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FINITE SECTIONS 
OF SEGAL-BARGMANN SPACE TOEPLITZ OPERATORS 

WITH POLYRADIALLY CONTINUOUS SYMBOLS 

ALBRECHT BÖTTCHER AND HARTMUT WOLF 

ABSTRACT. We establish a criterion for the asymptotic invert-
ibility of Toeplitz operators on the Segal-Bargmann space on 
C whose symbols have the property that the polyradial limits 
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exist for all (t{, . . . , tN) € T^ and represent a continuous 
function on T^ . 

1. INTRODUCTION 

The following problem emerges in connection with several ques
tions on Toeplitz operators. Given a Toeplitz operator on some 
Hilbert space of analytic functions, consider the compressions of 
the operator to the subspaces of polynomials of degree at most n . 
If the given operator is invertible, are its compressions invertible 
for all sufficiently large n and do the inverses of these compres
sions strongly converge to the inverse of the operator as n goes to 
infinity? In case the answer to this question is affirmative, one says 
that the given Toeplitz operator is asymptotically invertible or that 
the finite section method is applicable. The finite section method 
has been studied for a long time for Toeplitz operators on Hardy 
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spaces (see e.g. the books [8] and [6]) and was also recently tackled 
by one of the authors for Bergman space Toeplitz operators [4]. 

The increasing interest in Toeplitz operators on the Segal-
Bargmann space (see e.g. [2, 3]) motivates the investigation of their 
asymptotic invertibility, too. In the present note we announce a 
criterion for the asymptotic invertibility of Toeplitz operators with 
continuous symbols on some scales of Hubert spaces of entire func
tions on C^, including the Segal-Bargmann space. 

2. SPACES OF SEGAL-BARGMANN TYPE ON C 

Let dju(z) be a rotation invariant measure on C, i.e. suppose 
in polar coordinates we have d/u(z) = rdv{r)dd, where dv{r) is 
a nonnegative measure on (0, oo). We assume that 

(1) ju(n) := [ \z\n d/i(z) = 2n f°° rn+l dv{r) < oo 
Jc Jo 

for n = 0, 1, 2, ... and we also require that dfi(z) does not 
have finite support, i.e. that 

(2) sup{r: r e suppz/} = oo. 

Finally, dictated by a proof that will follow below, we must de
mand that 

(3) lim (fi(n)m)/mn - l)/*(/i + 1)) = 1. 
n—•oo 

The space H (C, d/u) is defined as the normed space of all entire 
functions ƒ for which 

||/||2:= [\f(z)\2dMz)<œ. 
Je 

The Segal-Bargmann space considered by Berger and Coburn in 
[2] and [3] arises from specifying d/u(z) to 

(4) d/if(z) = (fi/n)e'fi^rdrde {0 > 0). 

It is clear that dfx^(z) satisfies (1) and (2), and since jùJn) = 
r(n/2 + l)p~n/\ the equality (3) can be easily checked using 
Stirling's formula. To have another example, we note that if 
d/u(z) = (y j2n)e~yrrdrdQ, then the requirements (1), (2), and 
(3) are also met. 

Consider the power series 
oo 

(5) p{X) = YJ^imn). 
n=0 



FINITE SECTIONS OF SEGAL-BARGMANN SPACE TOEPLITZ OPERATORS 367 

Holder's inequality with the conjugate exponents (n + l)/n and 
n + 1 gives 

J \z\2n dn(z) < ( ^ \z\2n+2 dn(z)j ( ^ d»(z)j 

and thus 

a v - l / ( » + l ) / r \ l /(»+l) 

dti(z)\ I \z2\n+ldfi(z)\ 
As z is unbounded, the right-hand side of the latter inequality 
goes to infinity as n —• oo, which implies that the convergence 
radius of (5) is infinite. Hence p{X) is an entire function. In the 
special case where dfi(z) is the measure (4) we have p(X) = e^ . 
Standard computations (using the series representation (5)) yield 
that the function Kw defined for w e C by Kw(z) — p(w1) 
belongs to H2{C, du), that \\KW\\2 = p(\w\2) and that p(w~z) is 
the reproducing kernel for H2(C, d/u) : if ƒ e H2(C, du) and 
w £ C, then 

f(w) = (ƒ, KJ = [ f{z)p{wt)dn(z). 

