information which arises

under evolution by the heat equation

_uut(x) ¼ @

@ t
ut(x) ¼ 1

2
=2ut(x), x 2 R, t . 0: (4:2)

This will be used in our smoothing scheme in the following way. Let X and Y be random

variables with probability density functions q and p respectively, and Bt (t > 0) be an

independent Brownian motion with B0 ¼ 0. Then X þ Bt and Y þ Bt have probability

density functions ut ¼ Kt � q and v t ¼ Kt � p respectively, where ut(x) and v t(x) satisfy

(4.2).

Lemma 4.1. Relative information measures the rate of change of relative entropy under the

heat flow, so

d

dt
S(utjv t) ¼ � 1

2
I(utjv t), t . 0: (4:3)

Proof. The functions ut(x) and v t(x) are smooth for (x, t) 2 R3 (0, 1), and we can

differentiate through the integral sign as in the proofs of Davies (1989) to obtain
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d

dt

ð1
�1

ut(x)logfut(x)=v t(x)gdx ¼
ð1
�1

_uut logfut=v tgdx �
ð1
�1

ut _vv t=v t dx þ
ð1
�1

_uut dx:

The latest integral vanishes since probability is conserved under the evolution, and from the

heat equation (4.2) we have

d

dt
S(utjv t) ¼

1

2

ð1
�1

f(=2ut)log(ut=v t) � (=2v t)ut=v tgdx:

Integration by parts leads to the required result

d

dt
S(utjv t) ¼ � 1

2

ð1
�1

=ut

ut

� =v t

v t

� �2

ut dx:

h

To exploit this to full advantage, we need another relation between entropy and

information, namely a logarithmic Sobolev inequality. Let K1(x) ¼ (exp(�x2=2))=(2�)1=2 be

the standard Gaussian density. Gross (1975; 1993) showed S(qjK1) < I(qjK1)=2 for all

densities q with q1=2 2 W 1,2(R). His proof began with a logarithmic Sobolev inequality for

a product of two-point spaces, and then realized the Gaussian density K1 as a weak limit

via the central limit theorem. In the next section we deduce from Gross’s theorem a

logarithmic Sobolev inequality for relative information and entropy with respect to a density

f̂f that satisfies T f̂f ¼ f̂f .

Relative entropy is also related to transportation cost between distributions. See Dudley

(1989) for an account of the theory.

Proposition 4.2. Let f̂f be a fixed point of T, and g be a probability density function which

has finite entropy relative to f̂f . Then there exists a probability measure P on R2, with

marginal densities f̂f and g, such that the quadratic transportation cost is bounded in terms of

the relative entropy ðð
R2

jx � yj2P(dx dy) < 2CT S(gj f̂f ); (4:4)

here CT depends only upon the initial data and h.

Proof. Talagrand (1996) showed that a similar result holds with the Gaussian density K1

replacing f̂f ; and we shall see that (4.4) follows from his result by duality.

The density f̂f is bounded and uniformly positive on A ¼ [a, b], and decays rapidly

outside of [a, b]. Consequently, the increasing real function ł defined byÐł(x)

�1 f̂f (t)dt ¼
Ð x

�1 K1(t)dt is bi-Lipschitz, so that jx � yj=cL < jł(x) � ł(y)j < cLjx � yj
(x, y 2 R) for some constant cL, with 0 , cL , 1, depending upon f̂f . Furthermore, for

any bounded and continuous real function v, we haveð1
�1

v(x) f̂f (x)dx ¼
ð1
�1

v(ł(x))K1(x)dx;

thus ł induces f̂f (x)dx from K1(x)dx.
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By the Kantorovich–Rubinstein duality theorem, the transportation cost Tc(g, f̂f ) of (4.4)

for the cost function jx � yj2 and the optimal transportation strategy P is equal to

sup
u,v

ð1
�1

u(x)g(x)dx �
ð1
�1

v(y) f̂f (y)dy

���� u(x) � v(y) < jx � yj2; x, y 2 R

( )
:

Let G be the density of the measure induced from g(x)dx by the inverse function ł�1, just as

