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Differential geometry can be described as the study of rc-mani-
folds M having geometric structures. This ceases to be tautolog­
ical when we expand on the meaning of a "geometric structure." 
One is given a Lie subgroup G c Gl (n, R), together with a co­
ordinate atlas {U , x } ^ , such that, on U n UR , the Jacobian 

J(xa o x j ) of the change of coordinates is G-valued. This geo­
metric structure, also called a G-structure, defines a reduction of 
the principal frame bundle F(M) to the group G. Such a re­
duction, whether or not it comes from a G-structure, is called an 
"infinitesimal G-structure." If it does arise from a G-structure on 
M, the infinitesimal G-structure is said to be integrable. 

A primary example is Riemannian geometry. This is the study 
of a manifold with a smoothly varying, positive definite inner prod­
uct (a Riemannian metric) on its tangent spaces. In the above ter­
minology, a Riemannian manifold is an «-manifold M, equipped 
with an infinitesimal (9(«)-structure. In this case, the Riemann 
curvature tensor is the obstruction to integrability, so an integrable 
Riemannian metric (an O(n)-structure) is a euclidean metric on 
M. All manifolds admit Riemannian metrics, but very few can 
support euclidean geometry. 

A /c-dimensional foliation & of an n-manifold M is another 
example of an integrable geometric structure on M. Here the 
structure group Gk is the subgroup of Gl (n, R) having lower left 
(n - k) x k block identically zero. The coordinate atlas can be 
described as {U , x , y } cfn, where 

, 1 2 n—ky. 
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and, on Ua n Ufi , 

ya = ya(yp)> 
Va, /? G 21. Every infinitesimal Gk -structure is a /c-plane subbun-
dle of T(M), called a k-plane distribution on M , and the inte-
grability condition is given by the well-known Frobenius theorem. 
The /c-dimensional level sets in Ua of ya are local integral man­
ifolds to the distribution and can be assembled into maximal con­
nected integral manifolds, called the "leaves" of the foliation &. 

The form of the transformations ya(yg), defined on Ua n U», 
suggests the presence of a manifold of dimension q = n - k for 
which the v 's serve as local coordinates. If the leaves of SF are 

J a 

the level sets of a submersion ƒ : M —• Nq , this is exactly right. In 
this case, N is viewed as the space of leaves and the ya 's provide 
local coordinates. Generally, the quotient space MJSF is far too 
pathological to be a manifold, but the ya 's can still be thought 
of, with care, as local coordinates in a "model" manifold Nq for 
M/^. More precisely, one can view the coordinate functions ya 

as submersions of Ua onto an open subset of Rq or, indeed, onto 
a coordinate neighborhood in any fixed manifold Af of dimension 
q . The coordinate changes are then viewed as diffeomorphisms 

gafi-yf(vanuf)->ya(uanuf) 
such that gap o yp = ya . The system {UQ,ya, gap, Nq}a^ 
is a "structure cocycle" for the foliation and it generates a pseu-
dogroup on N, called the holonomy pseudogroup for the foliation 
(although it really depends on the choice of cocycle). 

These considerations give rise to a notion of "transverse geo­
metric structures" or "holonomy invariant geometric structures" 
on the foliation. Such a structure is simply a geometric structure 
(infinitesimal or integrable) on N which is preserved by the holon­
omy pseudogroup. 

An example is the notion of a transversely Riemannian folia­
tion, which is the primary concern in the book of Pierre Molino 
and figures prominently in that of Philippe Tondeur. The foliation 
is transversely Riemannian if the structure cocycle can be chosen 
so that N is a Riemannian manifold and the transition functions 
gap are local isometries. In a similar spirit, a foliation is trans­
versely Lie if N can be taken to be a Lie group G and each g» to 
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be left translation by a group element. The Lie group G supports 
a left-invariant Riemannian metric, so a Lie foliation is also Rie-
mannian. Similarly, the foliation is transversely homogeneous if 
the model manifold can be taken to be a homogeneous space G/K 
and each g» is translation by an element of G. Again such a 
foliation is Riemannian, provided that K is compact. More gen­
erally, a Riemannian foliation is locally homogeneous if the local 
Riemannian manifolds fa(Ua), a € 21, all come equipped with 
a transitive Lie algebra of local Killing fields. Riemannian folia­
tions with dense leaves are locally homogeneous. Another special 
type of Riemannian foliation is an ^-foliation. Here one is given 
an absolute parallelism on TV which is preserved by the gap 's. 
One defines the metric on N so that the fields defining the paral­
lelism become orthonormal. The Lie foliations are a special case 
of e-foliations. All of these examples play important roles in the 
structure theory of Riemannian foliations. 

It is useful to compare the problem of finding transverse, in­
finitesimal (/-structures in a foliated manifold (M, &) to the 
classical problem of finding infinitesimal (/-structures on a mani­
fold M. The classical problem reduces to a problem in homo-
topy theory, namely, that of finding a (smooth) section of the 
Gl(rc, R)/(7-bundle associated to the principal frame bundle. In 
the case that G = O(n), the fiber Gl(n, R)/0(n) is contractible 
and the section always exists. This is the homotopy-theoretic rea­
son why every manifold has a Riemannian metric. By contrast, 
it is difficult for a foliated manifold to have a transverse Rieman­
nian structure. Such a structure is, indeed, a reduction of the 
normal frame bundle to G = O(q), but this reduction must be 
invariant under the locally absolute parallelism along leaves de­
fined by the foliated structure. In general, transverse, infinitesi­
mal (/-structures are (/-reductions of the normal frame bundle, 
invariant under the locally absolute parallelism. We describe this 
parallelism. 

