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In 1955 and 1956 Payne, Pólya, and Weinberger considered the 
problem of bounding ratios of eigenvalues for homogeneous mem­
branes of arbitrary shape [PPW1, PPW2]. Among other things, 
they showed that the ratio k2IK °f t*ie ^ r s t t w o eigenvalues was 
less than or equal to 3 and went on to conjecture that the optimal 
upper bound for A2/Aj was its value for the disk, approximately 
2.539. It is this conjecture which we establish below. 

Since 1956 various authors have attempted to prove the conjec­
ture of Payne, Pólya, and Weinberger and some have been able to 
improve upon the constant 3. Specifically, Brands [Br] in 1964 ob­
tained the value 2.686, de Vries [dV] in 1967 obtained 2.658, and 
Chiti [Ch2] in 1983 obtained 2.586. In addition, Thompson [Th] 
gave the natural extension of the PPW argument to dimension n, 
obtaining 

(1) k2lkx <l+4/n 

as the bound for the analogous problem (eigenvalues of the Dirich-
let Laplacian on a bounded domain in Rn) and made the natural 
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conjecture that the optimal bound is the value of A2/Aj for a ball 
in R" . This more general conjecture can also be established using 
the approach we present below. However, to keep the discussion 
concise we shall restrict it almost entirely to our proof of the orig­
inal (two-dimensional) PPW conjecture. Only in our concluding 
remarks do we briefly return to a discussion of the situation for 
general dimension n. 

To be precise, the problem that we consider is the eigenvalue 
problem for the Dirichlet Laplacian on a bounded domain Q c 
R2: 

(2) -Aw = Aw on Q 

with boundary condition 

(3) u = 0 on<9Q. 

It is well known that the spectrum of this problem is {A^}^ where 
the eigenvalues A, are repeated according to their multiplicities 
(each of which is finite) and 

(4) 0 < Aj < A2 < A3 < A4 < • • • . 

A corresponding sequence of orthonormal eigenfunctions will be 
denoted {M,-}^ ; each ut is a normalized eigenfunction for the 
eigenvalue A,. Our result may now be stated formally as 

Theorem (Payne-Pólya-Weinberger conjecture). The ratio of the 
first two eigenvalues of the Dirichlet Laplacian on a domain Q, c 
R , as defined by (2) and (3) above, satisfies 

(5) kf<Xf\ = ( V U 2.539. 
Al A\ la=disk \J0,lJ 

Moreover, equality obtains if and only if Q is a disk. 

The quantities j0 x and jx x occurring here denote the first pos­
itive zeros of the Bessel functions J0(x) and Jx(x), respectively. 
In general j p k will denote the /cth positive zero of Jp{x). Note 
that no mention need be made of the size of our domains il since 
eigenvalue ratios are unaffected by changes of scale; only shapes 
matter in these considerations. 

We turn now to the proof of our theorem. There are several ele­
ments that go into the proof, some of which will be indicated only 
in broad form here. In particular, we make use of the Rayleigh-
Ritz inequality for A2, spherical rearrangements, a comparison 
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result of Chiti [Chi, Ch2], and special properties of certain com­
binations of Bessel functions. We also require carefully chosen 
trial functions for u2 and a topological argument which makes 
possible our use of the Rayleigh-Ritz inequality. 

Starting from the Rayleigh-Ritz inequality for k2, 
(6) 

-SnPu^PuJdA i d d f pu
2

dA = 0andPjé0, 

the gap estimate, 
(7) 

• |2 2 

A2 - Xx < ** ^ 2 l dA provided f Pu\dA = Q and P=ÉO, 
$aP uxdA JQ 

follows easily by integration by parts. Here dA denotes the stan­
dard area element in R2 . We shall actually use two different trial 
functions P in (7). We take them as 

(8) Pi = g(r)^> i ' = l , 2 

where g is a nonnegative and nontrivial function of the radial 
variable r (to be chosen explicitly later) and the xt are the stan­
dard Cartesian coordinates. Obviously, the side condition P ^ 0 
is satisfied for each of these. To see that we can insure that the 
other side conditions, JQPiuldA = 0 for i = 1,2, can be si­
multaneously satisfied requires a brief topological argument (from 
Weinberger [W]). One considers the vector field 

(9) # = ƒ S{r)^u\dA 
Jo. r 

as a function of where we place the origin. Letting D be a ball such 
that Q c D, it is clear that v is defined and continuous on D and 
since g(r)u\ > 0 and is supported inside D it follows that on the 
boundary of D v must always point inward. It now follows from 
the Brouwer fixed point theorem that v must vanish somewhere 
within D. Taking some such point (which is necessarily inside the 
convex hull of ft) as our origin guarantees that the side conditions, 
fQ Ptu\ dA = 0 for i = l , 2 , are both satisfied. 

