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In previous papers we have studied the asymptotic behaviour of SN (A; X ) ¼ (2N þ 1)�d=2
P

n2A N
Xn,

where X is a centred, stationary and weakly dependent random field, and AN ¼ A \ [�N , N]d,

A � Zd . This leads to the definition of asymptotically measurable sets, which enjoy the property that

SN (A; X ) has a (Gaussian) weak limit for any X belonging to a certain class. We present here an

application of this technique. Consider a regression model X n ¼ j(�n, Yn), n 2 Zd , where X n is

centred, j satisfies certain regularity conditions, and � and Y are independent random fields; for any

m 2 N, and (y1, . . . , ym) the central limit theorem holds for (j(�, y1), . . . , j(�, ym)), but Y satisfies

only the strong law of large numbers as it applies to (Ym, Ym�n)m2Zd , for any n 2 Zd. Under these

conditions, it is shown that the central limit theorem holds for X.

Keywords: asymptotically measurable collections of sets; central limit theorems; level sets; regression

models; weakly dependent random fields

1. Introduction

The notion of an ‘asymptotically measurable set’ (AMS) was introduced in Perera (1994a;

1994b), motivated by statistical problems concerning random fields.

Let us denote by Zd the lattice of points in Rd with integer coordinates. A subset A of

Zd is said to be an AMS if, for each n 2 Zd , the limit, as N tends to infinity, of

FN (n; A) ¼ (2N þ 1)�d cardfAN \ (nþ AN )g exists, where AN ¼ A \ [�N , N ]d ; further-

more, we will denote F(n; A) this limit, and M(Zd) the class of asymptotically measurable

sets.

The main property of this class of sets is the following: denote by F the class of centred,

stationary random fields with finite second moment which satisfy certain weak-dependence

conditions, and let

SN (A; X ) ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(2N þ 1)d

p X
n2AN

Xn:

Then SN (A; X ) has a non-trivial weak limit for any X 2 F if and only if A 2 M(Zd).

More precisely, if A 2 M(Zd), the central limit theorem (CLT) applies and SN (A; X )

converges to a Gaussian law whose covariance depends on the covariances of X and the

function F(:; A); if A =2 M(Zd), there exists a Gaussian m-dependent random field such that

SN (A; X ) has different weak limits for two different subsequences of Ns (see Perera 1994a;

1997). Sets with regular borders (in the sense that their borders are negligible), periodic sets

and certain random sets are examples of elements of M(Zd).
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Let us look in more detail at two examples of AMSs.

Example 1. If dist is the distance induced in Zd by the supremum norm (denoted by k:k), and

if A � Zd , then define @A ¼ fn 2 A : dist(n, Ac) ¼ 1g. It is easy to prove the following

inequality (see Perera 1997):

cardfAN \ (Ac
N � n)g < d(knk þ 1)cardf(@A)Ng, 8n 2 Zd : (1)

Assume that A satisfies

lim
N

card(AN )

(2N þ 1)d
¼ v(A) . 0, lim

N

card(@AN )

(2N þ 1)d
¼ 0

(this is what we meant earlier by the expression ‘sets with regular borders’). It follows from

(1) that A is an AMS with F(n; A) ¼ v(A) for all n 2 N.

Example 2. The most interesting examples are provided by level sets of random fields. Let

Y ¼ (Yn)n2Zd be a random field and let B1, . . . , Bk be real Borel sets; define

A j(ø) ¼ fn 2 Zd : Yn(ø) 2 Bjg:
Note that

card Ai
N \ (A

j
N � n)

n o
(2N þ 1)d

¼ 1

(2N þ 1)d

X
m2AN

1fYm2Bi,Ymþ n2B jg: (2)

Observe that if Y is stationary, then by ergodic theorem (see Guyon 1995, p. 108) the limit of

the expression in (2) exists for any n with probability one (hence A1, . . . , Ak is almost surely

an AMS) and its limit equals Rn(Bi 3 B j), where Rn is a (random) probability measure on

R2. Further, since a finite number of coordinates does not affect limits of averages, it is clear

that, as a function of ø, Rn is 	 Y
1-measurable, where

	 Y
1 ¼

\1
h¼1

	 (fYm: kmk > hg):

We conclude that, if Y satifies the ergodic property

	 Y
1 trivial (i:e: P(A)(1� P(A)) ¼ 08A 2 	 Y

1),

then Rn is non-random and Rn(B 3 C) ¼ P(Y0 2 B, Yn 2 C) for any Borel sets B, C in R.