If T{9r) c T(M) is the tangent bundle to the foliation, then 
the #-plane bundle Q = T{M)/T{Sr) is called the normal bun­
dle and its associated frame bundle F(Q) is called the normal 
frame bundle of SF. The differential dya of the local submer­
sion ya : Ua —• N submerges F(Q)\Ua into the frame bundle of 
N and is a morphism of principal Gl (q, R)-bundles. A section of 
F(Q)\U is parallel (along the leaves of S^\U) if dya carries it to 
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a well-defined section of F(N)\ya(Ua). In Ua this is an absolute 
parallelism along the leaves of 3r\Ua and it defines a locally abso­
lute parallelism along leaves globally. This parallel transport along 
leaves can also be defined by the "Bott connection," a connection 
on F(Q) whose curvature vanishes in the leaf directions. Nor­
mal vector fields which are parallel along leaves are called "basic" 
fields, and it is an easy matter to introduce corresponding notions 
of basic forms and basic tensors. 

In the case of a transversely Riemannian foliation, one can see 
that invariance of the metric under this parallelism requires that 
the leaves stay a fixed distance apart as one moves along them 
simultaneously. In general, invariance under the parallelism im­
poses similarly severe restrictions as to which foliations can sup­
port a transverse G-structure. We are no longer dealing with a 
problem in classical homotopy theory. 

In codimension one, a transversely orientable foliation is Rie­
mannian if and only if it is defined by a closed, nonsingular 1-form. 
Such foliations were studied in the early 1950s by Georges Reeb 
[Rb], who did not stress the Riemannian aspect. The study of 
Riemannian foliations, as such, begins in 1959 with Bruce Rein-
hart's work [Rtl] on foliations with a bundlelike metric. A "bun­
dlelike metric" is just a metric on M under which Q is identi­
fied with T{^)L and the metric so induced on Q is invariant 
under the parallelism along leaves. In [Rtl, Rt2], Reinhart ob­
tained important properties of bundlelike metrics. Among these 
are ( 1) the fact that geodesies perpendicular to some leaf at a given 
point are perpendicular, at each of their points, to the leaf through 
that point, and (2) the fact that all leaves have the same universal 
cover (if M is connected). It was left to Molino, however, in the 
late 1970s and early 1980s, to develop a comprehensive structure 
theory for these foliations [M1-M4]. 

For simplicity, in what follows we assume that M is compact. 
Since 0(q) is a compact group, it follows that the orthonormal 
frame bundle O(Q), associated to the bundlelike metric, has com­
pact total space. 

The key idea in Molino's theory is to use the locally absolute 
parallel transport of orthonormal frames along leaves to lift & to 
a foliation & of the orthonormal frame bundle O(Q). Since the 
parallelism is only locally absolute, the leaves of & will generally 
be many-to-one covers of the leaves of &. The orthonormal frame 
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bundle O(N) of the model manifold has an absolute parallelism 
that is preserved by isometries of N. Since O(N) serves as a 
model for the leaf space of SF, it follows easily that & is an e-
foliation, so the next order of business is to describe the structure 
of ^-foliations. 

The reviewer studied e-foliations of codimension two in the 
early 1970s [C], establishing some properties that were analogous 
to the case of codimension one [Rb]. This work was general­
ized and greatly simplified by Molino [M4] to include arbitrary 
codimension. The main facts from Molino's theory for e-foliated 
(M, &) are that (1) the closures L of the leaves L are, them­
selves, manifolds and smoothly fiber the underlying manifold, and 
(2) the induced foliation SF = &\L is a Lie foliation, indepen­
dent, up to isomorphism, of the choice of fiber L. The corre­
sponding simply connected Lie group G and its Lie algebra 0 
are called the structural group and the structural algebra, respec­
tively, of <?. 

When & is a Riemannian foliation, then & has leaf closures 
fibering O(Q) and an associated structural group G (respectively, 
structural algebra 0 ) which is called the structural group (respec­
tively, algebra) of the Riemannian foliation &. While the leaf 
closures for 9~ are mutually diffeomorphic, their positions relative 
to the 0(#)-fibers are not generally uniform; hence their projec­
tions into M are submanifolds of varying diffeomorphism types, 
even of varying dimensions. These submanifolds are exactly the 
leaf closures for &, they partition M, and, for each leaf L of 
^ , the induced foliation & — &\L is a locally homogeneous 
foliation. 

The reader who would like to pursue this theory in detail is 
strongly advised to study the two books under review. The book 
of Molino is an organized account of this structure theory by the 
man who developed it. The book is entirely self-contained, sup­
posing only a working knowledge of differential geometry. As a 
delightful bonus, it contains five appendices (by Yves Carrière, 
Vlad Sergiescu, Grant Cairns, Eliane Salem, and Etienne Ghys), 
treating related developments and future directions for research. 
The book of Tondeur has a broader scope and a different purpose. 
It is the text of a course, given by the author in 1986 at the Univer­
sity of Illinois, on a wide variety of interactions between Rieman­
nian geometry and the theory of foliations. Of special note here 
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is a treatment of the Hodge theory for Riemannian foliations, a 
subject developed by Ph. Tondeur and F. Kamber in this country 
[KT1-KT4] and by G. Hector, A. El Kacimi, and V. Sergiescu in 
France [EHl, EH2, EHS]. Also of note is an enormous bibliogra­
phy (64 pages) on foliation theory. 
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