Proceeding with the argument, we now have 

(10) (A2 - A,) f Pfu] dA< f \VPA2u] dA for i = 1, 2 
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and summing on i yields 

Sa{g{rf + \g{r)2]u\dA 
(11) JL-A, < " r , : ' . 

This is a key estimate which we call the basic gap inequality. (In 
his paper [Ch2], Chiti used (11) with the function g(r) = r.) 
A crucial observation is that by summing on i in (10) all angular 
dependence due to the trial functions has disappeared in ( 11 ). This 
makes possible a sharp use of rearrangement inequalities, which 
we now discuss. 

For an integrable real-valued function ƒ defined on a bounded 
domain QcR w the spherical decreasing rearrangement of ƒ (also 
known as symmetric decreasing rearrangement [BLL, LI, L2, HLP, 
pp. 276-278] or Schwarz symmetrization [Ba, p. 47, Ka, pp. 15-
16]; for more details, see [Ba, HLP, Ka]) is a function, denoted 
ƒ* which is defined on the ball fi* c Rn of volume |£2| and 
with center at the origin, which is invariant under rotations and 
nonincreasing with respect to distance from the origin, and which 
is equimeasurable with ƒ , i.e. the sets {x e Cl\f(x) > t] and 
{x e £l*\f*(x) > t) have equal measures for all real t. Since 
ƒ* is spherically symmetric we shall abuse notation occasionally 
and write f*{r) which is to be viewed as a function of the radial 
variable r = \x\ for r between 0 and the radius of Q*. The 
spherical increasing rearrangement of ƒ , denoted f^, is defined in 
the same way but with "nondecreasing" replacing "nonincreasing" 
in the definition above. Alternatively, one could define f^ via 
f^ = _(_ƒ)*. The results which we shall need for the arguments 
to follow are the inequality 

(12) f fgdA< f fg*dA 

and the equivalent inequality 

(13) f fgdA> f lg*dA. 

Additionally, it should be noted that the operation of taking the 
spherical decreasing (resp., spherical increasing) rearrangement is 
dependent on the domain £2 in the following sense: if f(r) is 
a nonincreasing (resp., nondecreasing) function of r for all r e 
(0, maxx6fi|x|) then 
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(resp., /(r)% > f(r)) for all r between 0 and the radius r* of 
Q*, with strict inequality for r e (min^ ^ n \x\, r*) if ƒ is strictly 
monotone there. 

Returning to the main line of the argument, observe that to get 
the optimal bound (5) we must take g(r) so that (11) becomes 
an equality if Q is a ball. Thus we want g(r)(xi/r)ul to reduce 
to an eigenfunction corresponding to k2 for i = 1,2 in that case 
and this motivates the choice 

(14) g(r) = w(yr) 

where 

f 4 ^ 4 farO<*<l, 
(15) w(x)=l J0(ax) 

{ w(l) = lim^^j- w(x) for x > 1, 
with a = j0 j , /? = j \ j , and y = \fTxja. (The function w de­
fined in this way is continuously differentiable on [0, oo).) Sub­
stituting this into the basic gap inequality yields 

(16) jjt-x^&'wrtf* -èih«>rrtfA 

faw(yrf«\dA a1 jaw(yrfu]dA 

where 
(17) B{x) = w\xf + \w{xf. 

X 

Using properties of Bessel functions one can show 
(a) w(x) is increasing on R+, 
(b) B(x) is decreasing on R+ . 

Both facts are obvious for x > 1 ; the remainder of the arguments 
will be sketched after we have completed the main argument of 
the proof. 