We will return to this example later on.

On the other hand, a direct construction of a family of sets (with the power of the

continuum) which do not belong to M(Zd) has been given (see Perera 1994a; 1997). The

basic idea of this construction is presented in the following example.

Example 3. For the sake of simplicity, take N instead of Zd and replace (2N þ 1)d by N in

the definition of AMS. Define I(n) ¼ [1002 n�1

, 1002n

), A(n, 0) ¼ I(n) \ (5N), A(n, 1) ¼
I(n) \ [(10N) [ (10Nþ 1)], n 2 N, and let A ¼

S1
i¼1(A(2i, 0) [ A(2iþ 1, 1)). By a
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straightforward computation, we can check that, for this set A F(1; A) does not exist, and

hence A is not an AMS.

For statistical purposes, a generalization of the notion of an AMS is needed. We will say

that a collection fAi : i ¼ 1, . . . , rg of subsets of Zd is an asymptotically measurable

collection (AMC) if

lim
N

FN (n; Ai, A j) ¼ F(n; Ai, A j) 8n 2 Zd , i, j ¼ 1, . . . , r,

where FN (n; Ai, A j) ¼ (2N þ 1)�d cardfAi
N \ (nþ A

j
N )g.

Let us introduce some notation. If Z is an Rd-valued random vector, P Z will denote its

probability distribution. The weak convergence of probability measures will be denoted by

‘¼)w ’. If U is a fixed random variable with values in some measurable space, then

‘ZN ¼)w=U

N
Z’ refers to a conditional weak convergence: the law of ZN conditioned upon U

converges almost surely to the law of Z conditioned upon U.

The symbol ‘0’ will represent both the real zero and the zero element of Rd; the context

will make its meaning clear. Nr( �, �) denotes a Gaussian distribution in Rr with mean

vector � and covariance matrix �; when r ¼ 1, the index will be omitted. We also denote

by Nr( �, �) a random vector which follows this distribution; for instance, P(N (0, 1) 2 B)

denotes the probability under the standard Gaussian law of the Borel set B.

The symbol ‘:¼’ will be used to indicate an entity that is defined implicitly in the middle

of a computation; �ij denotes Kronecker’s function. C will denote a generic constant that

may change from line to line; when needed, expressions of the type C(J , X ) will indicate

its dependence on certain parameters.

Now consider X ¼ (X 1, . . . , X r), an Rr-valued, centred, stationary and weakly dependent

random field, and define

MN (A1, . . . , Ar; X 1, . . . , X r) ¼ (SN (A1; X 1), . . . , SN (Ar; X r)):

Then MN (A1, . . . , Ar; X 1, . . . , X r) converges weakly for any X in a suitable class if and

only if A1, . . . , Ar is an AMC.

For instance, take kxk ¼ max1<i<rjxij, x ¼ (x1, . . . , x r) 2 Rr, and denote by S the class

of centred, stationary random fields with finite second moments such that the following

conditions hold:

(C1)
P

n2Zd jEfX i
0 X j

ngj ,1,
P

n2Zd EfX i
0 X i

ng . 0, i, j ¼ 1, . . . , r.

(C2) There exists a sequence b(J ) such that limJ b(J ) ¼ 0 and, for each A � Zd , we

have

Ef(SN (A; X � X J ))2g < b(J )
card(AN )

(2N þ 1)d
,

where X J is the truncation by J of the random field X; that is X J
n ¼

Xn1fkX nk<Jg � EfXn1fkX nk<Jgg.

(C3) For each J . 0, there is a number c(X , J ), depending only on X and J, such that,

for all N > 1 and A � [�N , N ]d, we have
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Ef(SN (A; X i))4g < c(X , J )
jAN j

(2N þ 1)d

� �2

, i ¼ 1, . . . , r:

(C4) There exists a sequence d(J ) such that limJ d(J ) ¼ 0, and a bounded real function

g such that, for any pair (A, B), where A, B � Zd satisfy dist(A, B) > J, we have

jcovfexp[iSN(A; ht, X i)], exp[iSN (B; ht, X i)]gj < d(J )g(t), t 2 Rr:

Proposition 1. Suppose conditions (C1)–(C4) are fulfilled.:

(a) If A1, . . . , Ar is an AMC, then MN (A1, . . . , Ar; X 1, . . . , X r)) ¼)
w

N
Nr(0,

P
), where

�(i, j) ¼
P

n2Zd F(n; Ai, A j)EfX i
0 X j

ng.