K1 is the density of the measure induced from f̂f (x)dx. Since ł is Lipschitz, we have

Tc(g, f̂f ) < c2
LTc(G, K1):

By Talagrand’s theorem, this transportation cost is bounded by a multiple of the relative

entropy, and is

< C1c2
LS(GjK1):

The relative entropy is equal to

S(GjK1) ¼ sup
V

ð1
�1

V (x)G(x)dx

���� ð1
�1

eV (x) K1(x)dx < 1

( )
,

and it follows that S(GjK1) < S(gj f̂f ) since ł�1 induces G(x)dx and K1(x)dx from g(x)dx

and f̂f (x)dx, respectively. h

Remark on Corollary 1.2. We proceed to translate Proposition 4.2 into probabilistic language.

Let X and Y be random variables on a common probability space with laws f̂f and g,

respectively. The left-hand side of (4.4) is EjX � Y j2, which we see is bounded in terms of

the relative entropy when the joint distribution P is suitably chosen. Thus Corollary 1.2

becomes a consequence of convergence in relative entropy as established below.

5. Logarithmic Sobolev inequality

Theorem 5.1. Let f̂f be a fixed point of T. Then there exists a constant k . 0, depending only

upon h ¼ �1=2 and the initial data, such that

S(qj f̂f ) <
1

2k
I(qj f̂f ) (5:1)

for all densities q with q1=2 2 W 1,2(R).

Proof. The fixed point f̂f has the form f̂f ¼ Kh � g, where g(x) ¼
Pm

j¼1 pjIA j
(x), with pj . 0

( j ¼ 1, 2, . . . , m), is a probability density function. The measure g(x)dx is induced from

Kh(x)dx by � : R ! [a, b] that is defined byð�(x)

a

g(t)dt ¼
ðx

�1
Kh(t)dt, x 2 R;

and, moreover, � is Lipschitz continuous with
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0 , �9(x) ¼ Kh(x)

g(�(x))
< cL :¼ (2�h)�1=2

�
min

j
pj

��1

:

By Gross’s theorem (Gross 1975; 1993), the bivariate Gaussian probability measure

Kh(x)Kh(y)dx dy satisfies the logarithmic Sobolev inequalityðð
R2

F(x, y)2 log F(x, y)2

�ðð
R2

F 2 Kh � Kh

 !
Kh(x)Kh(y)dx dy

<
1

2ª

ðð
R2

k=F(x, y)k2 Kh(x)Kh(y)dx dy, (5:2)

for all F 2 L2(Kh � Kh) with L2 distributional gradient.

The map (x, y) 7! x þ �(y) is Lipschitz continuous R2 ! R, and induces f̂f (t)dt ¼
Kh � g(t)dt from Kh(x)Kh(y)dx dy; so when we substitute u(x þ �(y)) ¼ F(x, y) into the

left-hand side of (5.2) we obtain the relative entropy expressionð
R

u(t)2 log u(t)2

�ð
R

u2 f̂f

 !
f̂f (t)dt: (5:3)

With this choice we have k=F(x, y)k2 ¼ ju9(x þ �(y))j2(1 þ �9(y)2), so the right-hand side

of (5.2) is

< (2ª)�1(1 þ c2
L)

ð
R

ju9(t)j2 f̂f (t)dt: (5:4)

When q ¼ u2 f̂f we obtain (5.1) from (5.2), (5.3) and (5.4) with k ¼ ª=(1 þ c2
L). h

Corollary 5.2. Let g be a probability density function on A and f̂f be a fixed point for T. Then

smoothing decreases the relative entropy, so

S(K� � gjK� � f̂f ) < (1 þ �k=2)�1S(gj f̂f ): (5:5)

Proof. We consider the evolution of S(Kt � gjKt � f̂f ) from t ¼ �=2 to t ¼ �. By taking

�=2 . 0 as the starting time we can work with smooth functions; while t ¼ � gives our usual

smoothing kernel. By Lemma 4.1 we have (d=dt)S(Kt � gjKt � f̂f ) ¼ �1
2
I(Kt � gjKt � f̂f );

integrating this identity, we achieve

S(K� � gjK� � f̂f ) ¼ S(K�=2 � gjK�=2 � f̂f ) � 1

2

ð�
�=2

I(Kt � gjKt � f̂f )dt:

From the differential equation (4.3), or joint convexity of the relative entropy, we have

S(K�=2 � gjK�=2 � f̂f ) < S(gj f̂f ). To bound the integral we use the logarithmic Sobolev

inequality of Theorem 5.1, which also holds for information and entropy defined with respect

to the density Kt � f̂f for �=2 < t < �. On substituting this into the previous identity, we have
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S(K� � gjK� � f̂f ) < S(gj f̂f ) � k
ð�
�=2

S(Kt � gjKt � f̂f )dt

< S(gj f̂f ) � k�
2

S(K� � gjK� � f̂f ),

which implies (5.5). h

The density f̂f is associated with a Dirichlet form and a self-adjoint operator L with core

C1
c (R) in L2( f̂f ) defined by

hLgjgiL2( f̂f ) ¼
ð1
�1

j=g(x)j2 f̂f (x)dx, g 2 C1
c (R):

Let º1 be the best possible constant in the Poincaré inequalityÐ
jg �

Ð
g f̂f j2 f̂f < º�1

1

Ð
j=gj2 f̂f for this Dirichlet form. Let us also introduce the variance

of the probability distribution with density f̂f , by � 2 ¼
Ð

(x � x)2 f̂f (x)dx, where

x ¼
Ð

x f̂f (x)dx is the mean.

Proposition 5.3. The preceding constants satisfy

k < º1 < ��2 < I( f̂f ):

Proof. The left-hand inequality is due to Rothaus (1980), and one can often take equality

here; for a general discussion of this point, see Deuschel and Stroock (1990). To achieve the

middle inequality, one sets g(x) ¼ x � x in Poincaré’s inequality. The right-hand inequality is

Heisenberg’s uncertainty principle applied to ( f̂f )1=2. h

Remarks. Otto and Villani (2000) have shown that, under mild technical conditions, the

logarithmic Sobolev inequality implies the quadratic transportation inequality for measures

on Rd . In particular, the quadratic transportation inequality holds for measures of the form

�(dx) ¼ e�V (x) dx, where V : Rd ! R is twice continuously differentiable and uniformly

convex.

A fixed point f̂f of T may be viewed as the stationary distribution for a diffusion process

analogous to the Ornstein–Uhlenbeck process, as in Carlen and Soffer (1991). See

Kallenberg (1997) for the following result.

Proposition 5.4. Let Zt be a Markov diffusion process that satisfies the Langevin equation

dZt ¼
1

2
r(Zt)dt þ dBt, t . 0, (5:6)

where r(x) ¼ = log f̂f (x). Then the transition probabilities for Zt satisfy

@

@ t
Pt(x, z) ¼ 1

2
=2 Pt(x, z) � 1

2
=fr(x)Pt(x, z)g, x, y 2 R; t . 0:
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The formal adjoint of L in L2(R) is given on smooth functions of compact support by

�L� g ¼ =2 g � =(rg). It is evident one can define a semigroup exp(�tL�) by

w(x, t) ¼ exp(�tL�)q(x) ¼
ð1
�1

Pt(x, z)q(z)dz

such that exp(�tL�) preserves the cone of probability density functions on the line. When q

is the density of random variable X, one can regard wt ¼ exp(�tL�)q as the density of the

random variable obtained by evolving Z0 ¼ X to Z t under the Langevin equation (5.6). The

operator is so chosen that L� f̂f ¼ 0; thus f̂f gives the stationary distribution for the evolution

under the adjoint semigroup.

Using the same mode of proof as Lemma 4.1, one can show that

(d=dt)S(wtj f̂f ) ¼ �1
2
I(wtj f̂f ), t . 0.

6. Convergence of the iteration scheme

Henceforth, let us write Æ j ¼
Ð

A j
g. In this section we shall investigate the properties of the

Æ j, in order to control the binning operation and to estimate the quotas assigned to the

respective bins by the fixed point. By a sequence of lemmas, we obtain the following.