We have in particular \f(w)\ < ||/||(p(|i(;2|))1/2, which shows 
that point evaluation at each w e C is a bounded functional on 
H2(C, d/u) and that H2(C, d/u) is complete and thus a Hubert 
space. The orthogonal projection of L (C, d/u) onto / / (C, d/i) 
is given by 

(Pf)(w) = f f{z)p{WÏ)dv(z)9 
Je 

and the functions {en}™=0 defined by 

(6) en(z) = z7(/}(2«))1/2 

form an orthonormal basis in H2(C, dix). 

3 . TOEPLITZ OPERATORS ON H2(C, dju) 

The Toeplitz operator Tl(d) generated by a function a in 
L°°(C, d/u) (its so-called symbol) is the operator on H2(C, d/u) 
that sends a function ƒ to the function P(af). Here we restrict 
ourselves to Toeplitz operators whose symbol a belongs to C(C), 
which means that a is continuous on C, that the limit 

a (e ) := lim a(re ) 
r—KX) 
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exists for each e on the complex unit circle T and that a is 
continuous on T. With every function a e C(C) we associate a 
function â e L°°(C, du) by â(rew) := a*{ew) (r > 0). 

Taking into account that |/(tu)| < \\f\\(p{\w\2))i/2 for ƒ in 
H (C, rf//) one can show (e.g. as in [1, Lemmas 4.1 and 4.2]) that 
Tl(a) - Tl(â) is compact for a e C(C). The matrix representa
tion of Tl(â) with respect to the orthonormal basis {en}^L0 given 
by (6) is 

(7) (aj_kfi(k + j)/mk)M2j))l/Xk=o > 

where {cin}^L_00 stands for the sequence of the Fourier coeffi
cients of a*. 

For a e C(Ü), we denote by T°(a) the operator on H2(C, d/i) 
whose matrix representation with respect to the basis {en}^L0 

equals (aj„k)Vk=00 - Since T°(a) is unitarily equivalent to the 
Toeplitz operator with the symbol a on the Hardy space H (T), 
the operator T°(a) is bounded on H2(C, d/u). 

The point is that if a G C(Ü), then Tl(a) - T (a) is a compact 
operator on H2(C, rf//). Indeed, due to a standard approximation 
argument, it suffices to show that the operators Tl(zm/\z\m) -
T°(zm/\z\m) are compact for all integers m. From the matrix 
representation (7) we infer that the compactness of the latter op
erators is equivalent to the equalities 

(8) lim fi{2k + m)/(fl(2k)fi(2k + 2m))1/2 = 1. 
k—>-oo 

The equalities (8) in turn are an immediate consequence of our 
hypothesis (3). 

Denote by Pn (n = 0, 1, 2, ... ) the orthogonal projection of 
H (C, dji) onto the linear hull of the monomials 1, z, ... , z . 
An invertible operator T on H (C, djj) is said to be asymptoti
cally invertible if the compressions (finite sections) PnTPn\ ImPw 

are invertible for all sufficiently large n and the operators 
(PnTPn)~

lPn converge strongly to T~l as n —• oo . 

Theorem 1. Every invertible Toeplitz operator Tl(a) with symbol 
a in C(C) is asymptotically invertible on H2(C,dfi). 