Using rearrangements one then has 

(18) f B(yr)u2dA< f B(yr)*u2dA< [ B{yr)u2 dA 
JQ Jn* Jci* 

and 
/ 0 0 / . 0 J»0 / 0 »i»0 

(19) ƒ w(yr) UidA> ƒ w(yr)u, dA> w(yr) u, dA 
JQ Jn* Jn* 

where Q * c R denotes the ball of measure |Q| with center at 
the origin. 
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To finish proving the PPW conjecture one needs the following 
comparison result due to Chiti [Chi]: let S{ be the ball such that 
the Dirichlet problem 

-Az = kz in S{, 
on dS{, 

has kx as its first eigenvalue and suppose that z is normalized so 
that 

(20) 
ƒ -Az = 

I z = 0 

/ uxdA = I 
Jn JSt 

z2dA. 

Then \SX\ < \Q\ (with equality if and only if Q, is a ball; this 
follows immediately from the Faber-Krahn inequality) and there 
is a point rx e (0, 1/y) such that 

\u\(r)>z{r) f o r r € [ r l f l / y ] . 

To be more explicit, one has 

u}dA = u\ dA= / z dA, 
JQ Jn* Js{ 

z{r) = cJ0(^T{r)9 

and 
Sx = {x e R2\\x\ < a/yfil = 1/y} c Q*. 

From this it follows that if f(r) is an increasing function then, 
with R denoting the radius of Q*, 

f f(r)z2dA- f f(r)u\2dA 

= 2% P f(r)(z2 - u\2)rdr + f * f(r)(z2 - u2)rdr 
I/O Jrx 

fR 

- / f(r)u*\ rdr 
Jl/y 

< In \f(rx) p{z2 - u2)rdr + f{rx) jl,\z2 - u2)rdr 

-f(r{) / u\rdr 
Ji/y 

= f{rx)\f z2dA- [ u\ 
\Jsi Jn* 

'dA = 0 
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so that 

(22) ƒ f{r)u[ dA> f{r)z dA if ƒ is increasing. 
Jn* Js{ 

Similarly it follows that the reverse inequality holds if ƒ is de­
creasing. Using these results and properties (a) and (b), it follows 
that 

(23) f B{yr)u2dA< f B{yr)z2dA 
Jn* Js^ 

and 

(24) f w{yrfu\2dA> f w{yrfz2dA 

and combining these inequalities with (16), (18), and (19) we ob­
tain 

X _ A < A 1 fSiB(yr)z2dA = xx fj B(r)J2(ar)rdr 
2 l ~ a2fSiw(yr)2z2dA a2 ^ w(r)2J2(ar)rdr 

(25) = ^\[{X2 - À{) for the ball of radius 1] 
a 

= - J (A -OL). 
a 

A2Mi ^ ft2/0? 9 which is the inequality (5), is immediate. To see 
that equality occurs if and only if Q is a ball now follows easily. 
The "if part is obvious and the "only if' part follows from any 
of the following facts (none of which is difficult): (a) (11) is strict 
unless Q is a ball, (b) the second inequalities in (18) and (19) are 
strict unless Q is a ball, and (c) the inequalities (23) and (24) are 
strict unless Q is a ball. This completes the proof aside from the 
facts (a) and (b) claimed of w(x) and B(x). 

The demonstration of the relevant properties of the Bessel func­
tions occurring here is fairly direct if one works with their product 
representations. To simplify notation set an = jQ n and fin = 
j l n . Then since y = y/xJp(x) satisfies y"+[l-(p2-l/4)/x2]y = 
0 it follows by Sturm comparison theory that the sequences of dif­
ferences of zeros have the following properties: 

a j , a2 - a{, a3 - a2, ... is increasing (toward n) 

and 

/?!, /?2 - /?!, /?3 - /?2, ... is decreasing (toward n). 
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It follows that 

(2«) ^ , ^ - A - , ) ^ ^ 

(we have taken a0 = 0 = fi0 here for notational convenience). In­
troducing the notation ân = an/al and Pn = /?„/f}{ for the zeros 
of the scaled Bessel functions J0(ax) and J^fix), respectively, it 
is clear from (26) that 

(27) K<&n for « = 2 , 3 , 4 , . . . 