(b) If A1, . . . , Ar is not an AMC, then there exists a Gaussian m-dependent random field

X such that MN (A1, . . . , Ar; X 1, . . . , X r) does not have a weak limit.

The proof of this proposition is obtained by Bernshtein’s (1944) ‘large and small blocks’

method and is similar to the proof of Proposition 2.2 in Perera (1997), where the role of

d(J ) is played by the strong mixing coefficient

ÆX (J ) ¼ supfjP(A \ B)� P(A)P(B)j : A 2 	 X (R), B 2 	 X (T ),

R rectangle, T � Zd , dist(R, T ) > Jg,

and where 	 X (T ) denotes the 	-algebra generated by fXn : n 2 Tg. Of course, to check

condition (C4) is not a trivial matter, but it can be done under various weak-dependence

assumptions. We can also find similar results based on other weak-dependence assumptions

which in many examples are easier to check than (C4). We refer to Doukhan and Louhichi

(1997) for a survey of weak-dependence models where (C4) holds, and, in what follows, we

present a brief summary of different weak-dependence assumptions and more precise

references to alternative results.

Mixing random fields have been extensively studied in the last four decades (see

Rosenblatt 1956; Kolmogorov and Rozanov 1960; Bradley 1986; Doukhan 1995). It is well

known that Æ-mixing conditions, such as those employed in Perera (1997), are too strong

for many interesting models, such as Gibbs fields (see Dobrushin 1968). Indeed, for random

fields, Æ-mixing conditions on arbitrary large sets are equivalent to r-mixing conditions by

the Kolmogorov–Rozanov–Bradley inequality (see Bradley 1993). These remarks have

stimulated several results obtained by Stein’s method, where mixing conditions are assumed

only over small sets (see, for instance, Bolthausen 1982). However, rates of mixing are

often required in Steins’s method. Results similar to Proposition 1 can also be obtained

using Stein’s method and Rio’s (1993) inequalities for covariances (see Perera 1997,

Propositions 2.4 and 2.5). For a nice related result, see also Dedecker (1998). In the last

three decades, an asymptotic theory of other notions of weak dependence has been

developed. This is the case for association (see Esary et al. 1967; Birkel 1988; Roussas

1994; Yu 1993), where non-correlation and coordinatewise independence are found to be

equivalent (see Newman 1984). However, association is also a restrictive condition for many

interesting models: for instance, a Gaussian random field is associated if and only if its

covariances are non-negative (see Pitt 1982). Furthermore, it is easy to show that some very

simple linear processes are neither mixing nor associated (see Rosenblatt 1980; Andrews
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1984). More recently, Doukhan and Louhichi (1997) proposed a definition of ‘weak

dependence’ for time series which includes mixing, association, linear processes and

Markov models as particular cases, and which enables one to obtain CLTs and other

asymptotic results; this type of a framework could provide a unified approach to weakly

dependent random fields.

Here we shall establish a CLT regression model of a certain specific type. We will

consider a weakly dependent random field �. In this context, we will not assume a particular

setting of weak dependence; we will simply assume that certain CLTs hold for �, a

condition that can be checked for mixing, associated, linear or Markov random fields using

a suitable version of Proposition 1. We shall also consider another random field Y,

independent of �. Y will be assumed to satisfy only a certain law of large numbers. The

random field X which we will ‘observe’ is a smooth (in a sense to be specified later on)

function of � and Y. We will call this type of regression models I-decomposable and

reachable. The ‘I’ in ‘I-decomposable’ emphasizes the key fact that both ‘components’ are

independent. The term ‘reachable’ comes from the fact that we can approximate Y in a

suitable way by a process taking values on a finite set. Note that the dependence structure

of (�, Y ) (hence that of X ) can fail to be weakly dependent in the sense of mixing,

association, linearity, etc.

The proof of our result is simple and is based on the following idea: as already stated,

the problem can be reduced to the case of a finite-valued Y. If Y takes values in a finite set,

X can be decomposed into a finite number of random fields observed over an AMC, and the

CLT will be derived.

We will give all the details of the proof when the regression is instantaneous; that is,

X n ¼ j(�n, Yn):

The extension to the case when Xn is a function of a finite number of coordinates of (�, Y ) is

straightforward. The extension to functions of the whole trajectory (for instance Xn ¼P
m2Zd am f (�nþm)g(Ynþm), for suitable f , g, (am)m2Zd ) follows by standard arguments.