Proof. We have Tl(a) = T°(a) + K with some compact operator 
K, and a theorem by Silbermann (explicitly stated as Theorem 
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7.20 in [6]) says that operators of the form T°(a) + K are asymp
totically invertible whenever they are invertible. D 

4. HIGHER DIMENSIONS 

Given N measures dpt^z) on C satisfying (1), (2), and (3), 
we put dfi(z) = diix(zx) • • • djuN(zN) and denote by H2(CN, d/u) 
the Hilbert space of all entire functions on C^ for which || ƒ ||2 := 
fCN \f(z)\2 dft(z) < oo. Notice that H2(CN, dju) decomposes into 
the Hilbert space tensor product 

H2(C9dti1)®---®H2(C9d/AN). 

The orthogonal projection of L2(CN, d/u) onto H2(CN, d/u) is 
denoted by P. We have 

(Pf)(w) = / f(z)p1(w{zl) • ~PN(wNzN) d/u(z) 

for ƒ e L2(CN, d/u) and w eCN ; here Pj(Wz) is the reproducing 
kernel for H2(C, d/Uj). The Toeplitz operator on H (CN, dfi) 

induced by a function a e L°°(CN, djx) (its symbol) acts by the 
rule ƒ »-• P(af), and it will be denoted by Tl '"" l(a) (N units). 

jy 

We limit ourselves to Toeplitz operators with symbols in C(C ). 
The latter space is defined as the set of all functions a which are 
continuous on C^ and for which the limits 

a V 1 , . . . , eW») := lim a(r{e^ , . . . , rNeW») 

exist for all (eld{, . . . , e'*9") G T^ and represent a continuous 
function on T^ . 

jy 

Our next objective is to associate with each function a e C(C ) 
a collection of 2N "mixed" Toeplitz operators T£l'""eN(a) 
((el9...,eN) e {0, 1}") on H2(CN,d/Lt). For N = 1 these 
two operators are just the operators Tl(a) and T°(a) introduced 
in §3. If N > 1, then Tl'""l(a) stands for the Toeplitz opera
tor defined above. There is no problem in defining the remaining 
2 ^ - 1 operators Tei"'"eN(a) is case a is a finite sum of the form 

fl = K ' 0 - 0 a J ( ^ G C ( C ) ) ; 
j 

we then put 
T**—e»(a) := ] T 7e'(of1) 0 . . . 0 r e " ( 4 " ) . 
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To define Tei"",eN(a) for general a € C(C ) we proceed as 
follows. Let Wn (n = 0, 1, 2, . . . ) be the operator given on 
H2(C,dti) by 

oo 

Wn • E fkek " fne0 + fn-lel+---+ he
n • 

k=0 

We clearly have Wn1°{a)WH = PnT°(a°)Pn , where a°{z) := a{1). 
If a € C(C), then Tl{a) = T°(a) + K is compact and hence, 

Wj\a)Wn = Pj\a)Pn + WnKWn - 7%°) 
strongly as « —• oo , because Wn —> 0 weakly as « —• oo . Thus, 
r°(<z) may also be defined as the strong limit l i m ^ ^ Wn Tl (a°) Wn, 
and this idea works in the multidimensional case as well. 

Namely, write R°n := Wn and Rx
n := Pn , and for e = (ex, . . . , e^) 

in {0, 1}* let i?fi
w:=i?e;(8)---0i?^. For a € C(CN) define a£ e 

C(C^) by a\zx, . . . , zN) = a ^ , . . . , wN), where wy := z. if 
c. = 1 and Wj := z • if e. = 0. One can show (see [4] for the 
Bergman space case) that the strong limit 

lim ReTl'~-1 (a )Re
n 

ŷ 

exists for every a e C(C ) , and this limit is, by definition, the 
mixed Toeplitz operator Te(a). 

The following theorem provides a Fredholm criterion for the 
operators Te(a). 

Theorem 2. Let a e C(CN) and e e {0, 1}*. 

(a) If N > 2, then T\d) is Fredholm on H2{CN, dpi) if and 
only if for each r e T the N operators 

rei,...,e._1,e.+1,...,e^(ay) a = 1 ? _ ? i V ) 

are invertible on H2(CN~l, dju/d/Uj) ; /zere a\, . . . , a^. e 

C(C ) are defined by 

aT(z{, . . . , zy._j, z J + 1 , . . . , zN) 

:=Hm a(z1? . . . , zy_1? r r , zy+1 , . . . , z^) . 