(recall that a = ax and /? = /?,). This is the key inequality from 
which all the necessary inequalities follow. 

With 

one finds, using the product representations for JQ and Jx, 

(29) A{X) = --2XY-T.—T—^h^r<- for* € (0,1] 

and also 
(30) 

A>(x) _ - i 2 y (&?, - ffit&iff + (af. + & V ~ 3^4] , - i 
*2 fe (*2-*V-«)2 

for x 6(0, 1], 

the final inequality holding by virtue of the fact that the quadratic 
m^à2j2

n+(à2
n+fi2

n)t-3t2 

opens downward and has fn(0) *= 5?nj% > 0 and /w(l) = a2
nji

2
n + 

â£ -h j8̂  - 3 > 0 for n > 2 since /„(l) is clearly increasing in 
n and fx(l) = 0. From (30) it is clear that A is decreasing on 
(0,1] and since A{\) = 0 it follows that A(x) > 0 for x e (0, 1) 
(in fact, from (30) the stronger result A(x) > l/x - 1 on (0,1) 
follows). This shows property (a), that w is increasing, since 
w' = Aw and w is clearly nonnegative. To see property (b), that 
B(x) = w\x)2 + w(x)2/x2 is decreasing on [0, 1], we argue that 
both w\x) and w(x)/x are decreasing (and positive) on [0, 1], 
For w(x)/x observe that 

f t 2 

(w/x) = (xw - w)/x = (A - l/x)w/x < 0 on (0, 1] 
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by virtue of (29). For w\x) observe that 

w" = Àw + Aw' = [A' + A2]w < 0 on (0, 1] 

by virtue of (29) and (30), completing the proof. 
We conclude with several additional remarks. First, the ar­

gument above extends naturally to the n-dimensional generaliza­
tion of the PPW conjecture. One finds À2/û{ < Un/2,i/Jn/2-i,02 

in that case with equality if and only if Q is an w-dimensional 
ball. In particular, the argument goes through almost unchanged 
in dimension 3 (where now the sequence corresponding to {at -
ai-i}<Z\ is constantly it and that corresponding to {fij-/^_i}~i 
decreases toward n) ; however, in higher dimensions the proof 
of the analog of am > Pm for m > 2 is necessarily more in­
volved. One can also obtain the same bound for the eigenvalues 
of the Schrödinger operator H = -A + V(x) acting on L (Q) 
with Dirichlet boundary conditions if V > 0 on Q. These re­
sults and further generalizations will be developed and discussed 
in greater detail in a longer version of this paper which will be 
published elsewhere [AB2]. We had conjectured the Schrödinger 
operator result in an earlier paper, after we had established its 
one-dimensional specialization (see [AB1] and references therein). 
For further background on the significance and consequences of 
the PPW conjecture we recommend the paper of Hersch [H] as 
well as his commentary on several of Pólya's papers: specifically, 
see the comments on papers 202 and 203 in [HR, pp. 519-522]. 
As should be apparent to anyone familiar with Chiti's paper [Ch2], 
our proof owes a lot to his general approach and, most importantly, 
to his comparison theorem. The work of Weinberger in [W] (also 
discussed in [Ba]) also has several features in common with ours. 
Finally, we mention that a second conjecture of Payne, Pólya, and 
Weinberger, that in two dimensions 

(31) (A2 + Aj)/*! < (A2 + A3)/A1|n=ball = 2 / ? V « 5.077, 

remains open. This would be a stronger result than ours but seems 
correspondingly more difficult to prove. However, we have been 
able to use our approach above to establish this and its higher 
dimensional analogs under certain added symmetry conditions. 
Specifically, (31) holds in two dimensions if Q has rotational sym­
metry of order 4. The details of this will appear in [AB2]. 
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NOTE ADDED IN PROOF 

We have recently succeeded in proving that for Q c R n A4/A2
 < 

Â/29i/j'n/2-i i which establishes the next two cases of the further 
conjecture of Payne, Pólya, and Weinberger that ^m+iMmla < 
^Mil«-dimensionaibaii for m = 1, 2, 3, . . . This result and related 
material will appear in our forthcoming paper Isoperimetric bounds 
for higher eigenvalue ratios for the n-dimensional fixed membrane 
problem. 
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