The main purpose of this paper is to show that the study of the asymptotic behaviour of

additive functionals of dependent fields over ‘irregular sets’ gives, as very simple

consequences, asymptotic results for some interesting non-stationary models. A second part

of this work presents analogous results for compound Poisson limit theorems for high-level

exceedances (see Bellanger and Perera 1997).

2. Definitions and results

Definition 1. Let Y ¼ fYn : n 2 Zdg be a (real-valued ) random field. We will say that Y is

consistent if, for any r 2 N, the following conditions hold:

(H1) There exists a probability measure R0 on the Borel 	-algebra B in R such that

1

(2N þ 1)d

X
m2[�N ,N ]d

PYm (B) !
N

R0(B), 8B 2 B:
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(H2) For each n 2 Zd � f0g, there exists a probability measure Rn defined on B2, the

Borel 	-algebra in R2, such that

1

(2N þ 1)d

X
m2[�N ,N ]d

P(Ym,Y m� n)(B 3 C) !
N

Rn(B 3 C), 8B, C 2 B:

(H3) For each pair B, C of Borel sets, and for any n 2 Zd

1

(2N þ 1)d

X
m2[�N ,N ]d

[1B(Ym)1C(Ym�n)� P(Ym 2 B, Ym�n 2 C)] !a:s:
N

0:

Remark 1. A straightforward computation shows that Rn(B 3 C) ¼ R�n(C 3 B) for any

n 2 Zd � f0g and B, C Borel sets. Applying the Cauchy–Schwarz inequality twice in (H2),

we deduce the inequality Rn(B 3 C) <
ffiffiffiffiffiffiffiffiffiffiffiffi
R0(B)

p ffiffiffiffiffiffiffiffiffiffiffiffi
R0(C)

p
.

Example 4. If the coordinates of Y have a common probability distribution, (H1) holds with

R0 ¼ PY0 . In addition, if Y is stationary, (H2) also holds with Rn ¼ P( yn,y0). Many weak-

dependence assumptions imply (H3). For instance, Rosenthal inequalities and a Borel–

Cantelli argument guarantee (H3): Rosenthal inequalities can be obtained under different

mixing assumptions (see Bryc and Smolenski 1993; Rio 1993), association (see Birkel 1988),

and for linear or Markov random fields. More precisely, we say that a centred random field

Z ¼ fZn : n 2 Zdg with bounded second moment satisfies a Rosenthal inequality of order

q . 2 if there exists a constant C(q) such that, for any finite F � Zd , we have

E

����X
m2F

Zm

����
q

 !
< C(q)

X
m2F

E(jZmjq)þ
X
m2F

E(Z2
m)

 !q=2
2
4

3
5:

We refer to Doukhan and Louhichi (1997) for a review of different situations where

Rosenthal inequalities apply.

A more precise example: if the process Y satisfies the mixing condition rX (1) , 1, where

rX (J ) ¼ supfjcorr(X , Y )j : X 2 L2(	 X (R)), Y 2 L2(	 X (S)), R, S � Zd , d(R, S) > Jg,

then, for any Borel sets B, C and for any n 2 Zd, the strong law of large numbers applies to

Zm ¼ 1B(Ym)1C(Ym�n)� P(Ym 2 B, Ym�n 2 C),

and hence (H3) holds (see Bryc and Smolenski 1993, Theorem 1).

Lemma 1. Let Y be a consistent random field, and let B1, . . . , Br be real Borel sets; define

Ai(ø) ¼ fn 2 Zd : Yn(ø) 2 Big:
Then A1, . . . , Ar is an AMC almost surely, with, for i, j ¼ 1, . . . , r,

F(n; Ai, A j) ¼ Rn(Bi 3 Bj), n 2 Zd � f0g,

F(0; Ai, A j) ¼ R0(Ai)�ij.

