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//-infinity control. Nevertheless the book is a good introduction 
into an active area of research and the reader who is willing to 
invest some time and effort should be well rewarded. 
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The subtitle of the book under review is Canonical models for 
algebras of operators arising in quantum mechanics. In the pref­
ace, the author states that he has "picked certain subjects from the 
theory of operator algebras, and from representation theory, and 
showed that they may be developed starting with Lie algebras, ex­
tensions, and projective representations." The distinctive point of 
view arises from the consideration of algebras of unbounded oper­
ators, which fall outside the usual theory of C* algebras and von 
Neumann algebras. Analytic properties of these operators, such 
as essential self-adjointness, are treated using spaces of C°° and 
analytic vectors for an appropriate Lie group action. 

The basic operator of interest here is the Hamiltonian (total en­
ergy) operator H of a quantum-mechanical system. The problem 
is to determine the spectrum and (generalized) eigenvector decom­
position of this self-adjoint operator. In Sophus Lie's creation of 
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the theory of continuous groups in the 1870s, the example of Ga­
lois theory served as a model: an algebraic equation has its group 
(the symmetry group of the roots of the equation), and the so­
lutions of the equation can be studied in terms of the structure 
of the associated group. Lie-theoretic approaches to quantum-
mechanical problems follow a similar pattern: given the operator 
H in some concrete realization (such as the Schrödinger picture), 
we look for a Lie algebra g and group G that are naturally asso­
ciated with H. 

Typically this means that there is a unitary representation of G 
on the Hubert space of the system, such that H can be identified 
with the action of an element in the universal enveloping algebra 
C/(g). The structure of the unitary representations of G and their 
decomposition into irreducibles then yields information about the 
spectrum and eigenfunctions of H. 

Implicit in this program is the assumption that the unitary rep­
resentation theory of G is sufficiently developed so that it provides 
a viable noncommutative Fourier analysis (the groups G that oc­
cur are invariably nonabelian, because of the noncommuting na­
ture of position and momentum variables in quantum mechanics). 
Fortunately this is possible for large classes of connected finite-
dimensional Lie groups, thanks to the monumental contributions 
of E. Cartan, H. Weyl, I. M. Gelfand, I. E. Segal, Harish-Chandra, 
G. Mackey, A. Kirillov, and many other workers in representation 
theory in this century. 

Fundamental tools in this case are the use of (quasi-) invariant 
measures on homogeneous spaces for G to construct induced rep­
resentations, Mackey's imprimitivity theorem characterizing such 
representations, and the Kirillov correspondence between repre­
sentations and coadjoint orbits. For studying representations by 
Lie algebraic methods, one introduces the space of smooth vectors 
for a representation, which is a module for the associative alge­
bra U(g). Jorgensen briefly reviews these matters, emphasizing 
the relation between unitary representations of G and self-adjoint 
representations of g. The recent book of M. Taylor [4] covers 
some of the same ground in more detail, and gives an excellent 
introduction to representation theory from the point of view of 
applications to analysis and geometry. 

In Jorgensen's book the representation theory of connected nil-
potent Lie groups is applied to the example of a Hamiltonian for 
a particle in a curved magnetic field, and to scalar Schrödinger 
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operators with polynomial potential. Finding the group G is 
quite easy in these cases: the operator H is assumed to be of 

1 2 

the form X{ H h Xr , where Xi is a first-order differential oper­
ator with real polynomial coefficients. The Lie algebra g generated 
by X{, . . . , Xr is finite-dimensional and nilpotent. Furthermore, 
H comes from a hypoelliptic operator in {7(g), by a celebrated 
theorem of L. Hörmander. The representation-theoretic machin­
ery just described can then be applied to determine the spectral 
properties of H, as Jorgensen shows in Chapters 6 and 7. 

In the algebraic approach to quantum mechanics, pioneered by 
I. E. Segal, the observable quantities of physical system comprise 
a C* algebra stf , and each state of the system gives rise to a *-
representation of stf on a Hubert space. A symmetry group G 
(or Lie algebra g) for the system acts by *-automorphisms (resp., 
derivations) on s/ (resp., a dense subalgebra of sf). When this 
action can be implemented in a representation of s/ , one ob­
tains a projective representation of G (resp., g). In the last third 
of Jorgensen's book several examples of such models are exam­
ined. One issue is the exponentiation of the action of g when 
g is infinite-dimensional (e.g. the Lie algebra of smooth vector 
fields on the circle, which occurs in conformai field theories, cf. 
[2, 3]). Another is the classification of smooth Lie group actions 
on a "noncommutative torus" (motivated by A. Connes theory of 
noncommutative differential geometry). 

The book concludes with an appendix on integrability of Lie 
algebra representations, and forty-five pages of references. Curi­
ously, about two-thirds of the articles listed are never cited in the 
text (e.g. the nineteen papers of Harish-Chandra). 

Unfortunately, Jorgensen's book is marred by quite a few logical 
blunders and errors of terminology. Despite the emphasis on the 
role of Lie algebras and their extensions throughout the book, there 
is a persistent confusion between quotient algebras, subalgebras, 
and linear subspaces of a Lie algebra. This begins already on page 
5, with the definition of central extension of a Lie algebra (the 
algebra being extended incorrectly appears as a subalgebra rather 
than a quotient). Another example of this sort of mistake occurs 
on page 125, in connection with Lie algebras for a magnetic field 
Hamiltonian, and in the use of coexponential coordinates. The 
construction of the cocycle representation of a pair T, f, where 
T is a discrete Abelian group, on page 176ff. involves a circular 
argument. On page 215 the Lie algebra u(«, 1) is described as 
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"an extension of u(n) by the Abelian Lie algebra Cn ", where 
in fact p = Cn is the subspace (not subalgebra) for the Cartan 
decomposition g = k + p . 

A more serious analytic error occurs in the discussion of an­
alytic domination and integrability of Lie algebras of operators. 
Here the group G is SL(2, R) with maximal compact subgroup 
K = SO(2). Estimate (5.5.9), stated (without proof) on page 59, is 
used to conclude on page 68 that the À-finite vectors for a unitary 
representation of G are entire. If true, this would imply that the 
matrix entry functions of such vectors extend holomorphically to 
the complex group SL(2, C). But this is easily seen to be impos­
sible, e.g. by considering the spherical functions for G (cf. [1, §8] 
for general nonextendability results for unitary representations of 
noncompact semisimple groups). This error does not contradict 
the integrability theorem Jorgensen is aiming at, since local ana­
lytic extendability suffices. However, it undermines his exposition 
of these results. 

In summary, Jorgensen's book, despite its technical flaws, pre­
sents an overview of an interesting range of recent developments 
in operator and representation theory. 
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