Proposition 6.1. The quotas of a fixed point f̂f satisfy the approximate identity
Ð

A j
f̂f � ~aa j for

small bandwidth, where

~aa j ¼
n j�1 h

N jA j�1j(2�)1=2
þ nj

N jAjj
jAjj � h

2

�

� �1=2
( )

þ n jþ1 h

N jA jþ1(2�)1=2
, 1 < j < m: (6:1)

The operator T is a composition of the smoothing operator g 7! K � g and the

(nonlinear) binning operator

Bg(x) ¼
Xm

j¼1

nj

NÆ j

g(x)IA j
(x), x 2 R,

both of which preserve the cone of probability density functions. It is also convenient to

introduce the conditional expectation with respect to the � -algebra A generated by the Aj

(1 < j < m):

EA g(x) ¼
Xm

j¼1

Æ j

jAjj
IA j

(x), x 2 R,

and the discrepancy operator

˜g(x) ¼ Bg(x) � EABg(x):

One may verify that EABg ¼ f̂f 0, the histogram density, and so we have

Tg ¼ K � Bg ¼ K � f̂f 0 þ K � ˜g: (6:2)
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We recall the error function erf (t) ¼ 1 ��(t), where � is the cumulative distribution

function of the standard normal random variable, and we let �0 ¼ erf (jA jj=h).

Lemma 6.2. The ~ÆÆ j given by (6:1) satisfy�����
ð

A j

K � f̂f0 � ~ÆÆ j

����� < �0: (6:3)

Proof. The error function is rapidly decreasing and satisfiesð0

�1

ð1
0

K(x � y)dx dy ¼ h

ð1
0

erf (u)du;

integration by parts reduce this to

¼ h

(2�)1=2

ð1
0

u exp
�u2

2

� �
du ¼ h

(2�)1=2
: (6:4)

We can write the quantity to be approximated byð
A j

K � f̂f 0(x)dx ¼
Xm

k¼1

nk

N jAk j

ð
A j

ð
A k

K(x � y)dy dx, (6:5)

and we observe that, as the Gaussian kernel decays rapidly, the most significant summands

come from those k with jk � jj < 1. Indeed, by convexity we haveX
k:jk� jj.1

nk

N jAk j

ð
A j

ð
A k

K(x � y)dy dx < sup
x2A j

ð
A j�2

K(x � y)dy

< erf (jA j�1j=h) ¼ �0:

For k ¼ j þ 1 we can use Fubini’s theorem to write

n jþ1

N jA jþ1j

ð
A j

K � IA jþ1
(x)dx ¼ n jþ1

N jA jþ1j

ð
A j

ð
A jþ1

K(x � y)dx dy: (6:6)

The main contribution to this double integral comes when x 2 A j and y 2 A jþ1 are close

together, so we can extend the ranges of integration symmetrically about the upper endpoint

of A j and use (6.4) to write (6.6) as

n jþ1

N jA jþ1j

ð0

�1

ð1
0

K(x � y)dx dy þ O
n jþ1�

N

� �
¼ n jþ1 h

N jA jþ1j(2�)1=2
þ O

n jþ1�0

N

� �
: (6:7)

A similar identity holds for j ¼ k � 1.

The principal contribution to the sum (6.5) arises when k ¼ j. We use conservation of

probability and the definition of the error function to write
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n j

N
¼
ð
R

K �
n jIA j

N jA jj
¼
ð

A j�1

þ
ð

A j

þ
ð

A j�1

K �
n jIA j

N jA jj
þ O

n j�

N

� �
: (6:8)

Rearranging this, and using (6.7) to deal with the integrals over the neighbouring bins, we

obtain ð
A j

K �
n jIA j

N jA jj
¼ n j

N jA jj
1 � h

jA jj
2

�

� �1=2
( )

þ O
n j�1�0

N

� �
: h

We now obtain a bound on the norm of the binning operator.