Proof. Fix n 2 Zd � f0g. We have
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FN (n; Ai, A j) ¼ 1

(2N þ 1)d

X
m2[�N ,N ]d\(nþ[�N ,N ]d )

1Bi (Ym)1B j (Ym�n):

It is easy to check that

jcard([�N , N ]d)� card([�N , N ]d \ (nþ [�N , N ]d))j < C(d, n)N d�1;

it follows that the asymptotic behaviour of FN (n; Ai, A j) is the same as that of

1

(2N þ 1)d

X
m2[�N ,N ]d

1Bi (Ym)1B j (Ym�n):

By (H3), we conclude that this quantity has almost surely the same limit as

1

(2N þ 1)d

X
m2[�N ,N]d

P(Ym 2 Bi, Ym�n 2 Bj);

(H2) implies that the limit equals Rn(Bi 3 Bj). For n ¼ 0, the proof is even simpler. h

Definition 2. A family of stationary, centred random fields fX ( y) : y 2 Rg; is said to be

totally pre-Gaussian if the following conditions hold:

(H4) For each pair y, z 2 R, we haveX
n2Zd

jEfX
( y)
0 X (z)

n gj ,1:

(H5) If we define: � : R2 ! R, ł : R2 ! R, by

�(y, z) ¼
X
n2Zd

jEfX
( y)
0 X (z)

n gj, ł(y, z) ¼
X
n2Zd

EfX
( y)
0 X (z)

n g,

then � is bounded and ł is continuous in R2.

(H6) For each r ¼ 1, 2, . . . , for each AMC A1, . . . , Ar and any (y1, . . . , yr) 2 Rr, we

have

MN (A(1), . . . , A(r), X ( y1), . . . , X ( yr)) ¼)
w

N
Nr(0, �),

where �(i, j) ¼
P

n2Zd EfX
( yi)
0 X

( yj)
n gF(n, Ai, A j).

Definition 3. A random field X ¼ fXn : n 2 Zdg is said to be I-decomposable if the following

conditions hold:

(H7) There exist two random fields � ¼ f�n : n 2 Zdg and YfYn : n 2 Zdg and a

continuous function j : R2 ! R such that � is stationary, Y is consistent, � ?? Y

and X follows the regression model X n ¼ j(�n, Yn) for all n 2 Zd .

(H8) For each y 2 R, we have Efj(�0, y)g ¼ 0.

(H9) If we set X ( y)
n ¼ j(�n, y), y 2 R, then the family fX ( y) : y 2 Rg is totally pre-

Gaussian.
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To simplify the notation, if X is I-decomposable, we will write

ˆ(n; y, z) ¼ Efj(�0, y)j(�n, z)g, n 2 Zd , y, z 2 R:

Proposition 2. Assume that X is I-decomposable and that the coordinates of Y take values in

a finite set fy1, . . . , , yrg. If SN (X ):¼ SN (Zd ; X ) then

SN (X ) ¼)
w

N
N (0, 	 2),

where

	 2 ¼
Xr

i, j¼1

X
n2Zd�f0g

ˆ(n; yi, yj)Rn(fyig3 fyjg)þ
Xr

i¼1

ˆ(0; yi, yi)R0(fyig):

Proof. For i ¼ 1, . . . , r, let us define

S
(i)
N ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(2N þ 1)d
p X

n2[�N ,N ]d

j(�n, i)1fYn¼ yig:

By Lemma 1, and the independence of � and Y, we have that, for each ø in a set of

probability one, the vector (S
(1)
N , . . . , S

(r)
N ), conditioned upon Y, has the same distribution as

(S N (A(1); X (1)), . . . , SN (A(r); X (r))), where A(1), . . . , A(r) is an AMC with

F(n; Ai, A j) ¼ Rn(fyig3 fyjg) for n 6¼ 0,

F(0, Ai, A j) ¼ �ij R0(fyig):

By (H6) it follows that (S
(1)
N , . . . , S

(r)
N ) ¼)

w=Y

N
Nr(0, �), where

�(i, j) ¼
X

n2Zd�f0g
ˆ(n; yi, yj)Rn(fyig3 fyjg) if i 6¼ j,

�(i, i) ¼
X

n2Zd�f0g
ˆ(n; yi, yi)Rn(fyig3 fyig)þ ˆ(0; yi, yi)R0(fyig):

Therefore, since SN (X ) ¼
Pi¼r

i¼1S
(i)
N , P(SN (X ) < t=Y ) !

N
P(N (0, 	 2) < t) for any real t;

since the limit does not depend on Y, the result follows by integration and the dominated

convergence theorem. h

Definition 4. Let X be a random field such that (H7) holds. We will say that X is reachable if

the following conditions hold:

(H10) For each (x, y) 2 R2, @j(x, y)=@ y exists and is a continuous function of the

second argument.

(H11) For each pair w, z 2 R, we have

634 G. Perera



�(w, z) ¼
X
n2Zd

����E @j
@ y

(�0, w)
@j
@ y

(�n, z)

� ����� ,1,

and � is bounded over compact subsets of R2.

