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ON THE COMPLETE INTEGRABILITY 
OF SOME LAX SYSTEMS ON GL(n, R) x GL(n, R) 

LUEN-CHAU LI 

INTRODUCTION 

Over the past decade there has been a great deal of activity in the 
solution of nonlinear evolution equations by the Riemann problem 
method (see [5] and references therein). As is well known, at the 
basis of all these works is the representation of the equations as a 
condition of zero curvature, i.e., 

0) £-g + I t , , n _ a 
Here, U and V are matrix-valued functions parametrized by the 
classical fields and [•, •] is the standard commutator. For periodic 
lattice models, where the (discretized) spatial variable n now takes 
values in ZN = Z/NZ, there is a natural analog of (1). These are 
the so-called Lax systems [1,5] and have the general form 

( 2 ) ^f = Vn+lL„-LnVn, neZN. 

The matrices Ln above are invertible and define parallel transport 
from site n of the lattice to site «+1 [5]. As can be easily verified, 
the monodromy matrix T(L) = LN- • • L{ , L = (L{, . . . , LN) 
undergoes an isospectral deformation 

(3) ^ ) = [V{ f T(L)] 

and hence the eigenvalues of T(L) provide a collection of con­
served quantities for (2). In this note, we shall consider a special 
case of (2) which is related to eigenvalue algorithms and for which 
additional integrals can be constructed to prove complete integra-
bility (in the sense of Liouville) on generic symplectic leaves. For 
the convenience of the general reader, we recall that a Poisson 

Received by the editors May 1, 1989 and, in revised form, December 19, 1989. 
1980 Mathematics Subject Classification (1985 Revision). Primary 58F07; Sec­

ondary 58F05, 65F15. 
The author is partially supported by NSF grant DMS-8704097. 

©1990 American Mathematical Society 
0273-0979/90 $1.00+ $.25 per page 

487 



488 LUEN-CHAU LI 

manifold P is a manifold equipped with a Lie bracket { , } on 
C°°(P), satisfying the Leibniz identity. Kirillov's theorem [6] says 
that every such manifold admits a partition into symplectic man­
ifolds, its symplectic leaves. Finally, a Hamiltonian vector field is 
said to be completely integrable on a symplectic leaf of dimension 
2ra if there exist m integrals Fx, . . . , Fm functionally indepen­
dent on an open dense set of the leaf and such that {F., F.} = 0 

1 

We now introduce the equations. Let G be a Lie group whose 
Lie algebra g is equipped with a nondegenerate ad-invariant pair­
ing ( . , . ) . For (p e C°°(G), let Dcp, D'(p be its left and right 
gradients, respectively, thus: 

{Df(g),X)=±-

<4> 

9>(etXg): 
t=o 

<P{getX)-(D9(g),X)=T\ 
ai\t=o 

Since the pairing on g can be extended to one on g2 = g © g 
(Lie algebra direct sum), for a function O on G2 = G x G, the 
left and right gradients can be defined as above and we shall write 
D<D = (£>!<!>, £>2<D), £>'<D = (D[®, D'20). 

In what follows, we take G to be the group of real, invertible 
n x n matrices and consider the standard pairing {A, B) = XrAB 
on g. We have g = k e i (with the associated projections n k , Oj) 
where k and 1 are the subalgebras of skew-symmetric matrices 
and lower triangular matrices, respectively. This gives rise to the 
following classical r-matrix [10] 

(5) R = nk-nv 

As a final ingredient for the equations, we take a central func­
tion y/ e C°°(G), i.e., y/(xyx~l) = y/(y), x,y G G. We then 
associate to y/ the function 

(6) H¥(gx, g2) = y/{T{g)), T(g) = g2g{ ,g = (gl9 g2) e G2. 

The Lax system we shall consider in this note is given by 

*i = hR{DxH¥(g))gx - \gxR{D2Hv{g)), 

g2 = {R{D2Hv{g))g2 - \g2R{DxHv{g)). 

As the reader will see in the section below, these equations are 
generated by H acting as Hamiltonian in an appropriate Poisson 
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structure. Note that abstract versions of such equations on N 
copies of a Lie group were written down in [10], but we restrict to 
(7) as a first step towards understanding the general case. 

Remark. The flow on (g{, g2
_1) defined by (7) in the case where 

y/(x) = -^tr(logx)2 , x G G, is a continuous time interpolation of 
the QZ algorithm [2, 8] to compute generalized eigenvalues of the 
pair (gx, g~l), (g{ -Xg2

x)u = 0, as in [4]. On the other hand, we 
can also interpret the Lax system in (7) as an algorithm to compute 
the eigenvalues of the monodromy matrix T(g) = g2gx . For the 
same reason, Lax systems on G^ = G x • • • x G (N copies) are of 
relevance for the computation of the eigenvalues of the product of 
TV matrices. 