Lemma 6.3. Let g and g0 be densities on A; and let � ¼ max1< j<m n j=(NÆ j), where as usual

Æ j ¼
Ð

A j
g. Then

S(BgjBg0) < �S(gjg0): (6:9)

Proof. Writing ª j ¼
Ð

A j
g0, we have

S(BgjBg0) ¼
Xm

j¼1

n j

N

ð
A j

g(x)

Æ j

log
g(x)

Æ j

ª j

g0(x)
dx

where each summand is non-negative by Jensen’s inequality. Hence the sum is

< �
Xm

j¼1

ð
A j

g(x)log
g(x)

g0(x)

ª j

Æ j

dx

¼ �(S(gjg0) � S(EA gjEA g0)) < �S(gjg0), (6:10)

since relative entropy is always non-negative. h

Unfortunately, we cannot expect �S(EA gjEA g0) in (6.10) to give us much improvement

on the stated bound (6.9); for it may well happen that each jÆ j=ª j � 1j is small, even whenÐ
A j
j ĝg � g0j is relatively large.

It is easy to show that kBgkL
 < �kgkL
 for the usual Lebesgue L
 norm and

1 < 
 < 1. We have the crude bound

1 < � < (2�1 � �0)�1 :¼ �0, (6:11)

whenever g ¼ Tg0 for a positive continuous density g0. (In (7.3) below, we improve upon

(6.11).) To see this, we simply apply Fubini’s theorem to obtain

ð
A j

Tg0(x)dx >
n j

N

ð
A j

ð
A j

K(x � y)g0(y)dy dxð
A j

g0(y)dy

,

and we note that the inner integrand satisfies
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ð
A j

K(x � y)dx > 2�1 � erf (jA jj=h):

Proposition 6.4. Suppose that f̂f is a fixed point for T. Then�����
ð

A j

f̂f � ~ÆÆ j

����� < �2
0 h�1=2fh þ O(�0)gk f̂f kL2 :

Thus the approximate formula of Proposition 6.1 holds for the bin quotas as h ! 0þ,

provided that the fixed point remains bounded in L2 norm. The fixed point converges to the

histogram in the sense that

(EA f̂f � f̂f 0)=k f̂f kL2 ! 0 as h ! 0þ:

Proof. In view of (6.3), we need only bound the last term inð
A j

f̂f ¼
ð

A j

T f̂f ¼
ð

A j

K � f̂f 0 þ
ð

A j

K � ˜ f̂f :

Following the arguments of Lemma 6.2, we see that the main contribution to
Ð

A j
K � ˜ f̂f isð

A j

ð
A j

n j

NÆ j

K(x � y) f̂f (y) � Æ j

jA jj

� �
dy dx,

which by the definition of conditional expectation and the L1–L1 duality is at most

�k f̂f � EA f̂f kL1

ð
A j

1 �
ð

A j

K(x � y)dy

 !
dx:

Using the crude bound (6.11), and (6.4), we see that this is at most

4�0k f̂f kL1
h

2�

� �1=2

:

By applying Young’s inequality, we see that

k f̂f kL1 ¼ kK � B f̂f kL1 < kKkL2kB f̂f kL2

< h�1=2�k f̂f kL2 < h�1=2�0k f̂f kL2 : h

Theorem 6.5. Suppose that: f̂f is a fixed point for T, there exists a constant r with 0 , r , 1

and g is a density for which

r 1 þ �k
2

� �ð
A j

g >
n j

N
, 1 < j < m: (6:12)

Then Tg is closer to f̂f than g is to f̂f , in the sense that

S(Tgj f̂f ) < rS(gj f̂f ):
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Proof. By Corollary 5.2 we have

S(Tgj f̂f ) ¼ S(K � BgjK � B f̂f ) < (1 þ �k=2)�1S(BgjB f̂f ),

and using (6.12) and our bound from Lemma 6.3 on the binning operator, we deduce that

S(Tgj f̂f ) < �(1 þ �k=2)�1S(gj f̂f ) < rS(gj f̂f ): h

7. Stability

In order to use Theorem 6.5 in the iteration scheme, one must show that the condition (6.12)

is preserved when one replaces g by Tg. In this section we investigate the stability of (6.12).