Remark 2. Many weak-dependence settings ensure the conditions of Definitions 3 and 4

(mixing, association, linear fields); we refer again to Doukhan and Louhichi (1997) for a

detailed list of examples.

Theorem 1. Let X be I-decomposable and reachable. Then

SN (X ) ¼)
w

N
N (0, 	 2),

where

	 2 ¼
ð1
�1

Efj(�0, x)2g dR0(x, x)þ
X

n2Zd�f0g

ð1
�1

ð1
�1

Efj(�0, x)j(�n, y)g dRn(x, y):

Proof. Given a pair of positive integers J, L, we define the random field Y (J , L) as follows:

Y (J , L)n ¼
i

2L
if Yn 2

i

sL
,

iþ 1

2L

# �
, �J2L < i < J2L � 1,

Y (J , L)n ¼ �J if Yn , �J ,

Y (J , L)n ¼ J if Yn > J :

Fix J, L. Since Y is consistent, it is clear that so is Y (J , L), and Proposition 1 applies to the

I-decomposable random field X (J , L) defined by

X (J , L)n ¼ j(�n, Yn(J , L)):

It follows that SN (X (J , L)) ¼)
w

N
N (0, 	 (J , L)2), where

	 (J , L)2 ¼ A(J , L)þ B(J , L)þ C(J , L)þ D(J , L)þ E(J ),

with
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A(J , L) ¼
Xi, j¼J2L�1

i, j¼�J2 L

X
n2Zd�f0g

ˆ n;
i

2L
,

j

2L

� �
Rn

i

2L
,

iþ 1

2L

# �
3

j

2L
,

jþ 1

2L

# �� �
,

B(J , L) ¼ 2
Xi¼J2 L�1

i¼�J2L

X
n2Zd�f0g

ˆ n;
i

2L
, �J )Rn

i

2L
,

iþ 1

2L

# �
3 (�1, �J )

� ��

þ 2
Xi, j¼J2L�1

i, j¼�J2L

X
n2Zd�f0g

ˆ n;
i

2L
, J

� �
Rn

i

2L
,

iþ 1

2L

# �
3 [J , 1

� ��
,

C(J ) ¼
X

n2Zd�f0g
ˆ(n; �J , �J )Rn((�1, �J )) 3 (�1, �J ))

þ
X

n2Zd�f0g
ˆ(n; J , J )Rn([J , 1)) 3 [J , 1))

þ 2
X

n2Zd�f0g
ˆ(n; �J , J )Rn((�1, �J )) 3 [J , 1)),

D(J , L) ¼
Xi¼J2L�1

i¼�J2 L

ˆ 0;
i

2L

� �2

R0

i

2L
,

iþ 1

2L

# �
,

�

E(J ) ¼ ˆ(0; J , J )R0([J , 1))þ ˆ(0; �J , �J )R0((�1, J )):

Now fix J. By (H5) and the dominated convergence theorem, it follows that

A(J , L) !
L

X
n2Zd�f0g

ð J

�J

ð J

�J

ˆ(n; x, y) dRn(x, y) :¼ A(J ),

B(J , L) !
L

X
n2Zd�f0g

ð J

�J

ð J

�J

ˆ(n; x, �J ) dRn(x, y)

þ 2
X

n2Zd�f0g

ð J

�J

ð1
J

ˆ(n; x, J ) dRn(x, y) :¼ B(J ), (3)

D(J , L) !
L

ð J

�J

ˆ(0; x, x) dR0(x) :¼ D(J ):

Therefore,

lim
L
	 2(J , L) ¼ A(J )þ B(J )þ C(J )þ D(J )þ E(J ):
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Applying (H5), we easily arrive at

A(J ) !
J

X
n2Zd�f0g

ð1
�1

ð1
�1

ˆ(n; x, y) dRn(x, y),

D(J ) !
J

ð1
�1

ˆ(0; x, x) dR0(x, x), (4)

B(J ) !
J

0, C(J ) !
J

0, E(J ) !
J

0:

Therefore, from (3) and (4), we conclude that

lim
J

lim
L
	 2(J , L) ¼ 	 2: (5)

On the other hand, we have SN (X )� SN (X (J , L)) ¼ SN (J , L)þ sN (J ), where

SN (J , L) ¼ 1

(2N þ 1)2

X
n2[�N ,N ]d

[X n � X n(J , L)]1fjYnj>Jg,

sN (J ) ¼ 1

(2N þ 1)d

X
n2[�N ,N ]d

[X n � X n(J , L)]1fjYnj,Jg:

It follows that

Ef[SN (X )� SN (X (J , L))]2g < 2(EfSN (J , L)2g þ EfsN (J )2g): (6)

We have

EfSN (J , L)2g ¼

1

(2N þ 1)d

X
n,m2[�N ,N ]d

E [j(�n, Yn)� j(�n, Yn(J , L))]1fjYnj,Jg[j(�m, Ym)
1

�j(�m, Ym(J , L))1fjYmj,Jg]g :¼
1

(2N þ 1)d

X
n,m2[�N ,N]d

Ef˜(n, m; J , L)g:

Define

Ii(J , L) ¼ i

2L
,

iþ 1

2L

# �
, pi(J , L) ¼ i

2L
, for� J2L < i < J2L � 1:

Then, using the fact that � ?? Y and that � is stationary, we obtain

Ef˜(n, m; J , L)g ¼ EfEf˜(n, m; J , L)=(Yn, Ym)gg (7)
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¼
Xi, j¼J2L�1

i, j¼�J2 L

ð
Ii(J ,L)

ð
Ij(J ,L)

Ef[j(�n, x)� j(�n, pi(J , L))][j(�m, y)

� j(�m, pj(J , L))]g dP(Yn,Ym)(x, y)

¼
Xi, j¼J2L�1

i, j¼�J2 L

ð
Ii(J ,L)

ð
Ij(J ,L)

Ef[j(�0, x)� j(�0, pi(J , L))][j(�m�n, y)

� j(�m�n, pj(J , L))]g dP(Yn,Ym)(x, y):

For i, J � R, define

�(I , J ; k) ¼ sup
x2 I , y2J

jEf[j(�0, x)� j(�0, pi(J , L))][j(�k , y)� j(�k , pj(J , L))]gj, k 2 Zd :

From (7), it follows that

Ef˜(n, m; J , L)g <
Xi, j¼J2 L�1

i, j¼�J2 L

�(Ii(J , L), Ij(J , L); m� n)P(Yn,Ym)(Ii(J , L) 3 Ij(J , L)): (8)

But, by (H10),

�(Ii(J , L), Ij(J , L); k) <

����E @j
@ y

(Ł0, ci(J , L; x))
@j
@ y

(�k , cj(J , L; x))

� ����� 1

2L

� �2

if � J2L < i < J2L � 1, (9)

where ci(J , L; x) is some point between x and pi(J , L).

Therefore, by (8) and (9), we obtain

EfSN (J , L)2g ¼

1

2L

� �2
1

(2N þ 1)d

XJ2L�1

i,, j¼�J2 L

X
n,m2[�N ,N ]d

����E @j
@ y

(�0, ci(J , L; x))
@j
@ y

(�m�n, cj(J , L; x))

� �����
3 P(Yn,Ym)(Ii(J , L) 3 Ij(J , L)):

Setting u ¼ m� n, we easily obtain

EfSN (J , L)2g <

1

4L

Xi, j¼J2 L�1

i, j¼�J2L

X
kuk<2N

����E @j
@ y

(�0, ci(J , L; x))
@j
@ y

(�u, cj(J , L; x))

� �����
3

1

(2N þ 1)d

X
n2[�N ,N]d

P(Yn,Y nþu)(Ii(J , L) 3 Ij(J , L)):
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Using (H11), this leads to

EfSN (J , L)2g < C(J )

4L

which implies

lim
J

lim
L

lim sup
N

EfSN (J , L)2g ¼ 0: (10)

In a similar way, setting bJ (x) ¼ sgn(x)J , for all x 2 R, we obtain

EfsN (J )2g ¼
1

(2N þ 1)d

X
n,m2[�N ,N ]d

ð
[�J ,J ]c

ð
[�J ,J ]c

Ef[j(�0, x)� j(�0, bJ (x))][j(�m�n, y)

� j(�m�n, bJ (y))]g dP(Yn,Ym)(x, y)

<
1

(2N þ 1)d

X
n,m2[�N ,N ]d

k(m� n; J )P(Yn,Ym)([�J , J ]c 3 [�J , J ]c),

where

k(n; J ) ¼ sup
jxj>J ,j yj>J

jEf[j(�0, x)� j(�0, bJ (x))][j(�n, y)� j(�n, bJ (y))]gj:

By (H5) we have that

lim sup
J!1

X
n2Zd

k(n; J ) ,1: (11)