(b) If T\a) is not invertible on H2(CN, rf/i) (N > 1), r/ien 
f/*ere ajuste a sequence {Un}™=0 of operators on H2(CN, d/u) 
such that \\Un\\ = 1 /or a// n and \\UnT

e(a)\\ -> 0 or 
\\T\a)Un\\ ->0 as n^oo. 
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In various special settings this theorem is well known. In the 
Wiener-Hopf case, that is for e = (0, . . . , 0), it was established 
by Simonenko [11] and Douglas and Howe [7], for pure Segal-
Bargmann space Toeplitz operators, i.e. for e = (1 , . . . , 1), it 
follows from the results of Berger and Coburn [2, 3]. 

The theorem can be proved by arguments similar to the ones 
employed by Douglas and Howe [7] and Pilidi [10] in the Wiener-
Hopf case (also see [6, 8.38 and 8.77]). We remark that the "only 
if' part of (a) may be shown by induction on JV using part (b) for 
N-l. 

We now come to asymptotic invertibility. An invertible operator 
T on H2(CN, d/i) is said to be asymptotically invertible if the 
compressions (finite sections) 

Tn:=(Pn®...®Pn)T(PH®.-.®PH)\1m(Pn®...®Pn) 

are invertible for all sufficiently large n and the operators 
T~l (Pn <s> • • • <s> Pn) converge strongly to T~x as n -» oo. 

Theorem 3. Let a £ C(CN) and e e {0, 1}^ . Then the op
erator Te(a) is asymptotically invertible on H2(CN,diu) if and 
only if the 2N operators Te's(as) (ôe{0, 1}N) are invertible on 
H2(CN, d/i) ; here e-ö:= (e^ , . . . , eNSN). 

This is our main result. For pure Segal-Bargmann space Toeplitz 
operators, the theorem says that Tl'""l(a) is asymptotically in
vertible if and only if the 2N operators Tô(as) (ô e {0, 1}*) 
are invertible. In the case N = 1 this theorem really goes over 
into Theorem 1, because then the invertibility of T (a ) automat
ically results from the invertibility of Tl (a). In the Wiener-Hopf 
(Hardy space) case the theorem is Kozak's pioneering result [9]: 
r 0 " ' " (a) is asymptotically invertible if and only if the 2N op
erators r°'~"°(as){ô e {0, 1}*) are invertible. Note that all the 
operators T° "'"°(<z ) are Wiener-Hopf, so that no mixed opera
tors appear in the Wiener-Hopf situation. 

The proof of Theorem 3 is rather long. It proceeds along the 
lines of §§8.60-8.69 in [6] (also see [4] and [5]). Two impor
tant ingredients of the proof are the Fredholm criterion contained 
in Theorem 2 and the following Segal-Bargmann analogue of a 
formula established by Widom [12] in the Wiener-Hopf case: if 
a,b e C(Ü) then 

PnT\ab)Pn = PnT\a)PnT\b)Pn + PnKPn + WnLWH + CH, 
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2 

where K and L are compact on H (C, d/u) and ||CJ| —• 0 as 
n —• oo. 

We finally remark that it is certainly nice to have a single the
orem comprising both Kozak's criterion for Hardy space Toeplitz 
operators and a criterion for the asymptotic invertibility of Segal-
Bargmann space Toeplitz operators. However, we wish to empha
size that our theorem as it is stated does not result from the sole en
deavor to aesthetics; it is rather determined by our proof: we prove 
it by induction on the dimension N, and the proof we have does 
not work when we bound ourselves to pure Segal-Bargmann oper
ators only, whereas it goes smoothly when considering all mixed 
Toeplitz operators simultaneously. 
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