By Proposition 6.4, one should expect a fixed point f̂f for T to have
Ð

A j
f̂f � ~ÆÆ j. We note that

n j

jA jjN
1 � h

jA jj
2

�

� �1=2
( )

<
~ÆÆ j

jA jj
< max

k

nk

N jAk j
¼ k f̂f0kL1 , j ¼ 1, 2, . . . , m: (7:1)

For constants c1 and c2, possibly depending upon the initial data and bandwidth, we introduce

the space of (deficient) probability density functions on A,

M ¼ g 2 L2(A)

�����g > 0;

�����
ð

A j

g � ~ÆÆ j

����� < c1 h1=2~ÆÆ j; kg � EA gkL2 < c2

8<:
9=;: (7:2)

The set M is closed in L2(A) and convex, and we shall show that it is mapped into itself

by T. Evidently T restricted to M is completely continuous, and so by Schauder’s theorem

there exists at least one fixed point f̂f in M. On this set, the values of Æ j ¼
Ð

A j
g are so

close to the ~ÆÆ j that the norm of the binning operator is � ¼ max j(n j=NÆ j), where

� < � :¼ max
j

1 � 2

�

� �1=2
h

jA jj
þ min

�

n jþ1

n j

2

�

� �1=2
h

jA jj

( )�1

1 þ c1 h1=2

(1 � c1 h1=2)2

( )
: (7:3)

We observe that � is close to 1 when h � jA jj and c1 h1=2 � 1. By taking the bandwidth h

small in comparison to the bin-width, we can also ensure that

�0 ¼ erf (jA jj=h) � h: (7:4)

The smoothing kernel K determines a convolution operator L2(R) ! L2(R) for which the

restriction to fg 2 L2(A)jEA g ¼ 0g has norm

¸1 ¼ sup

����ð
A

K(x � y)g(y)dy

����
L2(R)

���� kgkL2(A) < 1;

ð
A j

g ¼ 0, j ¼ 1, 2, . . . , m

( )
:

This quantity is related to exp(��º̂º1), where º̂º1 is the second smallest eigenvalue of �=2 in

L2(A); thus ¸1 is a spectral gap parameter (there is no weight involved here).
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Theorem 7.1. Suppose that f̂f is a fixed point for T in M and one can choose c1 and h so

that: (7:4) holds; ¸1� , 1;

(1 þ h2k=2)(1 � c1 h1=2) .
n j

N ~ÆÆ j

; (7:5)

3�2(1 þ c1 h1=2)1=2

c1�3=4
<

~ÆÆ j

k f̂f0k1=2
L1

; (7:6)

and

3�2

c1(1 � �¸1)�3=4
,

~ÆÆ j

k f̂f 0k1=2
L1

, j ¼ 1, 2, . . . , m: (7:7)

Then the iteration scheme (1.6) converges to f̂f in relative entropy so that S( f̂f k j f̂f ) ! 0,

geometrically as k ! 1.

Let us note that the right-hand sides of (7.5), (7.6) and (7.7) depend only upon the

observed bin counts and the bandwidth h. By (7.1), n j=N ~ÆÆ j ! 1 as h ! 0þ; so (7.5) is a

reasonable hypothesis. Further, (7.6) and (7.7) are realistic, in view of (7.1).

We proceed to check the stability of the defining conditions for M under the operation of

T . We begin with some L2 bounds.

Lemma 7.2. Each g 2 M satisfies

kgkL2 < (c2
2 þ (1 þ c1 h1=2)k f̂f 0kL1 )1=2

and

kTgkL1 <
�

(4�)1=4 h1=2
kgkL2 :

Proof. Exploiting orthogonality, we obtainð
g2 ¼

ð
jg � EA gj2 þ

ð
jEA gj2 < c2

2 þ
Xm

j¼1

Æ2
j=jA jj < c2

2 þ max
1< j<m

Æ j=jA jj,

where we have used convexity at the last step. Since g 2 M, we can take advantage of the

bounds on Æ j to replace this by

c2
2 þ (1 þ c1 h1=2) max

1< j<m
~ÆÆ j=jA jj;

whence the result, by (7.1).