Therefore,

EfsN (J )2g <
X

kuk<2N

k(u, J )
1

(2N þ 1)d

X
n2[�N ,N ]d

P(Yn,Y nþu)([�J , J ]c 3 [�J , J ]c): (12)

Using (H1), (H2) and (11), we deduce from (12) that

lim sup
N

EfsN (J )2g <
X

u2Zd�f0g
k(u, J )Ru([�J , J ]c 3 [�J , J ]c)þ k(0, J )R0([�J , J ]c: (13)

Applying Remark 1 and (11), we finally obtain

lim
J

lim sup
N

EfsN (J )2g ¼ 0: (14)

The results follows from (5), (6), (10) and (14). h

Example 5. Assume that Y is a stationary random field such that, for each n 2 Zd , (Y :, Y :�n)

satisfies the Marcinkiewicz–Zygmund inequality; that is, there exist a q . 2 and a constant

C(n, q) such that, for any function f : R2 ! R bounded by 1,
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E
X

m2[�N ,N ]d

[ f (Ym, Ym�n)� Ef f (Ym, Ym�n)g]

 !q
8<
:

9=
; < C(n, q)(2N þ 1)qd=2:

Then Y is consistent. Let j be a C1-function j : R2 ! R which is odd with respect to the

first variable and assume

HK (x) ¼ sup

���� @j@ y
(x, z)

���� : jzj < K

( )
,1,

h(x) ¼ supfjj(x, y)j : y 2 Rg ,1, K 2 R, x 2 R:

Consider further a stationary random field �, independent of Y, such that the law of �0 is

symmetric, Ef� 4
0g ,1, EfHK (�0)2g ,1 for all K, Efh(�0)2g ,1,

P1
m¼1 md�1Æ�(m)

,1 and m2Æ�(m) is bounded, where

Æ�(m) ¼ supfjP(C \ D)� P(C)P(D)j : A 2 	 �(A), B 2 	 �(B), d(A, B) > mg,

m ¼ 1, 2, . . .

and 	 �(A) denotes the 	-algebra generated by f�n : n 2 Ag (see Bradley 1986; Doukhan

1995).

Set X n ¼ j(�n, Yn). Using covariance inequalities for mixing random fields (see Bradley

1986; Doukhan 1995), it is easy to see that X is I-decomposable and reachable, and hence,

it satisfies the CLT.

Remark 3. (a) It is easy to verify that a similar result holds for the multidimensional case (i.e.

j Rd-valued, � RÆ-valued, Y Rb-valued). The proof is obtained from the preceding one

without substantial changes.

(b) Assume now that j is defined over RZd

3 RZd

; denote by Ł the shift on RZd

,

Ł(x)n ¼ xn�1, n 2 Zd , and consider the regression model Xn ¼ j(Łn(�, Y )). Then, if we

assume that j can be suitably approximated by a sequence of functions (jk : k 2 N), such

that for each k, jk is defined over R(2kþ1)d

and the multidimensional CLT applies to

X k
n ¼ jk(� k

n, Y k
n), � k

n ¼ (�nþm : kmk < k), Y k
n ¼ (Ynþm : kmk < k), then we deduce by

standard approximation arguments (see Billingsley 1968, p. 183) that the CLT holds for X.

(c) Assume that Y is a stationary random field but that 	 Y
1 is not trivial (see Example 1).

If we allow Rn, R0 to be random measures, the proof of conditional normality given in

Proposition 2 can be reproduced here, but the asymptotic variance will depend on Y.

Therefore, the asymptotic distribution of SN (X ) is a mixture of normal laws.
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de Paris-Sud.

Esary, J., Proschan, F. and Walkup, D. (1967) Association of random variables, with applications. Ann.

Math. Statist., 38, 1466–1476.

Guyon, X. (1995) Random Fields on a Network. Modeling, Statistics, and Applications. New York:

Springer-Verlag.

Kolmogorov, A.N. and Rozanov, Y. (1960) On the strong mixing conditions for stationary Gaussian

sequences. Theory Probab. Appl., 5, 204–207.

Newman, C. (1984) Asymptotic independence and limit theorems for postively and negatively

dependent random variables. In Y.L. Tong (ed.), Inequalities in Statistics and Probability,

IMS Lecture Notes Monogr. Ser. 5, pp. 127–140. Hayward, CA: Institute of Mathematical

Statistics.

Perera, G. (1994a) Estadı́stica espacial y teoremas centrales del lı́mite. Doctoral thesis, Centro de
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