2 

We now introduce the Poisson structure and the integrals for 
(7). In contrast to many eigenvalue algorithms, where the under­
lying Hamiltonian structures are linear [4], the relevant Poisson 
structure here is given by the quadratic Poisson structure (see [7]) 

W{ y <P2}{g{ , g2) 
i 2 

(8) E ^ ^ D ) , ) , ^ ) - (AiDjÇjtDjVj 
7=1 

+ (S(DjVl)9D'j^2) - (SiD'j^vJtDjVj], 

where A = j(R — R*)9 S = j(R + R*) and the indices are taken 
mod 2. This construction is an extension of the result in [10] and 
it is easy to show that the eigenvalues of the monodromy matrix 
Poisson commute in { , }. Moreover, {-,i/^} generates (7). 
In what follows, we shall describe the generic symplectic leaves 
of this Poisson structure and the additional integrals necessary to 
show that (7) is integrable on such leaves. 

The integrals fall into two categories according to their invari­
ance properties (see also §3). The first set comes from the coeffi­
cients of the polynomial 
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J{gx ,g2',h9z) = d e t t e s - hg2g
T

2 - z)* 

= Y,Y,Jrk(8i > S2)h
hzn~\ (g{, g2) e G2 

r=0 lc=0 

so that there is an associated algebraic (spectral) curve 

J(g{ ,g2;h,z) = 0. 

For an n x n matrix M, let (M)k denote the (n - k) x (n - k) 
matrix obtained from M by deleting the first k columns and last 
k rows. For (gx, g2) e G2 , we put 

n-k 

(10) Pk(g{ ,g2;A) = detto - k g - \ = 2£,*(*, , ft)r"*"r, 
r=0 

fc = 0, 1 , . . . , « - 1, 

and note that the signs of det(g2)k, k = 0, 1 , ... , n - 1 are 
constant on the symplectic leaves of { , }. To introduce the 
second set of invariants, we make the genericity hypothesis 

(Gl) d e t ( g 2 ) ^ 0 , k=l,...,n-l. 

This allows us to define, for g2 e G satisfying (Gl), the integrals 

(11) Irk(g{, g2) = Erk{gx, g2)/E0k(gl, g2), 
0<k<n-l, \<r<n-k. 

In order to obtain symplectic leaves of maximal dimension, we 
further impose 

(G2) o{gx, gl) = {zeC\ d e t ^ - zgl) = 0} 

is simple. 

Theorem, (a) Let (g{,g2)eG2 satisfy (Gl) - (G2) . Then the 
symplectic leaf J^g } of the Poisson structure given in (8) pass­
ing" through the point (g{, g2) w of dimension 2n(n- 1), tewg £/ze 
level set of the Casimir functions** Jnk, 0 < k < n and In_k k, 
\<k<n. 

(b) The functions Irk, I < k < n - \, \ < r < n - k -
1 and Jr>k', 1 < r < n - 1, 0 < /c' < r' provide n(n - 1) 

* For a matrix M, M is the transpose of M . 
** A Casimir function on a Poisson manifold is a function C such that 

{C, F} = 0 for all functions F . 
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independent Poisson commuting integrals for (7) on an open dense 
set in 3{gxtgiy 

(c) Let Q.(t) e 0+(n,R), Lt(t) e L+(n,R), i = 1,2, be 
solutions of the factorization problem 

e-tDxIrk{g«c,£) = Qi{t)L{{th e-*D'M*l& = Q2(t)L2(t). 

Then the solution to the Irk-flow is given by 

gx(t) = Q\(t)g*Q2{t)9 g2(t) = QT
2{t)glQx(t). 

(d) The Jrk-flow, k > 0, induces an isospectral flow on 
xh(8\ > S2) = #2#i ~ hgiSi > 8iven by the equation 

Xh = [Xh,B
+(h)] = [Xh,B~(h)], 

where B+(h), B~(h) are matrix polynomials in h and h~ , re­
spectively, with B+(0) el, B~(oo) e k, and B+(h) - B~(h) = 
h~ XhV

T Er(Xh) (Er is the r-th elementary symmetric function). 
For an open dense set of initial data, this can be solved via a fac­
torization problem in the loop group LGL(n, C). 

Remark. The Symes type formula (cf. [11]) in part (c) of the the­
orem in the case where k = 0 is due to Semenov-Tian-Shansky 
[10] and Chu [2]. 

3 

We give some ideas of the proof. Introduce the parabolic sub­
groups 

G* = { ( * c)\AeGL(n~k'R)' C G G L ^ > R ) } > 
k = 1 , ... , n - 1. 

For (a) and (b), the basic facts to note are the invariance properties 
of the Irk 's and Jrk 's: 

(i) Irk^h\g\h2X > h2g2h;1) = Irk(gx, g2), 
h{eGk, h2eGn_k, 

(ii) Jrk(hxgxh~X, h2g2h~l) = Jrk(g{, g2), 

h{, h2e 0(n, R), 

together with the observation that 

(iii) DJrk egk = Lie(G,), D\lrk e gn_k = Lie(G„_fc). 
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In addition, the explicit form of the Jrk 's is crucial. The open 
dense set in «Ŝ  ) where the integrals are independent con­
sists of elements satisfying additional properties (besides (Gl) and 
(G2)) which we shall not try to explain here. For (c), verification 
in the case k > 0 requires finer information about Qx{t) and 
Q2(t), namely, 

Q\ (t) e Gk n 0\n, R), QT
2(t) e Gn_k n 0+{n, R). 

Finally, the factorization problem in the loop group LGL(n, C) 
can be reduced to a scalar factorization problem, as in [3, 9]. We 
shall report the details of this work elsewhere. 
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