We can convert this uniform L2-bound on the elements of M into a uniform L1 bound

on the elements of T (M) by Young’s inequality for convolution:
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kTgkL1 ¼ kK � BgkL1 < kKkL2kBgkL2 <
�

(4�)1=4 h1=2
kgkL2 : h

Proof of Theorem 7.1. We now check stability of the Æ j under the operation of T . By (6.2)

we have ð
A j

Tg ¼
ð

A j

K � B f̂f 0 þ
ð

A j

K � ˜g: (7:8)

By Lemma 7.2, the first term is close to ~ÆÆ j, up to a negligible error of order �0. The last term

in (7.8) may be bounded, as in the proof of Proposition 6.4, by����ð
A j

K � ˜g

���� < �kg � EA gkL1

ð
A j

1 �
ð

A j

K(x � y)dy

 !
dx

(

þ
ð

A j�1

ð
A j

K(x � y)dy dx þ
X

k:jk� jj>2

ð
A k

ð
A j

K(x � y)dy dx

9=;:

Using the argument that led to (6.8), we see that the first few summands give the main

contributions and we can bound this expression by

�kg � EA gkL1
3h

(2�)1=2
þ O(�0)

� �
:

When g ¼ Tg0 for some g0 2 M, we can use Lemma 7.2 to bound

kg � EA gkL1 < kTgkL1 þ kEA gkL1

<
�

(4�)1=4 h1=2
fc2

2 þ (1 þ c1 h1=4)k f̂f 0kL1g1=2 þ (1 þ c1 h1=2)k f̂f 0kL1 :

To ensure stability of the condition in (7.2) on the Æ j we need

�2

(4�)1=4 h1=2
fc2

2 þ (1 þ c1 h1=2)k f̂f 0kL1g1=2 3h

(2�)1=2
þ O(h) þ O(�0) < c1 h1=2~ÆÆ j,

which, in the presence of (7.4), is implied by both the conditions

3�2c2 < �3=4c1~ÆÆ j, j ¼ 1, 2, . . . , m, (7:9)

and

3�2(1 þ c1 h1=2)k f̂f 0k1=2
L1 < �3=4c1~ÆÆ j: (7:10)

Evidently (7.10) is implied by (7.6). We shall now show that we can select c1 so that the

family of inequalities (7.9) can also be satisfied, together with stability of the bound on

kg � EA gkL2 in (7.2). We start by writing

Tg � EATg ¼ (K � f̂f 0 � EAK � f̂f 0) þ K � ˜g � EAK � ˜g: (7:11)

Kernel density estimation for binned data 447



The first term on the right-hand side is independent of g and satisfies

kK � f̂f 0 � EAK � f̂f 0kL2 < kK � f̂f 0kL2 < k f̂f 0kL2 < k f̂f 0k1=2
L1 : (7:12)

To control the other terms, we use the fact that
Ð

A j
˜g ¼ 0, from which it follows by

definition of ¸1 that

kK � ˜gkL2 < ¸1k˜gkL2 < �¸1kg � EA gkL2 < �¸1c2: (7:13)

This deals with the final two terms in (7.11), since EA is an orthogonal projection making

kK � ˜g � EAK � ˜gkL2 < kK � ˜gkL2 .

From (7.12) and (7.13) we see that stability of the L2 bound in (7.2) is implied by

k f̂f 0k1=2
L1 þ �¸1c2 < c2: (7:14)

By the hypothesis (7.7), we can select c1 so that (7.14) may be satisfied together with (7.9)

for some c2.

Hence K � f̂f 0 ¼ T f̂f0 gives an element of M, and furthermore all the iterates f̂f k ¼
T k f̂f 0 (k > 1) belong to M. Further, (7.5) implies that the f̂f k satisfy the hypothesis (6.12),

and so by repeated application of Theorem 6.5 we have geometric convergence of the

iterates f̂f k to f̂f in the relative entropy metric, so S( f̂f k j f̂f ) ! 0. By Csiszár’s inequality

(4.1), this implies convergence in L1 norm, so
Ð
j f̂f k � f̂f j ! 0 at a geometric rate as

k !1.

h

Thus, under the hypotheses of Theorem 7.1, Theorem 1.1 follows directly and Corollary

1.2 becomes a consequence of Proposition 4.2.
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